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Abstract: (1) Background: Accurate preoperative diagnosis of ovarian masses is crucial for optimal
treatment and postoperative outcomes. Transvaginal ultrasound is the gold standard, but its accuracy
depends on operator skill and technology. In the absence of expert imaging, pattern-based approaches
have been proposed. The integration of artificial intelligence, specifically deep learning (DL), shows
promise in improving diagnostic precision for adnexal masses. Our meta-analysis aims to evaluate
DL’s performance compared to expert evaluation in diagnosing adnexal masses using ultrasound
images. (2) Methods: Studies published between 2000 and 2023 were searched in PubMed, Scopus,
Cochrane and Web of Science. The study quality was assessed using QUADAS-2 (Quality Assessment
of Diagnostic Accuracy Studies-2). Pooled sensitivity and specificity for both methods were estimated
and compared. (3) Results: From 1659 citations, we selected four studies to include in this meta-
analysis. The mean prevalence of ovarian cancer was 30.6%. The quality of the studies was good
with low risk of bias for index and reference tests, but with high risk of bias for patient selection
domain. Pooled sensitivity and specificity were 86.0% and 90.0% for DL and 86.0% and 89.0%
for expert accuracy (p = 0.9883). (4) Conclusion: We found no significant differences between DL
systems and expert evaluations in detecting and differentially diagnosing adnexal masses using
ultrasound images.

Keywords: adnexal mass; deep learning; transvaginal ultrasound; ovarian cancer; artificial intelligence

1. Introduction

Adnexal masses, comprising ovarian, tubal, and para-ovarian lesions constitute a
common clinical problem and represent a diagnostic challenge in gynecology. Fortunately,
most adnexal masses are benign [1]. Benign adnexal masses can be managed conservatively
with serial follow-up or surgically with tumor removal, preferentially with minimally
invasive surgery by a general gynecologist [2–4]. In addition, fertility preservation is an
important issue in patients of reproductive age and with childbearing intentions [5]. On the
other hand, ovarian cancer is the second most common gynecological malignancy with an
estimated incidence of 11.4 cases/100,000 women-year [6]. However, this cancer is the most
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lethal gynecological malignancy, with a 5-year overall survival of 48% [7], and there is no
effective screening strategy [8]. Ovarian cancer should be treated in specialized centers, with
expert surgeons and adequate resources, where surgical outcomes and patients’ survival
are clearly improved [9,10].

Therefore, the precise preoperative diagnosis between benign and malignant ovarian
masses is essential for selecting appropriate treatment strategies and enhancing patients’
postoperative prognoses [11], necessitating the precise preoperative assessments for opti-
mal clinical guidance and therapeutic decision-making [11]. The mainstay for diagnosing
adnexal masses relies on imaging techniques, with transvaginal ultrasound being regarded
as a first-line imaging tool for assessing adnexal tumors for its non-invasiveness, cost-
effectiveness, and ability to provide real-time insights into pelvic pathology and because
no other imaging technique has been proven to be superior in terms of diagnostic perfor-
mance [11,12]. However, the accuracy of ultrasound imaging interpretation is contingent
upon both the proficiency of the operator and the available technology [13,14]. In fact, a
randomized trial demonstrated how the operator’s experience has a measurable impact on
the correct management of adnexal masses [15].

In this context, the importance of accurate preoperative diagnosis through transvaginal
ultrasound cannot be overstated, as it significantly influences the subsequent clinical
management of patients with adnexal masses [16,17]. Because this technique depends on
the operator’s experience and due to their limited access to expert imaging assessments,
to complement their evaluation, numerous pattern-based methodologies and logistical
models leveraging image characteristics have been proposed to improve the precision of
diagnoses for adnexal masses. For years many attempts have been made to develop scoring
systems and classifications that would allow less-experienced examiners achieve good
results [18–22].

However, as technological landscapes continue to evolve, the integration of artificial
intelligence (AI) has emerged as a revolutionary paradigm in medical diagnostics [23,24].
Artificial intelligence is described as the ability of a computer program to perform processes
associated with human intelligence, that can learn and interact [25]. Machine learning is a
branch of AI, defined by the ability to learn from data without being explicitly programmed.
Machine learning can be understood as a statistical method that gradually improves as it is
exposed to more data, by extracting patterns from the data [25].

Deep learning (DL), a subset of machine learning, that entails the creation of convolu-
tional neural networks that emulate the human brain’s capacity to learn and make decisions.
Deep learning involves learning from vast amounts of data and performs especially well
in pattern recognition within data; therefore, it can be particularly helpful in medical
imaging. With the exponential growth of medical data, this tool has shown promising
results in enhancing the accuracy and efficiency of adnexal mass characterization. In the
last decade, several studies have been reported using ultrasound-based ML approaches for
the differential diagnosis of adnexal masses [26–44].

However, only some of these used DL models and even fewer compared DL with
the diagnostic performance of a human examiner. To the best of our knowledge, no meta-
analysis has been reported comparing the diagnostic performance of deep learning and
human expert examiner diagnoses. The aim of our meta-analysis and systematic review
is to evaluate the performance of DL compared to expert evaluation in the diagnosis of
adnexal masses using ultrasound images.

2. Materials and Methods

This meta-analysis was performed according to the PRISMA recommendations (http:
//www.prisma-statement.org/, accessed on 2 November 2023) [45]. This study was regis-
tered in PROSPERO (CRD42024502144). Given the nature and design of this study, ethics
committee approval was not required.

http://www.prisma-statement.org/
http://www.prisma-statement.org/
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2.1. Search Strategy

A search was conducted across four electronic databases (PubMed, Scopus, Cochrane,
and Web of Science) from January 2000 to October 2023 to identify studies that could meet
the eligibility criteria. To prevent potential oversight of relevant studies, we refrained from
applying methodological filters in the database searches.

For the research, we utilized the search terms “adnexal mass or ovarian cancer” and
“machine learning” in the search field.

2.2. Selection Criteria

Once we had compiled the preliminary list of potential studies, all titles were reviewed
to eliminate any duplications. In the next step, we filtered the titles and subsequently
examined abstracts to identify and exclude irrelevant articles. This included those not
directly related to the topic under review, as well as non-observational studies, such as
reviews, case reports, and letters to the editor. To ensure we did not exclude any valid
study to our research, all the abstracts were evaluated and validated by five authors. At the
end, records were again filtered with a complete reading of the full text of the studies that
remained after exclusion.

This meta-analysis had the following inclusion criteria:

• Primary diagnostic prospective or retrospective studies evaluating deep learning
models for the diagnosis of adnexal masses and comparing them to expert evaluation.

• Collected Data allows the construction of a 2 × 2 table to estimate true positive, true
negative, false positive, and false negative cases for any of the index tests assessed.

• The reference test was considered histological confirmation.

The exclusion criteria were the following:

• Studies not related to the topic.
• Studies evaluating AI or ML other than DL.
• Secondary studies (other meta-analysis or systematic reviews) or those where insuffi-

cient data were provided.
• Studies where other imaging studies such as MRI or CT were considered.
• Articles that did not compare deep learning results with those obtained by expert

examiners.
• Studies where histological confirmation was not the gold standard or was not available.
• Studies combining evaluation of biomarkers to ultrasonography.

We used the snowball strategy to identify potentially interesting papers by reading
the reference lists of the papers selected for full text reading.

2.3. Data Extraction and Management

Five authors independently retrieved the following data from each study: first author,
year of publication, country, study design, number of centers participating, patients’ in-
clusion criteria, patients’ exclusion criteria, patients’ age, number of patients, number of
patients with benign and malignant diagnoses, number of images, suspicions of benignity
or malignancy, index test used, number of examiners, number of images employed for
training, validation and testing, number of sonographers and whether they were experts or
not, the reference standard used, the diagnostic accuracy results, and the time elapsed from
the index test to the reference standard test.

Disagreements arising during the process of study selection and data extraction were
solved by consensus among these five authors.

2.4. Qualitative Synthesis

The quality assessment of the studies included in the meta-analysis was conducted
using the tool provided by the Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) [46]. The QUADAS-2 format includes four domains: patient selection, index
test, reference standard, and flow and timing. For each domain, the risk of bias and concerns
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about applicability (not applying to the domain of flow and timing) were analyzed and rated
as low, high, or unclear risk. Five authors independently evaluated the methodological
quality. Disagreements were solved by discussion between these authors.

When evaluating risk of bias in patient selection, those with a retrospective design
were considered high risk. For the flow-and-timing domain, we considered a high risk of
bias when time from the index test assessment to the reference standard was over three
months. The fact that sonographers were not blinded to ultrasound findings was considered
to pose a high risk of bias. Surgery and anatomopathological study were defined as the
reference standards.

2.5. Quantitative Synthesis

All statistical analysis has been performed exclusively with external validation data,
excluding internal validation in those studies that reported this information. When there
were multiple prediction models, we selected the one that offered the best diagnostic
performance in terms of sensitivity and specificity. Likewise, if the primary study included
more than one external validation of the same model (for example external validation in
two or more centers), we grouped the data. When there were multiple groups of experts,
we took the grouped data as presented in the papers.

Pooled specificity and sensitivity were calculated using randomized effects and the
comparison between the performance of the model and the experts was done using the
bivariate method. Forest plots of the sensitivity and specificity of all studies were plotted.
Heterogeneity for sensitivity and specificity was assessed using the I2 index [47]. If hetero-
geneity was found, meta-regression analysis was performed using as covariates sample
size and malignancy prevalence.

Summary receiver operating characteristic (sROC) curves were plotted to illustrate
the relationship between sensitivity and specificity, and the area under the curve (AUC)
was calculated. Publication bias would also be assessed. Statistical analysis was performed
using STATA version 12.0 for Windows (Stata Corporation, College Station, TX, USA). A
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Search Results

The electronic search provided 1659 citations. We excluded 809 duplicate records,
and 33 secondary reports. After that, 817 citations remained. After reading titles and
abstracts, 795 citations were excluded (papers not related to the topic (n = 530), assessing
biomarkers (n = 33) and other diagnostic methods used (n = 232)). Twenty-two papers
remained for full-text reading. Eighteen papers were further excluded (no deep learning
(n = 3), no reference standard (n = 2) and no comparison with expert sonographer (n = 13)).
Therefore, only four studies were ultimately included in this meta-analysis for qualitative
and quantitative synthesis [40,42–44]. A flowchart summarizing the literature search is
shown in Figure 1.

3.2. Characteristics of Studies

Data of the four studies included are summarized in Table 1. These papers were
published between January 2021 and October 2022 and reported the data of 2439 women
with ages ranging from 11 to 85 years old. The mean prevalence of ovarian cancer was
30.6% (19.0–48.7%). All the studies were retrospective and in all studies the ultrasound was
performed by a selection of proficient experts and the reference standard was the histology
obtained after surgery.
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Altogether, there was a total of 2541 adnexal masses, where 1797 were benign, 71 bor-
derline and 673 were malignant masses. Nevertheless, one article did not specify such data
for any subgroup [40], and only one specified the number of borderline tumors [43]. For
statistical analysis, borderline and malignant tumors were grouped together.

Concerning Christiansen et al. [40] and Chen et al. [42], two DL models were evalu-
ated. In order to calculate pooled values, we chose the model with better sensitivity and
specificity results.

In Christiansen et al.’s study [40], the total number of cases was 634 (325 benign cases,
55 borderline, 254 malignant) with a total of 3077 images. In the training dataset there
were 508 cases (314 benign and 194 malignant cases). In the validation dataset there were
100 cases (60 benign and 40 malignant cases). Whereas, in the test set there were 150 cases
(75 benign and 75 malignant cases).
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Table 1. Characteristics of the studies included in this meta-analysis.

Author Year Country Study
Design

N
Patients Benign

Malignant
and

Borderline

Nº
Centers Age (Years) * Reference

Standard

Deep
Learning

Architecture

Time
until

Surgery
(Days) **

Gao [44] 2022 China Retrospective 1224 991 233 10

External
dataset1:

43 (32–52)
External
dataset2:

38 (27–48)

Histology DCNN NR

Christiansen
[40] 2021 Sweden Retrospective 634 325 309 2 NR Histology

DNN:
(VGG16,
ResNet50

and
MobileNet)

120

Chen [42] 2022 China Retrospective 422 304 118 1 46.8 (18–85) Histology CNN
(ResNet-18) 30

Li [43] 2022 China Retrospective 261 177 84 3

External 1:
48.87 (15, 77)
External 2:

43.26 (19, 50)

Histology CNN
(ResNet-18) NR

* Expressed as median with range in parentheses. ** Maximum time elapsed.

In Chen et al.’s study [42], the total number of cases was 422 (304 benign cases and
118 malignant ones) with a total of 2113 images. In the training dataset there was 296 cases
(213 benign and 83 malignant cases) with a total of 1493 images. In the validation dataset
there were 41 cases (30 benign and 11 malignant cases) with a total of 189 images. In the
test dataset there was a total of 85 cases (61 benign, 24 malignant) with a total 431 images.

In Li et al.’s article [43], the total number of cases for internal validation was 460 with
a total of 1217 images. There was a total of 377 images of 134 benign cases, a total of
219 images of 56 malignant cases and 57 images of 15 borderline cases. Regarding external
validation, which was formed by two different groups, there was in group 1 a total of
198 cases, with a total of 490 images, 134 images of 43 patients with cancer, 27 images of
8 borderline cases and 151 images of 51 benign masses. In group 2, the total number was
264 (a total of 761 images, 97 images of 25 patients with cancer, 30 images of 8 borderline
cases and 401 images of 126 benign masses).

In Gao et al.’s study [44], the total number of cases for internal validation was 868
(3031 images for 266 cases of malignant adnexal masses, and 5385 images of 602 cases of
benign adnexal masses). Regarding external validation, two groups were formed with
different patients; in external validation 1, the number of cases was 335 (486 images of
67 patients with cancer, and 933 images of 268 benign masses). In external validation 2,
the total number was 889 cases (1253 images in the malignant group with 166 cases, and
5257 images from 723 benign cases). In our meta-analysis, we decided to combine the
data from both external validation groups to simplify the statistical analysis, where the
performances of the model and the experts were compared.

This information is summarized in Table 2.

3.3. Qualitative Synthesis

The risk of biased evaluation and concerns regarding the applicability of the selected
studies is shown in Table 3.

All studies were deemed high-risk in the “patient selection” domain due to their
retrospective design. Concerning the domain “index test”, all studies were considered to
have a low risk of bias because the diagnostic test methods were clearly explained.
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Table 2. Distribution of histology and the number of images used in the training, internal validation,
test and external validation sets for all the studies included in this meta-analysis.

Author Training SET Internal
Validation Set Test Set External

Validation Set 1
External

Validation Set 2

Christensen [40]

Histology 314 B/194 M 60 B/40 M 75 B/75 M

Images per
histology NR NR NR ND ND

Chen [42]

Histology 213 B/83 M 30 B/11 M 61 B/24 M ND ND

Images per
histology NR NR NR

Li [43]

Histology 882 B/217 M 389 B/71 M ND 147 B/51 M 231 B/33 M

Images per
histology 2227 B/2270 M 941 B/276 M ND 329 B/161 M 634 B/127 M

Gao [44]

Histology 101,777 B/3755 M 602 B/266 M ND 268 B/67 M 723 B/166 M

Images per
histology 541,442 B/344,488 M 5385 B/3031 M ND 933 B/486 M 5257 B/1253 M

NR: not reported. ND: not done. B: benign. M: malignant.

Table 3. Risk of bias of the studies included in this meta-analysis.

Author Year Patient
Selection Index Test Reference

Standard
Flow and
Timing

Christiansen [40] 2021 High risk Low risk Low risk High risk
Chen [42] 2022 High risk Low risk Low risk Low risk

Li [43] 2022 High risk Low risk Low risk Unclear
Gao [44] 2022 High risk Low risk Low risk Unclear

The standard reference employed was reliable and widely accepted for determining the
true status of the condition (histological confirmation), allowing for accurate comparisons
with the diagnostic test results; therefore, all the studies were considered low-risk for the
domain “reference standard”.

Regarding the domain “flow and timing”, two articles were considered to have an
unclear risk of bias because the time elapsed between the ultrasound and laparoscopy with
histological confirmation was not described [43,44]. In the remaining two studies, it was
considered low risk in one, as the time lapse was only one month [42], and high in the
other, as more than three months occurred between the two interventions (four months,
precisely) [40]

3.4. Quantitative Synthesis

Considering the DL models’ performance for the diagnosis of ovarian adnexal masses,
the pooled sensitivity was 86.0% (95% CI, 64.0–96.0%). Whereas, the estimated pooled
specificity was 90.0% (95% CI, 84.0–93.0%). Considering experts’ performance, the pooled
sensitivity was 86.0% (95% CI 60.0–96.0%). The estimated pooled specificity was 89.0%
(95% CI, 87.0–91.0%). When comparing the diagnostic performance of the two approaches,
we did not find any statistical difference (p = 0.9883).

The heterogeneity observed—meaning the presence of variation in the true effect sizes
underlying the different studies—was high for all calculations (Figure 2A,B). The observed
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heterogeneity in sensitivity is explained by a difference in the prevalence of the included
studies, which was confirmed by meta-regression (p = 0.0001).
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The sHROC curves for the diagnostic performances of the DL models and the experts
to diagnose ovarian masses are shown in Figure 3A and Figure 3B, respectively. The area
under the curve regarding the DL models is 0.94 (95% CI 0.91–0.95). For expert evaluation,
the area under the curve is 0.91 (95% CI 0.88–0.93).
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Fagan’s nomograms for DL and expert evaluation are shown in Figure 4A and Figure 4B,
respectively. When interpreting these figures, we can observe that if a DL model classifies
the mass as malignant, the a priori risk (mean prevalence) increases from 31% to 79%. By
contrast, when a DL model indicates that the mass is benign, the a priori risk drops to
6% (Figure 4A). Similarly, when an expert examiner classifies a mass as malignant, the a
posteriori risk increases up to 78%. Whereas, when an expert examiner classifies the mass
as benign, the a posteriori risk decreases to 7%.
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Publication bias was not assessed as we only included four studies.

4. Discussion
4.1. Summary of Findings

In our analysis, after a meticulous research and selection process, focusing on a singular
imaging assessment method (transvaginal ultrasound) and a specific form of artificial
intelligence (DL), we identified only four studies that aligned with our research objectives.

We did find that DL models do not perform better than expert evaluation for dis-
criminating benign from malignant adnexal masses. However significant heterogeneity
across studies was observed. This heterogeneity was explained by a different prevalence of
malignancy in the studies included, ranging from 19% to 48%. This different prevalence
could be explained by the different inclusion and exclusion criteria used in the studies.

The quality of studies was considered as good, related to the index and reference tests,
and the flow and timing domain. However, we noticed that only retrospective studies have
been published. This means that the methods used as diagnostic tests (DL architectures and
criteria for examiner impression diagnosis) as well as the reference test (histopathology)
were deemed as having low risk of bias. However, we did consider that the retrospective
design in all studies poses a high risk of bias, since this kind of study design may have an
inherent risk of bias as the authors cannot control for all potential confounding variables
regarding patient selection.

4.2. Interpretation of Findings in Clinical Context

Currently, ultrasound is considered the first-choice imaging technique for discrimi-
nating between benign and malignant adnexal masses [48]. Expert examiner subjective
impression has been shown as the best diagnostic approach [49]. However, this approach
has inherent limitations such as the need for adequate training and experience [13,14]. In
fact, a randomized trial demonstrated that examiner experience had a measurable clinical
impact in the management of women diagnosed as having an adnexal mass [15].

For this reason, scoring systems and logistic models, such as the Risk of Malignancy
index, IOTA simple rules, Risk Assessment based on Simple rules, LR1 model, LR2 model,
ADNEX model, GI-RADS and O-RADS classification systems were developed in an attempt
to overcome this limitation [21,22,50–54]. No doubt, these approaches have produced a
significant advance in the ultrasound discrimination of adnexal masses, allowing less-
experienced examiners achieve good results in terms of diagnostic performance [55–63].
However, the expert examiner is still the most cost-effective approach [49].

Artificial intelligence is becoming a relevant issue in medical practice, particularly for
diagnosis. In fact, the use of AI models in the differential diagnosis of adnexal masses for
detecting ovarian cancer is increasing, as recently described [64,65]. AI models in medical
imaging may be based on data and/or image processing [25]. In deep learning models, the
input and output are connected by multiple layers of hidden connections, also known as
convolutional neural networks [25]. Deep learning involves learning from vast amounts of
data and performs especially well in pattern recognition within data; therefore, it can be
particularly helpful in medical imaging. The use of these models is attractive because it
avoids problems that derive from the interpretation of an image by a human observer, such
as lack of experience, availability, or subjectivity in interpretation, making the diagnosis
more generalizable and reproducible.

The use of artificial neural networks for discriminating benign from malignant tumors
is not a new topic [66–69]. Nevertheless, the performance of these early prediction models
was limited. The main reason for this limited performance is that these models were built
with few data.

However, in the era of big data and with the progressive integration of DL in medical
imaging involving the automatic assessment of digital images by the software, there is an
ongoing active assessment of models to ascertain their diagnostic accuracy in the context of
adnexal masses. DL represents the latest evolution in the field of ML, characterized by the
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utilization of multiple layers of neural networks that contribute increased computational
power through heightened neuronal complexity. This advancement, however, comes with
a caveat, as deep learning methods are inherently more susceptible to overfitting. Conse-
quently, these methods often necessitate larger datasets to ensure optimal performance.
However, it is necessary to determine whether these DL models actually perform better
than human beings, particularly expert examiners.

The present study compares the performance of DL systems using ultrasound images
for detecting and differentially diagnosing adnexal masses against expert evaluations. As
stated above, our analysis revealed that there were no significant differences between
the two methods of assessment. The conclusion to be drawn may be influenced by the
study design and the limited sample size; however, it is evident that these DL models
can be applied to ultrasound imaging in situations where expert opinions are unavailable
or inaccessible.

Furthermore, although it was not our objective, it is interesting to note that the pooled
diagnostic performance of DL (sensitivity 86%, specificity 90%) does not seem to be better
than other simpler logistic models, such as the ADNEX model or the IOTA-LR2 model. In
fact, regarding the IOTA-LR2 model, two meta-analyses, including data from 1612 and 1554
women, reported a sensitivity of 92–93% and a specificity of 83–84% for this model [49,55].
Regarding the IOTA ADNEX model, two recent meta-analyses reporting data from more
than 17,000 women showed that this model has a sensitivity of 93–94% and a specificity of
75–78% [57,58].

The considerable future potential of DL in various medical diagnostic areas is clear;
nevertheless, optimizing the way we conceptualize these models, gather data, and analyze
them is essential. We propose future studies and analyses that take these considerations
into account.

4.3. Strengths and Limitations

The main strength of our meta-analysis is that, to the best of our knowledge, this is
the first reported comparison that is specifically between the performance of DL models
and that of expert examiners.

Certainly, there are other recent meta-analyses addressing the performance of artificial
intelligence approaches to the differential diagnosis of adnexal masses [24,70,71]. However,
our results cannot be compared with these meta-analyses.

Xu et al. reported a meta-analysis including 19 studies using ultrasound-based artificial
intelligence models [70]. They included four that used DL (all four of these are also included
in our study) and fifteen more using other models. They estimated pooled sensitivity and
specificity mixing data from all 19 studies, not discriminating among different approaches
such as machine learning, deep learning or artificial neural networks, and did not compare
them to expert evaluation. We think that mixing all these data can be misleading, since
different approaches may perform differently.

Grigore et al. reported a meta-analysis assessing the performance of logistic models
and “artificial intelligence” models [24]. They included 18 studies, but none addressing the
role of DL. Therefore, the results of this meta-analysis cannot be compared to ours.

Finally, Ma et al. reported a meta-analysis including 11 studies, three of them using
ultrasound-based approaches [71]. Two of them used DL, but did not compare this to
expert examination and it was not included in our meta-analysis [36]. Again, the results of
this meta-analysis cannot be compared to ours.

As limitations, the inclusion of a relatively small dataset, consisting only of four studies
and mostly of a few hundred data points, imposes limitations on the potential advantages
afforded by DL models and has to be considered when evaluating the obtained results. On
the other hand, the heterogeneity observed among the included studies was high, and with
regards to sensitivity it can be explained by a difference in the prevalence, as stated above.

Furthermore, all included investigations were retrospective, using patients’ data de-
rived from medical records. This study design has an inherent risk of bias. This observation
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manifests the need to promote the development of prospective AI research in forthcoming
endeavors to enhance study validity. We should be cautious regarding the interpretation
of our results. In fact, another potential limitation to be considered is that all four studies
included in our meta-analysis used different DL models. Christiansen et al. used three
different deep neural networks (VGG-16, Resnet 50 and MobileNet) [40]. They reported the
diagnostic performance of each model and the combination of all three. We used the latter
for our calculations. Chen et al. used two different deep neural networks (Resnet 18 and
Resnet 50) [42]. The diagnostic performance was slightly better for the model Resnet 18
and we used these data for our calculations. Li et al. used the LKResnet 18 model, which is
a combination of Resnet 18 and LKNet deep neural networks [43]. And finally, Gao et al.
used a single deep convolutional neural network (DenseNet-121) [44]. All these models are,
certainly, convolutional neural network architectures, but there are differences among them.
For example, ResNet18 consists of 18 layers, whereas Resnet50 is composed of 50 layers. On
the other hand, LKResnet and DenseNet-121 are combinations of two convolutional neural
network architectures. If we look at Figure 2A, we can observe that not all models perform
similarly, so some questions arise. Can we use distinct DLs for the same purpose? Are
these data generalizable? Can we use these models in different populations? In fact, there
is some evidence that these architectures do not perform similarly when compared [72–74].

Another issue is the selection of the images and the region of interest (ROI) within
the image for training the DL model. Ultimately, an operator, or operators, should decide
which image should be used. Can this affect the performance of the model? Certainly,
segmentation is a significant advance when using DL models, as the computer selects the
ROI. However, it remains to be shown whether the models perform equally well on images
acquired by other expert centers, less-experienced examiners or by examiners not using
high-end equipment [10].

Finally, the inclusive approach of incorporating articles written in diverse languages
was intended to provide comprehensive insights into ongoing research; however, no non-
English articles were identified that aligned with the scope of our investigation.

5. Conclusions

The current study assesses the effectiveness of DL systems in utilizing ultrasound
images for the detection and differential diagnosis of adnexal masses when compared
to expert evaluations. Our analysis indicates that there were no significant differences
between the two assessment methods. However, further research on this topic is needed,
as the number of studies is low. In particular, prospective studies that address the actual
value of DL models in clinical practice is needed.
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