Contributions of Alveolar Bone Density and Habitual Chewing Side to the Unilateral Failure of Orthodontic Mini-Screws: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CBCT Imaging and Image Processing
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.; Hu, H.K.; Chen, J.W.; Liu, Z.P.; Li, G.F.; He, S.S.; Zou, S.J.; Ye, Q.S. Comparison of anchorage capacity between implant and headgear during anterior segment retraction. Angle Orthod. 2011, 81, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kwon, T.G.; Sung, J.H. Nonextraction treatment with micro-screw implants. Angle Orthod. 2004, 74, 539–549. [Google Scholar]
- Arslan, A.; Nalbantgil Ozdemir, D.; Gursoy-Mert, H.; Malkondu, O.; Sencift, K. Intrusion of an overerupted mandibular molar using mini-screws and mini-screw implants: A case report. Aust. Dent. J. 2010, 55, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.R.; Kim, S.H.; Chaffee, M.P.; Nelson, G. Molar distalization with a partially integrated mini-implants to correct unilateral Class II malocclusion. Am. J. Orthod. Dentofacial. Orthop. 2010, 138, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Janeth, P.; Helen, P.; Manuel, B. Rapid maxillary expansion assisted by mini-implants anchorage: A case report. Int. Orthod. 2019, 17, 159–169. [Google Scholar]
- Cousley, R.R.J. Molar intrusion in the management of anterior openbite and ‘high angle’ Class II malocclusions. J. Orthod. 2014, 41, S36–S46. [Google Scholar] [CrossRef]
- Ayadi, I.; Dallel, I.; Ben Rejeb, S.; Tobji, S.; Ben Amor, F.; Ben Amor, A. Orthodontic intrusion using mini-screws. Orthod. Fr. 2018, 89, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, S.; Koyama, I.; Inoue, M.; Mishima, K.; Sugahara, T.; Takano-Yamamoto, T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am. J. Orthod. Dentofacial. Orthop. 2003, 124, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.-C.; Hsieh, C.-H.; Shen, Y.-S.; Huang, I.-Y.; Chen, C.-M. The application of mini-implants for orthodontic anchorage. Int. J. Oral. Maxillofac. Surg. 2006, 35, 704–707. [Google Scholar] [CrossRef]
- Kuroda, S.; Sugawara, Y.; Deguchi, T.; Kyung, H.-M.; Takano-Yamamoto, T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am. J. Orthod. Dentofacial. Orthop. 2007, 131, 9–15. [Google Scholar] [CrossRef]
- Lee, M.Y.; Park, J.H.; Kim, S.C.; Kang, K.H.; Cho, J.H.; Cho, J.W.; Chang, N.-Y.; Chae, J.-M. Bone density effects on the success rate of orthodontic microimplants evaluated with cone-beam computed tomography. Am. J. Orthod. Dentofacial. Orthop. 2016, 149, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Motoyoshi, M.; Yoshida, T.; Ono, A.; Shimizu, N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implant. Int. J. Oral Maxillofac. Surg. 2007, 22, 779–784. [Google Scholar]
- Ashton, K.Y.; Jiang, S.S.; Melo, M.A.; Bosio, J.A. International investigation on temporary anchorage device use: A survey of orthodontists. J. World Fed. Orthod. 2023, 12, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, B.; Rademacher, C.; Olthoff, G.; Drescher, D. Parameters affecting primary stability of orthodontic mini-implants. J. Orofac. Orthop. 2006, 3, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chang, H.H.; Huang, C.Y.; Hung, H.C.; Lai, E.H.H.; Yao, C.C.J. A retrospective analysis of the failure rate of three different orthodontic skeletal anchorage systems. Clin. Oral Implant. Res. 2007, 18, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, F.; Tozlu, M.; Germec-Cakan, D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am. J. Orthod. Dentofacial. Orthop. 2013, 143, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, S.; Kokai, S.; Kanno, Z.; Ono, T. Stability of secondarily inserted orthodontic miniscrews after failure of the primary insertion for maxillary anchorage; Maxillary buccal area vs midpalatal suture area. Am. J. Orthod. Dentofacial. Orthop. 2018, 153, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Thongudomporn, U.; Chongsuvivatwong, V.; Geater, A. The effect of maximum bite force on alveolar bone morphology. Orthod. Craniofac. Res. 2009, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Loginova, N.K.; Veĭsgeĭm, L.D.; Churina, S.V. Influence of course use of chewing gum on alveolar bone density. Stomatologiia 2006, 85, 22–24. [Google Scholar]
- Sato, H.; Kawamura, A.; Yamaguchi, M.; Kasai, K. Relationship between masticatory function and internal structure of the mandible based on computed tomography findings. Am. J. Orthod. Dentofacial. Orthop. 2005, 128, 766–773. [Google Scholar] [CrossRef]
- Inoue, M.; Ono, T.; Kameo, Y.; Sasaki, F.; Ono, T.; Adachi, T.; Nakashima, T. Forceful mastication activates osteocytes and builds a stout jawbone. Sci. Rep. 2019, 9, 4404. [Google Scholar] [CrossRef] [PubMed]
- Pond, L.H.; Barghi, N.; Barnwel, G.M. Occlusion and chewing side preference. J. Prosthet. Dent. 1986, 55, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Wilding, R.J.; Lewin, A. A model for optimum functional human jaw movements based on values associated with preferred chewing patterns. Arch. Oral Biol. 1991, 36, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Rovira-Lastra, B.; Flores-Orozco, E.I.; Ayuso-Montero, R.; Peraire, M.; Martinez-Gomis, J. Peripheral functional and postural asymmetries related to the preferred chewing side in adults with natural dentition. J. Oral Rehabil. 2016, 43, 279–285. [Google Scholar] [CrossRef]
- Matines-Gomis, J.; Lujan-Climent, M.; Palau, S.; Bizar, J.; Salsench, J.; Peraire, M. Relationship between chewing side preference and handedness and lateral asymmetry or peripheral factors. Arch. Oral Biol. 2009, 54, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Minato, A.; Ono, T.; Miyamoto, J.J.; Honda, E.-I.; Kurabayashi, T.; Moriyama, K. Preferred chewing side-dependent two-point discrimination and cortical activation pattern of tactile tongue sensation. Behav. Brain Res. 2009, 203, 118–126. [Google Scholar] [CrossRef]
- Nissan, J.; Gross, M.D.; Shifman, A.; Tzadok, L.; Assif, D. Chewing side preference as a type of hemispheric laterality. J. Oral Rehabil. 2004, 31, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Kato, C.; Watari, I.; Ono, T. Does Orthodontic Treatment Change the Preferred Chewing Side of Patients with Malocclusion? J. Clin. Med. 2022, 11, 6343. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies. An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Pandis, N.; Walsh, T.; Polychronopoulou, A.; Katsaros, C.; Eliades, T. Split-mouth designs in orthodontics: An overview with applications to orthodontic clinical trials. Eur. J. Orthod. 2013, 35, 783–789. [Google Scholar] [CrossRef]
- Deguchi, T.; Nasu, M.; Murakami, K.; Yabuuchi, T.; Kamioka, H.; Takano-Yamamoto, T. Quantitative evaluation of cortical bone thickness with computed tomographic scanning for orthodontic implants. Am. J. Orthod. Dentofacial. Orthop. 2006, 129, 721.e7–721.e12. [Google Scholar] [CrossRef] [PubMed]
- Ohiomoba, H.; Sonis, A.; Yansane, A.; Friedland, B. Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. Am. J. Orthod. Dentofacial. Orthop. 2016, 151, 82–91. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, Y.J.; Jeong, S.H.; Kwon, T.G. Density of the alveolar and basal bone of the maxilla and the mandible. Am. J. Orthod. Dentofacial. Orthop. 2008, 133, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Chugh, T.; Ganeshkar, S.V.; Revankar, A.; Jain, A.K. Quantitative assessment of interred bone density in the maxilla and mandibule: Implications in clinical orthodontics. Prog. Orthod. 2013, 14, 38. [Google Scholar] [CrossRef]
- Schulze, R.; Heil, U.; Groß, D.; Bruellmann, D.; Dranischnikow, E.; Schwanecke, U.; Schoemer, E. Artefacts in CBCT: A review. Dentomaxillofac. Radiol. 2011, 40, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Eun, C.S.; Cho, J.H.; Lee, K.H.; Hwang, H.S. Factors associated with initial stability of miniscrews for orthodontic treatment. Am. J. Orthod. Dentofacial. Orthop. 2009, 136, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Huang, H.L.; Liu, C.F.; Wu, J.; Li, Y.F.; Tsai, M.T.; Hsu, J.T. Does Orthodontic Treatment Affect the Alveolar Bone Density? Medicine 2016, 95, e3080. [Google Scholar] [CrossRef]
- Chang, H.W.; Huang, H.L.; Yu, J.-H.; Hsu, J.-T.; Li, Y.-F.; Wu, Y.-F. Effect of orthodontic tooth movement on alveolar bone density. Clin. Oral Investig. 2012, 16, 679–688. [Google Scholar] [CrossRef]
Success | Unsuccessful | Total (n) | |
---|---|---|---|
Habitual chewing (n) | 43 | 43 | 86 |
Preferred side (%) | 69.2 | 30.8 | 39 |
Non-preferred side (%) | 30.8 | 69.2 | 39 |
No preference (%) | 50 | 50 | 8 |
Cortical bone thickness (n) | 43 | 43 | 86 |
Grp. 1 (%) | 35.5 | 64.5 | 31 |
Grp. 2 (%) | 63 | 37 | 27 |
Grp. 3 (%) | 53.6 | 46.4 | 28 |
Bone density (n) | 43 | 43 | 86 |
Grp. 1 (%) | 44.8 | 55.2 | 29 |
Grp. 2 (%) | 31 | 69 | 29 |
Grp. 3 (%) | 75 | 25 | 28 |
Insertion site (n) | 43 | 43 | 86 |
Between U5 and U6 (%) | 50 | 50 | 76 |
Between U6 and U7 (%) | 50 | 50 | 10 |
Years of experience (n) | 43 | 43 | 86 |
Grp. 1 (%) | 50 | 50 | 44 |
Grp. 2 (%) | 50 | 50 | 16 |
Grp. 3 (%) | 50 | 50 | 26 |
Univariate | Multivariate | ||||||||
---|---|---|---|---|---|---|---|---|---|
Failure Rate (%) | 95% CI | 95% CI | |||||||
PR | Min | Max | p-Value | PR | Min | Max | p-Value | ||
Habitual chewing | |||||||||
Preferred side | 30.8 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Non-preferred side | 69.2 | 2.25 | 1.14 | 4.442 | * 0.019 | 2.22 | 1.12 | 4.41 | * 0.02 |
No preference | 50 | 1.625 | 0.524 | 5.039 | 0.4 | 1.4 | 0.44 | 4.4 | 0.57 |
Cortical bone thickness | |||||||||
Grp. 1 | 64.5 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Grp. 2 | 37.1 | 0.574 | 0.269 | 1.226 | 0.152 | 0.65 | 0.29 | 1.48 | 0.31 |
Grp. 3 | 46.4 | 0.72 | 0.358 | 1.447 | 0.356 | 0.75 | 0.36 | 1.57 | 0.45 |
Bone density | |||||||||
Grp. 1 | 55.2 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Grp. 2 | 69 | 1.25 | 0.648 | 2.412 | 0.506 | 1.06 | 0.51 | 2.2 | 0.89 |
Grp. 3 | 25 | 0.453 | 0.186 | 1.101 | 0.081 | 0.4 | 0.16 | 1.01 | 0.05 |
Insertion site | |||||||||
Between U5 and U6 | 50 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Between U6 and U7 | 50 | 1 | 0.394 | 2.541 | 1 | 0.27 | 1.98 | 0.54 | |
Years of experience | |||||||||
Grp. 1 | 50 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Grp. 2 | 50 | 1 | 0.445 | 2.246 | 1 | 1.04 | 0.44 | 2.43 | 0.94 |
Grp. 3 | 50 | 1 | 0.504 | 1.985 | 1 | 1.23 | 0.6 | 2.51 | 0.57 |
Cons | 0.45 | 0.2 | 1.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuzawa-Iwasaki, M.; Ishida, Y.; Ishizaki-Terauchi, A.; Shimizu-Tomoda, C.; Aida, J.; Ono, T. Contributions of Alveolar Bone Density and Habitual Chewing Side to the Unilateral Failure of Orthodontic Mini-Screws: A Cross-Sectional Study. Appl. Sci. 2024, 14, 3041. https://doi.org/10.3390/app14073041
Okuzawa-Iwasaki M, Ishida Y, Ishizaki-Terauchi A, Shimizu-Tomoda C, Aida J, Ono T. Contributions of Alveolar Bone Density and Habitual Chewing Side to the Unilateral Failure of Orthodontic Mini-Screws: A Cross-Sectional Study. Applied Sciences. 2024; 14(7):3041. https://doi.org/10.3390/app14073041
Chicago/Turabian StyleOkuzawa-Iwasaki, Makiko, Yuji Ishida, Aiko Ishizaki-Terauchi, Chiyo Shimizu-Tomoda, Jun Aida, and Takashi Ono. 2024. "Contributions of Alveolar Bone Density and Habitual Chewing Side to the Unilateral Failure of Orthodontic Mini-Screws: A Cross-Sectional Study" Applied Sciences 14, no. 7: 3041. https://doi.org/10.3390/app14073041
APA StyleOkuzawa-Iwasaki, M., Ishida, Y., Ishizaki-Terauchi, A., Shimizu-Tomoda, C., Aida, J., & Ono, T. (2024). Contributions of Alveolar Bone Density and Habitual Chewing Side to the Unilateral Failure of Orthodontic Mini-Screws: A Cross-Sectional Study. Applied Sciences, 14(7), 3041. https://doi.org/10.3390/app14073041