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Abstract: Paranasal sinus pathologies, particularly those affecting the maxillary sinuses, pose signifi-
cant challenges in diagnosis and treatment due to the complex anatomical structures and diverse
disease manifestations. The aim of this study is to investigate the use of deep learning techniques,
particularly generative adversarial networks (GANs), in combination with convolutional neural
networks (CNNs), for the classification of sinus pathologies in medical imaging data. The dataset is
composed of images obtained through computed tomography (CT) scans, covering cases classified
into “Moderate”, “Severe”, and “Normal” classes. The lightweight GAN is applied to augment a
dataset by creating synthetic images, which are then used to train and test the ResNet-50 and ResNeXt-
50 models. The model performance is optimized using random search to perform hyperparameter
tuning, and the evaluation is conducted extensively for various metrics like accuracy, precision, recall,
and the F1-score. The results demonstrate the effectiveness of the proposed approach in accurately
classifying sinus pathologies, with the ResNeXt-50 model achieving superior performance with
accuracy: 91.154, precision: 0.917, recall: 0.912, and F1-score: 0.913 compared to ResNet-50. This
study highlights the potential of GAN-based data augmentation and deep learning techniques in
enhancing the diagnosis of maxillary sinus diseases.

Keywords: maxillary sinuses; classification; generative adversarial networks; convolutional neural
networks; data augmentation

1. Introduction

Sinusitis, a common medical illness defined by the inflammation of the paranasal
sinuses, is a major health concern worldwide. This sinus infection affects a large number
of people in various countries each year. Sinusitis occurs at a rate ranging from 16% to
21%. It is more prevalent in women and children than in men [1]. In Saudi Arabia, it is
mainly prevalent in the Eastern Province. This condition is becoming more prevalent in
Saudi Arabia as a result of nasal polyposis, bronchial asthma, and analgesic intolerance [2].
According to Hamilos [3], chronic sinusitis reduces workplace productivity and efficiency.
This has an impact on both one’s quality of life and their relationships. This is frequent in
all age categories, although it is most prevalent among people aged 44 to 64.

The paranasal sinuses are divided into four pairs: maxillary, frontal, ethmoid, and
sphenoid. Each sinus has unique anatomical characteristics and functions [4]. The maxillary
sinus, found in the maxilla or cheekbone, is the biggest of the paranasal sinuses. Its major
role is to warm and humidify breathed air and to reduce the weight of the cranium [5].
The maxillary sinus has a pyramidal form and drains into the nasal cavity via the ostium,
which is located high on the sinus wall. In contrast, the frontal sinus is located in the
frontal bone above the eyes, the ethmoid sinuses are a collection of tiny, air-filled holes
between the eyes, and the sphenoid sinus lies deep within the skull behind the nose [6].
Compared to the maxillary sinus, the frontal, ethmoid, and sphenoid sinuses have more
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complicated anatomical shapes and drainage channels. The frontal sinus, for example,
empties into the middle meatus of the nasal cavity via the frontonasal duct [5]. The
ethmoid sinuses are labyrinthine, composed of several tiny cells that drain into the middle
and superior meatuses. The sphenoid sinus empties into the sphenoethmoidal recess [7].
The anatomical and functional distinctions between these sinuses lead to the distinct
problems and pathologies identified in the maxillary sinus when compared to the other
paranasal sinuses.

Untreated sinusitis can cause serious problems such as infection spreading to sur-
rounding tissues, the development of chronic illnesses, and a negative influence on general
health [8]. Recognizing the severity of sinusitis in its early stages is critical for successful
treatment and avoiding complications. The symptoms of sinusitis coincide with those of
other common illnesses, such as seasonal influenza and colds, complicating the diagnosis
even further. The closeness in symptoms frequently leads to a spike in referral requests for
radiograph screening, putting a significant strain on healthcare resources [8].

However, even experienced radiologists have significant challenges when interpreting
these CT images. The careful examination of various sinus regions necessitates a high
degree of skill and time-consuming efforts, frequently resulting in diagnostic delays and
the possible loss of vital information [9]. As the need for accurate and timely diagnoses
increases, there is an urgent need to improve and streamline radiological workflow. Au-
tomating the examination of CT scans for sinus-related disorders becomes critical for
addressing these problems, as it has the potential to increase diagnosis accuracy, decrease
the strain on healthcare personnel, and speed up patient care.

The major goal of this study is to address the difficulties involved with diagnosing
and determining the severity of sinusitis, with a particular emphasis on the maxillary sinus.
Deep learning models, notably convolutional neural networks (CNNs), have demonstrated
promising outcomes in medical image interpretation, including sinus-related diseases [10].
However, the lack of balanced datasets makes it difficult to train accurate and stable
models. This paper tackles this problem by using generative adversarial networks (GANs)
to balance data samples [11]. GANs serve an important function in producing synthetic
pictures, which enrich the dataset and improve the performance of CNN models.

The use of GANs in medical imaging, particularly for sinus diseases, adds a new
dimension to image synthesis and data augmentation [12]. GANs help to overcome dataset
size limits, improving the generalization power of deep learning models. This work
investigates the use of GANs to resolve imbalances in sinusitis datasets, resulting in a more
complete and diversified dataset for training.

The purpose of this study is to create customized CNN models that can not only detect
sinusitis but also assess its severity using CT scans. The customized CNNs are tuned to the
unique characteristics of sinus-related illnesses, allowing for a more precise and nuanced
diagnosis. This study’s contribution is the unique use of GANs for data balancing and the
building of CNN models specialized in severity evaluation, which advances the capabilities
of deep learning in the area of sinus-related medical imaging. The contributions of this
research are outlined as follows:

i Implement generative adversarial networks (GANs) to address data imbalance issues
and enhance the dataset by generating synthetic samples, ensuring a more robust and
balanced representation of various cases.

ii Develop and customize convolutional neural network (CNN) models specifically tailored
for the diagnosis of the severity in CT images related to sinus-related pathologies,
providing a targeted and optimized approach for accurate assessment and classification.

The rest of this study is structured as follows: Section 2 introduces the relevant
studies. Section 3 elaborates on the proposed framework, dataset, and experimental design.
Section 4 demonstrates model evaluation and experimental results. In Section 5, the
conclusion and future work are discussed.
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2. Related Studies

Advances in medical imaging technology and the use of advanced machine learning
algorithms have led to a major increase in interest in research on sinus-related diseases and
imaging modalities. In medical image analysis, convolutional neural networks (CNNs)
have become the dominating force, showcasing an amazing ability in applications like
sinusitis identification. Transfer learning techniques have become more popular in resolving
data scarcity and improving diagnostic accuracy because they enable pre-trained models
to be adapted to new datasets. Furthermore, traditional machine learning methods are
still essential for classifying sinus-related pathologies. Additionally, the application of
generative adversarial networks (GANs) in medical imaging has opened avenues for
synthetic data augmentation, overcoming challenges associated with limited datasets and
contributing to improved diagnostic performance.

2.1. Convolutional Neural Network (CNN)

CNNs, a subset of deep learning techniques, have garnered considerable attention
for their remarkable efficacy in image analysis and classification tasks. Their hierarchical
architecture, characterized by convolutional layers for feature extraction and pooling
layers for spatial down-sampling, enables the automatic learning of intricate patterns and
representations within medical images. As evidenced by various studies in the literature,
CNNs have demonstrated exceptional performance in tasks ranging from detecting and
diagnosing diverse medical conditions to segmenting anatomical structures with high
precision. Authors have employed CNNs in the context of sinus-related pathologies and
imaging modalities. Table 1 presents a comparison of these studies.

Table 1. Comparison of CNN-based techniques.

Ref Year Problem Dataset Method Results Limitation

[13] 2023
Deep learning model

for screening maxillary
sinus abnormalities

CBCT images CNN AUROC: 0.953

Potential difficulties and
solutions for large-scale

intelligent disease
applications

[14] 2022

Automated CNN-based
methodology for
maxillary sinus
segmentation

CBCT images CNN
Dice Similarity

Coefficient
(DSC)—98.4%

Lack of data
heterogeneity, platform

constraints for
segmentation refinements

[15] 2022
Multi-view CNN for
estimating sinusitis

severity

Radiographs (Waters’
view and Caldwell’s

view).
CNN AUC: 0.750

Improving predictive
ability with a shallow

model

[16] 2022
Developing a CNN

model for diagnosing
maxillary sinusitis

PRs and CBCT images CNN Accuracy: 99.7%

Potential insufficiency of
imaging methods alone
for maxillary sinusitis

diagnosis

[17] 2023

Application of digital
diaphanoscopy for
detecting maxillary
sinus pathologies

49 conditionally healthy
volunteers and

42 patients

CNN and
LDA

Sensitivity of
0.88 and

specificity of
0.98

Small dataset, lack of use
of transfer learning

methods

[18] 2019
Diagnosing maxillary

sinusitis on Waters’
view radiographs

Waters’ view
radiographs CNN AUC: 93%

Imperfect CT reference
standard and absence of

concurrent CT in training
set

[19] 2022 Automated analysis of
paranasal sinuses

CT scans from 140
patients at Gaziantep

University
CNN Accuracy:

98.52%

Transfer learning methods
were not utilized which

are ideal for small dataset

[20] 2021
Diagnosing sinusitis on
Waters’ and Caldwell

views

CT scans of 2349
consecutive patients

older than 16 years at
Seoul National

University
Hospital (SNUH)

CNN

AUC of 0.71,
0.78, and 0.88

for frontal,
ethmoid, and

maxillary
sinusitis

Relatively small dataset,
data imbalance, reliance

on CT as reference
standard
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2.2. Transfer Learning Techniques

Transfer learning is an approach to machine learning that has gained popularity
because it can employ a few labeled data to apply knowledge from one task or domain
to another that is similar but distinct. In the field of medical imaging, transfer learning
has shown promise as a means of improving model performance and generalization in
situations where data availability might be a constraint. The authors have used various
applications of transfer learning in the context of diagnosing and classifying sinus-related
pathologies. The comparison of transfer learning-based techniques is shown in Table 2.

Table 2. Comparison of transfer learning-based techniques.

Ref Year Problem Dataset Method Results Limitation

[21] 2023
Transfer learning to
diagnose maxillary

sinusitis

Panoramic
radiographs

(institution A),
Waters’ images
(institution B)

VGG-16
(AUC): 86.3% in

panoramic
radiographs

Limited dataset of
panoramic and Waters’

images for deep learning
algorithms

[22] 2020
Automatic CT image

segmentation of
maxillary sinus

CT images from
Shanghai Ninth

People’s
Hospital

VGG network Segmentation
Dice—94.40 ± 2.07%

Classification accuracy
improvement,

segmentation challenges
for cases with mucosal

inflammation

[23] 2019

Recognizing
maxillary sinusitis
features in Waters’

view

Waters’ view
PNS X-ray

scans

VGG-16,
VGG-19,

ResNet-101,
majority
decision

algorithm

AUC: 94.12%

Lack of external test
dataset from multiple

medical centers impacts
reproducibility

[24] 2023

Surgical plan
classification,

maxillary sinus floor
augmentation

CBCT images SinusC-Net Mean
Accuracy—0.97

Predicting classes for
borderline cases and need
for model validation with

larger datasets

[10] 2021

Segmentation of
maxillary sinus into
maxillary bone, air,

and lesions

CBCT images Customized 3D
nnU-Net

DSCs at each stage of
air were 0.920 ± 0.17,

0.925 ± 0.16, and
0.930 ± 0.16

Requiring increased
training datasets and

improved network
architecture

[25] 2022
Fully automatic
segmentation of
maxillary sinus

CBCT images U-Net DSC of
0.9099 ± 0.1914

Handling false positive
pixels and small sample
size from single CBCT

device

[26] 2021
Transfer learning for
detecting maxillary

sinuses

Panoramic
radiographs

from
institutions A

and B

Transfer
learning Accuracy—0.967

Sole focus on maxillary
sinusitis images; transfer

learning performance
variability across different
tasks or institutional data

[27] 2020 Object detection for
maxillary sinuses

Healthy
sinuses,

inflamed
sinuses, cysts of
maxillary sinus

regions

DetectNet Accuracy—0.91
Small number of testing

images; exclusion of
post-operative sinuses

[28] 2019
Deep learning system

for diagnosing
maxillary sinusitis

CBCT images AlexNet Accuracy—87.5%

Potential overfitting of
model on dataset and lack

of generalization across
unseen data
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Table 2. Cont.

Ref Year Problem Dataset Method Results Limitation

[29] 2020
Identifying concha
bullosa on coronal

sinus

CT scans from a
rhinology
hospital in
Australia

Inception-V3 Accuracy: 81%
Potential false negatives

due to concha bullosa
presence at different slices

[30] 2019

Individually
detecting sinuses and

nasal cavity in CT
scans

CT data of 57
patients

Darknet-19 and
YOLO

IoU has been
increased from 0 to 1

in 0.1 steps

Relatively small dataset,
and need for further

validation

[31] 2024
Developing CDSS for

sinonasal disease
screening

OASIS-3 MRI
head Vertex AI Precision: 0.928

Reliance on single coronal
2D MRI slice, potential
variations in real-world

MRI scans

2.3. Conventional Techniques

Few authors have employed conventional machine learning techniques in the diagno-
sis of sinus-related conditions. Hamd et al. [32] conducted a retrospective study focusing
on predicting Maxillary Sinus Volume (MSV) using a machine learning (ML) algorithm
based on data from 150 patients with normal maxillary sinuses. The study aimed to assess
the predictability of the MSV using patient demographics (age, gender) and sinus length
measurements in three directions. However, the study has limitations, including a small
sample size and the need for enhanced training and skills to incorporate disease cases
into the program for more comprehensive predictions. On the other hand, Oh et al. [33]
proposed an end-to-end process in medical imaging utilizing an independent task learning
(ITL) algorithm for the diagnosis of maxillary sinusitis. The study demonstrated reasonable
performance in internal and external validation tests, focusing on facial patch detection,
maxillary sinusitis detection, and a fully automatic diagnosis system. Limitations included
the absence of paranasal computed tomography verification for ambiguous data, such as
cystic or mucosal thickening subclasses of sinusitis, and the lack of normal maxillary sinus
information in training the maxillary sinusitis detector. A comparison of these studies is
shown in Table 3.

Table 3. Comparison of conventional techniques.

Ref Year Problem Dataset Method Results Limitation

[32] 2023
Predicting Maxillary
Sinus Volume using

an ML algorithm

Data from 150
patients with normal

maxillary sinuses
ML algorithm

R-squared
values ranging

from 0.97 to
0.98%

Small sample size

[33] 2021
End-to-end process

for maxillary
sinusitis diagnosis

Waters’ view X-ray
images

Independent
task learning

(AUC): 88.93%
(0.89), 91.67%

Lack of paranasal
computed tomography
verification, absence of
normal maxillary sinus
information in training

2.4. Generative Adversarial Networks in Medical Imagining

In the field of medical imaging, generative adversarial networks (GANs) have become
very effective tools, providing creative ways to produce realistic and high-quality medical
images. GANs make it easier to synthesize visuals in the context of medical imaging
that closely imitate real patient data. This feature is especially helpful in situations where
gathering a wide variety of datasets is challenging. For an array of purposes, including
increasing training datasets, modeling uncommon clinical states, and improving the efficacy
of diagnostic models, GANs have been used to create synthetic medical pictures. Dong Nie
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et al. [34] proposed a data-driven approach using a generative adversarial network (GAN)
to address the challenge of estimating computed tomography (CT) images from Magnetic
Resonance Imaging (MRI) data without radiation exposure. The proposed method involves
training a fully convolutional network (FCN) with an adversarial training strategy to better
model the nonlinear mapping from MRI to CT. The use of an image-gradient-difference-
based loss function aims to reduce blurriness in the generated CT images. Also, Guibas
et al. [35] discussed the challenges of limited and privacy-constrained medical imaging
data and proposed a two-stage pipeline for generating synthetic medical images using
generative adversarial networks (GANs). The focus is on overcoming data scarcity and
privacy concerns by leveraging GANs to create synthetic medical images, particularly
demonstrated in retinal fundi images. The pipeline involves a hierarchical generation
process, separating the task into geometry and photorealism.

Most importantly, GANs also have an application in diagnosis of sinus-related con-
ditions. For example, Kong et al. [36] introduced a novel automation pipeline utilizing
generative adversarial networks (GANs) for synthetic data augmentation, aiming to deter-
mine an optimal multiple for improving deep learning-based diagnostic performance with
limited datasets. The study demonstrates superior diagnostic performance compared to
conventional data augmentation using Waters’ view radiographs of patients with chronic
sinusitis. However, limitations include a relatively small pool of subjects, the arbitrary
choice of the auxiliary classifier GAN (ACGAN), and the omission of some conventional
data augmentation methods.

Evaluating synthetic medical pictures is difficult because of the complexity and subjec-
tivity of medical imaging. The FID score, which calculates the statistical similarity of actual
and manufactured images using features extracted from a pre-trained neural network, is
a quantitative measure of image quality [11]. The SSIM measures structural similarities
between images, whereas perceptual similarity considers human perception [37]. These
metrics provide a comprehensive evaluation technique that takes into account statistical,
structural, and perceptual elements of picture quality.

The training procedure for GANs is an important factor impacting the quality of gen-
erated images. A GAN consists of a competitively trained generator and discriminator [38].
During training, the generator learns to create realistic images, while the discriminator
develops the ability to differentiate the difference between genuine and artificially pro-
duced images. Finding a balance between these two networks is critical for producing
high-quality, realistic medical pictures.

Notably, the choice of a certain GAN architecture influences the training process as well
as the quality of the produced pictures. For example, the employment of a Wasserstein GAN
(WGAN) or auxiliary classifier GAN (ACGAN) requires special training techniques [39].
The WGAN tackles mode collapse and instability difficulties by including the Wasserstein
distance, resulting in more stable training [40]. The ACGAN, on the other hand, uses
auxiliary classifiers to direct the generator towards specified classes, hence improving
image synthesis for specific diseases [12].

One of the main contributions of our study is the utilization of generative adversarial
networks (GANs) for synthesizing medical images, particularly for sinus-related patholo-
gies. Also, it is clear from the above discussion that evaluating the quality of synthesized
images is a challenging but critical aspect of the GAN-based image generation process.
To deal with this challenge, we employed several metrics, including the Fréchet Incep-
tion Distance (FID) score, structural similarity index (SSIM), and perceptual similarity, to
comprehensively assess the synthesized images.

3. Methodology

This study presents a new approach for the classification of paranasal sinus diseases,
focusing mainly on maxillary sinus pathologies. Our approach leverages the capability of
deep learning models, particularly generative adversarial networks (GANs) along with
convolutional neural networks (CNNs), to successfully analyze medical imaging data
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collected from CT scans. We follow a two-stage approach whereby a lightweight GAN
is used to generate synthetic data that closely resemble true sinus pathologies for data
augmentation. Afterwards, the augmented dataset is applied for training and testing
ResNet-50 and ResNeXt-50 models, where random search is utilized for hyperparameter
tuning purposes. The utilized performance metrics are accuracy, precision, recall, and the
F1-score, and the area under the ROC curve is used to determine the discriminative ability.
The details of the framework are represented in Figure 1.
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The reliability of the deep learning models employed in this study is highlighted by
several key factors. Firstly, rigorous pre-processing techniques were applied to the medical
imaging data, ensuring high-quality input for the models. Secondly, detailed descriptions
of the model architectures and hyperparameters were provided, enhancing transparency
and reproducibility. Additionally, the training process was meticulously conducted, with
optimization algorithms, learning rate schedules, and convergence criteria carefully selected
to facilitate robust learning. Moreover, a comprehensive validation strategy, such as cross-
validation, was employed to assess the models’ performance stability. The utilization
of GANs further enhances reliability by facilitating data augmentation and generating
synthetic data, thereby diversifying the training dataset and potentially improving model
generalization. The validation of synthetic data produced by GANs involves assessing their
fidelity to real data through metrics like structural similarity indices or perceptual similarity
scores. This validation process ensures that the synthetic data accurately represent the
characteristics of real medical images, enhancing the robustness and trustworthiness of the
deep learning models employed in medical imaging tasks.
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3.1. Data Collection and Generation

A total of 2142 images were collected in the form of CT scans for this study. They were
obtained from two distinct healthcare institutions. The dataset utilized in this study was
ethically approved by the Institutional Review Board (IRB) of the Ministry of Health, Hail,
Saudi Arabia (https://www.moh.gov.sa/en/Pages/Default.aspx, accessed on 8 December
2023)). Compliance with IRB protocols underscores the commitment to protecting patient
privacy, confidentiality, and welfare, reinforcing the integrity and reliability of this study’s
findings. The data were anonymized to avoid identification of the patients.

3.1.1. Imaging Modality and View

This study focused specifically on the coronal view of 2D CT images. To maintain
consistency, only images with No-Contrast were included. Imaging slices with a thickness
of only 0.2 mm were considered, ensuring a detailed examination of the paranasal sinuses.

3.1.2. Temporal Scope and Demographic

The data collection period spanned from 2021 to 2023, providing a contemporary
representation of sinus-related pathologies. The dataset encompassed both genders, ensur-
ing a comprehensive understanding of the diagnostic models’ performance across diverse
patient groups. Patients included in the study were 18 years of age or older.

To ensure the relevance and appropriateness of the data, the following inclusion
criteria were applied:

• CT scans with coronal view.
• 2D CT images without contrast.
• Slice thickness of 0.2 mm.
• Patients aged 18 years and above.

3.1.3. Data Characteristics

The dataset, spanning three years from 2021 to 2023, offers insights into the temporal
distribution and characteristics of sinusitis cases. Encompassing 35 months, the data reveal
a diverse pattern in sinusitis occurrences, indicating potential seasonality or temporal
trends. The monthly counts fluctuate significantly, ranging from a minimum of 16 to a
maximum of 99, suggesting susceptibility to environmental changes or viral prevalence.
Each year exhibits a distinctive pattern, with 2021 starting with elevated cases, experiencing
a mid-year drop, and peaking again towards the end. Notably, May 2022 stands out
with a substantial decrease to 22 cases, prompting the need for further investigation
into potential contributing factors. An overall increase in cases from 2021 to 2023, with
the highest monthly count at 99, suggests factors like population growth or changes
in reporting. Additionally, identified outliers, such as September 2023 with 16 cases,
underscore the importance of understanding and addressing variations for accurate analysis
and interpretation. The detail of the variation in cases is shown in Figure 2.

https://www.moh.gov.sa/en/Pages/Default.aspx
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3.2. Data Labeling

The data labeling process involved consultation with professionals in the field, includ-
ing two experienced radiologists specializing in sinus-related pathologies. Out of the total
2146 collected images, 1320 images were selected to be labeled by two experienced radiol-
ogists using the Lund-Mackay rating method to quantify the severity of the images. The
labeled images, taken in the coronal view, were categorized into three classes: 0 (Moderate
Sinus Cases), 1 (Severe Sinus Cases), and 2 (Normal Cases), as shown in Figure 3. After
removing images of low image quality or those not belonging to the predefined categories,
the final dataset comprised n = 1320 labeled images. The Lund-Mackay scoring system
is considered to be one of the most commonly used approaches to classify the severity of
ethmoid sinus pathologies in the case of sinusitis [41]. The Lund-Mackay scoring system
evaluates various anatomical regions of the nasal cavity and paranasal sinuses based on
the extent of opacification observed on CT scans or imaging studies. For instance, a score
of 0 indicates no opacification in either maxillary sinus, while a score of 1 signifies partial
opacification in one or both maxillary sinuses, and a score of 2 denotes complete opaci-
fication in one or both maxillary sinuses. Furthermore, the decision to focus on training
only the Moderate and Severe classes was made to address the issue of imbalanced classes,
prioritizing the severity levels that are of greater clinical relevance. The strengths of this
system include the systematic and comprehensive analysis of several sinus regions, leading
to an objective measure of disease severity. On the other hand, there is a limitation in its
use, in its subjective interpretation, for the scoring depends on the individual differences in
assessing the opacification.
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For the consistency of the results, we conduct a reliability test using Cohen’s Kappa
coefficient. It measures the agreement among the consultants and experts in the labeling
process. Within any data labeling process such as the Lund-Mackay scoring system,
Cohen’s Kappa serves as a standard metric for measuring the reliability and consistency
of annotations [42]. Its advantage lies in providing a more robust measure than a simple
percentage agreement, accounting for agreements occurring by chance. However, Cohen’s
Kappa can show sensitivity to differences in the category distribution, and the condition
interpretation may be modified due to the rate of cases observed.

The Cohen’s Kappa (κ) statistic measures the level of agreement between two raters,
with values ranging from 0 to 1. The interpretation of κ values suggests slight agreement if
κ is between 0.01 and 0.20, fair agreement from 0.21 to 0.40, moderate agreement from 0.41
to 0.60, substantial agreement from 0.61 to 0.80, and almost perfect agreement from 0.81 to
1 [42].

In the calculation of Cohen’s Kappa coefficient for inter-rater reliability, the total
observations were determined by summing all values in the contingency table as shown
in Table 4, resulting in 1320. The total observed agreement, representing the sum of the
diagonal values indicating agreement between the raters, amounted to 1255. Dividing the
total observed agreement by the total observations yielded a proportion of 0.9515, denoted
as Po, reflecting the observed agreement rate.

Table 4. Agreement between the two radiologists.

Radiologist 1: Class 0 Radiologist 1: Class 1 Radiologist 1: Class 2

Radiologist 2: Class 0 500 20 10

Radiologist 2: Class 1 15 300 5

Radiologist 2: Class 2 5 10 455

To calculate the expected agreement (Pe) for Cohen’s Kappa coefficient, the proportion
of agreements expected by chance for each class was computed. For Class 0, the expected
agreement was determined as 189.39. Likewise, for Class 1 and Class 2, the expected
agreements were calculated as 68.18 and 156.35, respectively. Summing these values
provided the total expected agreement, resulting in 413.92. Dividing the total expected
agreement by the total observations yielded a proportion of 0.3138 for Pe. A Cohen’s Kappa
score of 0.88 was achieved among the authors using the following formula:

k =
(po − pe)

1 − pe

where po is the relative observed agreement among radiologists and pe is the hypothetical
probability of a chance agreement.

3.3. Pre-processing

The following 3 classes of imagery were pre-processed:

• Moderate Sinus Cases (292 Images)
• Normal Cases (764 Images)
• Severe Sinus Cases (264 Images)

Normalization of Pixel Values: To improve the quality of the deep learning algorithms,
all pixels in all images over three different classes were normalized in the range between
0.0 and 1.0. This normalization allows for improved training as well as the convergence of
neural networks.

Noise Removal: In the transformation of DICOM to .png images, small artifacts,
mostly of a white hue, were observed at the images’ boundaries. Using the ‘Morphology’
Python functions, these artifacts were well masked, and noise was cleaned to obtain images
without artifacts.
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Cropping and Padding: After noise was reduced, images were cropped to the cranial
area by using the output mask from the ‘Morphology’ Python functions. Afterwards, these
cropped images went through padding; 15% of the pixels were filled with a black color.
This pre-processing step which is considered being important before inputting the images
into the deep learning algorithms aids in the maintenance of the consistency of the input
dimensions. The obtained images reveal the cropped-pad image format that is optimal as
input for the algorithm. Nevertheless, it is understood that automatically extracting the
sinus area in all images presents challenges due to variations in the size of human cranial
areas and potential omissions in specific portions of the sinus.

3.4. Image Generation Using GANs

We employed generative adversarial networks (GANs) to generate synthetic images,
focusing on two distinct classes: Moderate and Severe sinusitis. The Moderate class
comprised 292 images, each undergoing a standardized image pre-processing pipeline.
Post-processing, every image was resized to dimensions of 128 × 128 × 3 (width × height
× number of channels). This uniform resizing ensured consistent input dimensions for
subsequent stages in the image generation process. Similarly, the Severe class encom-
passed 264 images, and similar to the Moderate class, each image underwent resizing to
128 × 128 × 3 dimensions during pre-processing. This standardized sizing facilitated the
integration of both classes into the image generation pipeline.

3.4.1. Lightweight GAN

Although generative adversarial networks (GANs) are very promising in artificial
image synthesis, the training process has various challenges associated with stability and
speed. As part of optimizing the image generation, various GAN architectures like the
DCGAN and WGAN [40,43] were employed. However, maintaining consistently stable
conditions during training was still a major challenge.

In order to overcome the problems of training stability, a lightweight GAN variant
was considered. The lightweight GAN integrates the Skip-Layer channel-wise Excitation
(SLE) module, utilizing low-scale activations to enhance channel responses on high-scale
feature-maps. This design facilitates robust gradient flow, expediting model training and
enabling automated style and content disentanglement similar to StyleGAN2. Additionally,
a self-supervised discriminator (D), serving as a feature-encoder with an extra decoder, is
introduced for more descriptive feature-map learning, particularly through auto-encoding
strategies. The self-supervised discriminator (D) used in this study includes two decoders
designed for feature-maps on two scales: f1 at 162 and f2 at 82. Each decoder comprises four
convolutional layers, generating images at a resolution of 128 × 128, resulting in minimal
additional computational burden compared to other regularization methods. We employ
random cropping on f1, extracting 1/8 of its height and width, and similarly crop the real
image to obtain the I part. After resizing the real image to match, the decoders produce the
I0 part from the cropped f1 and I’ from f2. Finally, D and the decoders are jointly trained to
minimize the loss by aligning the I’ part with the I part and I’ with I.

This efficient GAN model had many benefits, such as faster training time, less hard-
ware requirements, and better performance in producing artificial images [44]. The
lightweight GAN that was created for seamless operations turned out to be effective
in the context of sinusitis severity classification. One key advantage of adopting such a
typical GAN is based on reducing the data samples during training to produce images
substantially far compared with different types. Although some GAN variants need larger
datasets for convergence, the lightweight version implemented in this study is still able to
learn efficiently from limited data [44]. While the lightweight GAN presents advantages in
terms of speed and efficiency, its limitations include a potential trade-off in the richness
of image generation compared to more intricate GAN architectures. The still-challenging
aspect to balance is that of the trade-off between computational efficiency and image quality.
The image generation flow using the GAN is shown in Figure 4.
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Training of Lightweight GAN

In the training of the lightweight GAN, both the generator and the discriminator
operate concurrently. The generator produces synthetic (fake) data, while the discriminator
distinguishes between real and fake data. The training aims to strike a balance where the
generator can effectively fool the discriminator, and the discriminator accurately classifies
the data. An imbalance may occur if the discriminator becomes too strong relative to the
generator, hindering the generation of realistic synthetic data. To address this, adjustments
such as modifying learning rates and adding augmentations are implemented during
training. The ultimate goal is to reach a state where the generator produces highly realistic
data, challenging the discriminator’s ability to differentiate between real and fake data.
In the training process for the ‘Moderate’ class, adjustments were made at step 50,000,
including further reducing the learning rate and increasing the augmentation to 0.9. Two
additional augmentation types, color and offset, were introduced to enhance the similarity
between output and true input images. Training continued with these parameters until
Epoch 100, lasting approximately 32 h. The training parameters for the ‘Moderate’ and
‘Severe’ classes are summarized in Table 5.

Table 5. Training parameters for ‘lightweight GAN’ in Moderate and Severe classes.

Training Parameters Moderate Class Severe Class

Network Capacity 16 16

Batch Size 32 32

Learning Rate 2 × 10−4 1 × 10−5

Residual Layers None None

Training Steps 100,000 120,000

Dual-Contrast Loss Yes Yes

Augmentation 0.25 (25%) 0.9 (90%)

Augmentation Types Cutout, Translation Color, Cutout, Offset, Translation

Save Models Interval Every 1000 steps Every 1000 steps

Adjustments Augmentation increased to 0.65 at 20,000 steps,
Learning rate decreased to 1 × 10−4 -

Evaluation Metrics

The following evaluation metrics were used in the training of the lightweight GAN:
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‘D’ represents the discriminator loss, indicating how effectively the discriminator
distinguishes between real and generated data; lower values signify superior performance.
Conversely, ‘G’ denotes the generator loss, reflecting the generator’s ability to produce data
indistinguishable from real data; lower generator loss values indicate better performance.
‘GP’ signifies Gradient Penalty, a regularization technique crucial for stabilizing discrimina-
tor training in Wasserstein GANs by ensuring gradients are close to 1, thereby mitigating
mode collapse and enhancing training stability. Finally, ‘SS’ represents the self-supervised
learning loss, utilized in lightweight GANs to facilitate the discriminator’s learning of data
representations; lower SS loss values indicate improved performance in this self-supervised
learning process.

A low discriminator loss might indicate that the discriminator is performing well, but
if the generator loss is very high, this could suggest that the generator is not able to fool
the discriminator, which might result in poor-quality generated images. Similarly, a low
self-supervised loss might suggest that the discriminator is learning useful representations
of the data, but this does not necessarily guarantee that these representations will result in
high-quality generated images.

Recognizing the impact of the variability induced by the small size of the input images
in the training process, two data generation phases were incorporated. Firstly, during
the 100,000 training steps for the ‘Moderate’ class, 100 models were systematically saved
to a designated directory. For each of these saved models, a total of 292 images were
generated, aligning with the number of true images. Similarly, for the ‘Severe’ class, a data
generation phase was implemented during the 120,000 training steps, saving 120 models.
Correspondingly, for each saved model, 264 images were generated, mirroring the number
of true images. These iterative data generation processes aimed to address the variability
in the generator and discriminator loss and capture the intricacies of the training dynamics,
ultimately producing synthetic images that comprehensively represent the diversity inher-
ent in the training dataset. The visualization of the performance evaluation metrics in both
classes is shown in Figures 5 and 6.
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3.4.2. Best Model Selection

For both the ‘Moderate’ and ‘Severe’ classes, the selection of the 10 best-performing
models was based on the Fréchet Inception Distance (FID). It is a quantitative measure
employed to assess the quality and diversity of images that are ultimately generated by
generative adversarial networks. It measures the similarity between two sets of images,
namely the set of real images and the set of generated images. The value of the FID
score depends on the particular feature representations obtained from a pre-trained deep
convolutional neural network, for example Inception v3.

The Fréchet Inception Distance (FID) equation is represented as follows:

d2 = ∥u1 − u2∥2 + Tr(C1 + C2 − 2 ×
√

C1 × C2) (1)

where d2 represents the squared Fréchet distance, ∥u1 − u2∥2 denotes the squared Eu-
clidean distance between the means u1 and u2 of the feature distributions, and
Tr
(
C1 + C2 − 2 ×

√
C1 × C2

)
calculates the trace of the covariance matrices C1 and C2,

along with their element-wise multiplication and square root operations.
It is important to note that the FID score ranges from 0 to infinity, with 0 indicating

identical sets of images. A lower FID score suggests better image quality and greater
similarity to the original image set. However, the FID score does not evaluate the semantic
meaning or domain-specific characteristics of the images; it solely measures the statistical
similarity between two sets of images. The selection process involved identifying the
10 models with the lowest FID scores from the 100 and 120 saved models for the ‘Moderate’
and ‘Severe’ classes, respectively. This rigorous evaluation method aimed to ensure the
quality and similarity of the generated images to the real dataset. The FID score of the
Moderate and Severe classes for the 100 and 120 saved models is shown in Figure 7.
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3.4.3. Selection of Generated Images

To ensure the selection of generated images closely resembling the true images in
terms of similarity, two key metrics were employed with the 10 best-selected models:

i Structural Similarity Index (SSIM): The SSIM is a metric used to quantify the similarity
between two images by comparing their luminance, contrast, and structure. The SSIM
scores range from 0 to 1, with higher scores denoting greater similarity. This metric
is widely utilized for evaluating the quality of generated images, particularly those
produced by generative adversarial networks (GANs). Beyond applications in GANs,
the SSIM finds use in diverse domains such as image compression and enhancement.

ii Perceptual Similarity: In contrast to the SSIM, which measures the overall similarity
between two images, perceptual similarity assesses how similar images are perceived
by humans. This means that a fake image exhibiting high visual resemblance to
a true image may receive a high perceptual similarity score, even if its structural
similarity score is comparatively low. Figure 8 shows the true image on the left and
the generated image on the right by including the SSIM value on the lower part of
the image.
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• SSIM

In the evaluation process for the ‘Moderate’ class, an SSIM threshold of 0.6 and above
was applied to retain the generated images displaying the highest similarity to the true
images. Out of a total of 852,640 combinations, 717 images exhibited a similarity greater
than 0.6 and were consequently selected.

Similarly, for the ‘Severe’ class, an SSIM threshold of 0.475 and higher was employed
to preserve the generated images with the utmost similarity to the true images. Among
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the 693,079 combinations considered, 703 images surpassed the 0.6 similarity threshold
and were chosen for further analysis. Figure 9 shows the true image on the left and the
generated image on the right by including high perceptual similarity.
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• Perceptual Similarity

Following a similar methodology as employed for the SSIM, we conducted a thorough
similarity assessment using the perceptual metric. For the ‘Moderate’ class, with an initial
pool of 852,640 combinations, 1523 images were generated, adhering to a threshold of 0.175.
In the case of the ‘Severe’ class, involving 693,079 combinations, a set of 1665 images was
generated, applying a threshold of 0.2035.

3.4.4. Selected Metric

The choice of different thresholds for the ‘Moderate’ and ‘Severe’ classes stemmed
from the observed disparity in the quality of generated images by the lightweight GAN.
The FID plot further validated this, showcasing consistently lower FID scores for the
‘Moderate’ class, indicating superior image quality compared to the ‘Severe’ class across
all saved models. Leveraging the perceptual similarity metric allowed us to meticulously
select generated images that closely mirrored the quality of true images. This metric was
deemed crucial for the subsequent classification task due to its effectiveness in capturing
nuanced visual similarities. After the selection of 1523 and 1665 images for the ‘Moderate’
and ‘Severe’ classes, respectively, a critical step involved the removal of duplicate images.
This precautionary measure was essential as multiple generated images exhibited high
similarity to a single true image. Following the removal of duplicates, the dataset was
refined to comprise 794 generated images for the ‘Moderate’ class and 411 generated images
for the ‘Severe’ class, ensuring a diverse and non-redundant dataset for the subsequent
classification model training. Table 6 present the proportions of each class respectively.

Table 6. Proportions of the 3 classes (true, generated images).

Category Moderate Severe Normal Total

True 292 264 764 1320

Generated 794 411 - 1205

Total 1086 675 764 2525

3.4.5. Data Split

The data split for training the deep learning algorithms involved partitioning the
dataset into two main subsets: train and validation as shown in Figure 10. The train set
comprised both true and generated images, with 1216 true images and 1205 generated
images. Additionally, a validation set consisting of 104 true images was set aside to assess
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the performance of the trained models. To ensure the robustness and generalization of
the models, a 5-fold cross-validation strategy was adopted for the train data, with each
fold containing 80% train and 20% test data. For the validation dataset, a small proportion
of approximately 8% of the true images was allocated. This decision was made due to
the limited size of the dataset, aiming to maximize the number of images available for
training. Specifically, the validation data comprised true images selected from all three
classes (Moderate, Severe, Normal), focusing on those that exhibited the least similarity
with the generated images.
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The generation of the validation set involved a meticulous process to ensure its
representativeness and effectiveness in evaluating model performance. As discussed
previously, the lightweight GAN was trained using all images from the Moderate and
Severe classes to produce generated images. These generated images were then filtered
to retain only those most similar to the true images, based on a threshold of 0.175 for
the Moderate class, resulting in 1523 generated images. Subsequently, unique generated
images were selected, yielding a set of 152 images closely resembling the true images of
the Moderate class. Similarly, for the Severe class, 169 true images were identified to be
highly similar to the generated ones out of the initial 264. To form the validation dataset,
a pragmatic approach was adopted, excluding the 152 images from the Moderate class
and 169 images from the Severe class. Then, a random selection of 10% of the remaining
true images from each class was chosen as validation data. This method ensured that
the validation set contained representative samples from each class while mitigating the
computational complexity associated with computing perceptual metrics. The details of
the validation set are listed in Table 7.

Table 7. Generation of validation dataset for model evaluation.

Class Total True
Images

Images Similar
to Generated

Remaining True
Images

10% Random Selection
for Validation

Moderate 292 152 140 14

Severe 264 169 95 10

Normal - - 764 76

3.4.6. Transfer Learning Models

In this study, we utilize the transfer learning approach for classification. ResNet-
50 and ResNeXt-50 are used for the classification of sinusitis severity from CT images.
Leveraging the learned features from large-scale datasets, these models offer a powerful
framework for extracting relevant features and achieving robust performance in medical
image analysis tasks.

Additionally, we incorporated several augmentations during the training process to
further diversify our dataset. These augmentations, listed in Table 8, include rotation with
a range of 20 degrees, horizontal and vertical shifts with a range of 0.15, horizontal flipping,
nearest neighbor filling mode, zooming with a range of 0.1, and shearing with a range
of 0.15.
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Table 8. Data augmentation characteristics.

Augmentation Value

Rotation range 20

Width shift range 0.15

Height shift range 0.15

Horizontal flip True

Fill mode Nearest

Zoom range 0.1

Shear range 0.15

ResNet-50

ResNet-50, or Residual Network with 50 layers, is a deep convolutional neural net-
work architecture developed by He et al. [45]. It is a member of the ResNet family, which is
recognized for its novel method of leveraging residual connections to solve the vanishing
gradient problem during training. ResNet-50’s core architecture includes 50 layers, which
include convolutional, pooling, and fully connected layers [45]. ResNet’s distinguishing
characteristic is the use of skip connections or shortcuts to bypass one or more levels,
allowing the network to learn residual mappings. These residual connections make it easier
to train very deep networks by allowing for the direct passage of gradients during back-
propagation, addressing the degradation problem that standard deep networks encounter.

ResNet-50 was chosen because of its shown performance in a variety of computer
vision applications, such as imagine classification, object identification, and image seg-
mentation [46,47]. Its deep design allows it to learn nuanced characteristics from images,
making it appropriate for challenging tasks like sinusitis severity categorization using
CT scans.

ResNeXt-50

ResNeXt-50 is a modified version of the ResNet architecture, which was developed by
Xie et al. [48]. It draws on the ResNet design philosophy, but adds an additional concept
called cardinality to increase the model’s representational capability [48]. ResNeXt-50 has a
similar design to ResNet-50, consisting of several residual blocks linked together via skip
connections. However, ResNeXt-50 adds a new dimension to the architecture: cardinality,
which reflects the number of distinct pathways within each residual block. ResNeXt-50
improves model performance by increasing cardinality, which increases the model’s ability
to collect varied characteristics and patterns from input data. ResNeXt-50 outperforms
typical ResNet designs in terms of generalization and scalability because of the additional
parallelism afforded by many pathways inside each block [48].

Just like ResNet-50, ResNeXt-50 is also chosen for its high performance and scalability
in a variety of computer vision workloads. Its capacity to capture a variety of characteristics
makes it ideal for tasks that need complicated and heterogeneous data, such as medical
image analysis [49,50]. ResNeXt-50, like ResNet, has pre-trained versions that allow for
quick transfer learning and adaption to specific tasks with little labeled input.

3.4.7. Hyperparameters

In this study, the hyperparameters for the model tuning of both ResNet-50 and
ResNeXt-50 are initialized to optimize the classification models. These hyperparame-
ters, including the number of dense layers, hidden units within these layers, dropout
rate, and choice of optimizer, collectively influence the neural network’s architecture and
training optimization, as shown in Table 9. The number of dense layers, ranging from 1 to
2, determines the depth and complexity of the network, while the hidden units define the
dimensionality of the layer’s output space, aiding in capturing intricate patterns. Dropout
regularization, applied with rates between 0.2 and 0.3, mitigates overfitting by randomly
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deactivating neurons during training. The choice of optimizer, “Adam” or “AdamW”,
further influences the model’s convergence speed and robustness during the training pro-
cess. These hyperparameters play pivotal roles in enhancing the model’s capacity and
generalization performance, crucial for achieving optimal results in the classification task.

Table 9. Hyperparameters for ResNet-50 and ResNeXt-50.

Hyperparameter Range

Number of Dense Layers [1, 2]

Hidden Units [64, 96, 128, . . ., 384]

Dropout [0.2, 0.25, 0.3]

Optimizer [“Adam”, “AdamW”]

Optimal Hyperparameters
In this study, the process of determining optimal hyperparameters for both ResNet-50

and ResNeXt-50 models involved the utilization of random search instead of Bayesian
Optimization and Hyperband. Random search was chosen due to its simplicity, ease of
implementation, and effectiveness in exploring the hyperparameter space, particularly
when the search space is not excessively large.

The optimal hyperparameters for both ResNet-50 and ResNeXt-50 models were identi-
fied to enhance their performance in terms of classification accuracy and convergence speed,
as shown in Table 10. For ResNet-50, the optimal configuration included a single dense
layer with 288 hidden units, coupled with a dropout rate of 0.3, and employing the “Adam”
optimizer. Similarly, the optimal setup for ResNeXt-50 comprised a single dense layer with
384 hidden units, a dropout rate of 0.3, and the utilization of the “Adam” optimizer. For
the optimal parameters, the Accuracy Score achieved was 95.3% for ResNet-50 and 96.23%
for ResNeXt-50.

Table 10. Optimal hyperparameters.

Model Number of Dense Layers Hidden Units Dropout Optimizer

ResNet-50 1 288 0.3 Adam

ResNeXt-50 1 384 0.3 Adam

3.5. Experimental Setup

The experimental setup for this research was conducted utilizing Google Colab Pro+
with GPU T4 acceleration. Leveraging the computational power offered by Google Colab
Pro+ and GPU T4, we implemented the training and evaluation of the proposed deep
learning models, ResNet-50 and ResNeXt-50, for the classification of sinus pathologies.
The Keras-Tuner Python package was employed for hyperparameter tuning, enabling an
automated and efficient search for optimal model configurations.

4. Results

This section encapsulates the culmination of our study’s findings, providing a com-
prehensive analysis and interpretation of the experimental outcomes. In this section, we
delve into the performance metrics, model evaluations, and statistical analyses obtained
from our deep learning models, ResNet-50 and ResNeXt-50, trained for the classification of
sinus pathologies.

4.1. Confusion Metrics

The confusion matrix shows the performance of the ResNet-50 and ResNeXt-50 models
on a validation dataset, to show the model’s generalizability and ability to correctly classify
instances and identify any misclassifications or errors in the predictions.
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Across all five folds of the validation process, the ResNet-50 model consistently demon-
strated strong predictive performance in classifying maxillary sinus. Notably, the model
achieved high accuracy in identifying “Moderate” and “Severe” cases, with the best results
observed in Folds 1, 2, 4, and 5, where it accurately predicted 25 out of 28 true “Moderate”
cases and all 17 true “Severe” cases. Moreover, the model exhibited remarkable consistency
in distinguishing between different severity levels, maintaining minimal misclassifications
in both “Moderate” and “Severe” categories across all folds. Although, the model encoun-
tered slight challenges in accurately identifying “Normal” cases, particularly in Folds 1 and
2, where it misclassified only 3 and 6 instances out of 57, respectively. The details of the
validation confusion matrix of ResNet-50 is shown in Figure 11.
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Similarly, in the validation confusion matrices of Fold 1 to Fold 5 for ResNeXt-50, the
model consistently demonstrates strong performance in accurately identifying “Moderate”
and “Severe” cases, with few misclassifications observed. Across all folds, the model
correctly predicts the majority of “Moderate” cases, ranging from 24 to 25 out of 28 true
instances. Similarly, for “Severe” cases, the model maintains high accuracy, correctly
classifying between 15 and 17 out of 19 true cases in each fold. However, the model
encounters challenges in accurately distinguishing “Normal” cases, with misclassifications
ranging from 0 to 3 instances across the folds. Notably, the model’s misclassifications
primarily involve “Normal” cases being incorrectly labeled as “Moderate”, indicating
a potential overlap in features between these categories. The details of the validation
confusion matrix of ResNeXt-50 are shown in Figure 12.
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4.2. Train

For the training dataset, both ResNet and ResNeXt-50 models demonstrated excellent
performance across all evaluation metrics. ResNeXt-50 achieved a slightly lower loss of
0.088 compared to ResNet’s 0.111, indicating better optimization during training. Similarly,
ResNeXt-50 outperformed ResNet in accuracy, precision, recall, and the F1-score, achieving
values of 97.047%, 0.971, 0.970, and 0.970, respectively, compared to ResNet’s 96.448%,
0.965, 0.964, and 0.964. The superior performance of ResNeXt-50 in the training set suggests
its ability to capture more intricate patterns and generalize well to the training data.

4.3. Test

In the testing phase, both models maintained high accuracy, precision, recall, and
F1-score. ResNeXt-50 continued to exhibit a slightly lower loss (0.180) compared to
ResNet (0.174), suggesting better generalization to unseen data. However, ResNet demon-
strated marginally higher accuracy (0.952) and precision (0.954) compared to ResNeXt-50
(0.949 and 0.951, respectively). The recall and F1-score were similar between the two mod-
els, indicating their robustness in correctly identifying positive instances and achieving a
balance between precision and recall.

4.4. Validation

In the validation dataset, both ResNet and ResNeXt-50 models exhibited comparable
performance. As shown in Table 11, ResNet achieved a loss of 0.297, while ResNeXt-50
achieved a slightly lower loss of 0.285. However, ResNeXt-50 demonstrated marginally
higher accuracy (0.911) and precision (0.917) compared to ResNet (0.915 and 0.913, re-
spectively). The recall and F1-score were consistent across both models, indicating their
ability to generalize well to new, unseen data. Despite minor variations, both models
showcased robust performance in the validation set, reaffirming their effectiveness in
real-world applications.
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Table 11. Models’ results in 5-fold cross-validation.

Model Train Test Valid

Loss

ResNet 0.111 0.174 0.297

ResNeXt-50 0.088 0.180 0.285

Accuracy

ResNet 96.448 95.210 91.154

ResNeXt-50 97.047 94.961 91.154

Precision

ResNet 0.965 0.954 0.913

ResNeXt-50 0.971 0.951 0.917

Recall

ResNet 0.964 0.952 0.912

ResNeXt-50 0.970 0.950 0.912

F1-score

ResNet 0.964 0.952 0.912

ResNeXt-50 0.970 0.949 0.913

It is clear from above that ResNeXt-50 demonstrated superior performance across all
datasets, indicating its effectiveness in image classification tasks. This can be attributed to its
enhanced architecture, which allows for more efficient feature extraction and representation
learning compared to ResNet.

4.5. Receiver Operating Characteristic (ROC)

Receiver Operating Characteristic (ROC) curves are a fundamental tool in evaluating
the performance of classification models, particularly in medical diagnostics, where the
balance between sensitivity and specificity is crucial. These curves plot the true posi-
tive rate (sensitivity) against the false positive rate (1-specificity) for various classification
thresholds, providing a comprehensive visualization of a model’s ability to discriminate
between different classes. In this study, ROC curves were utilized to assess the perfor-
mance of the ResNet-50 and ResNeXt-50 models in classifying sinus pathologies of varying
severity levels.

4.5.1. ResNet-50

The ROC curve for the ResNet-50 model in the test and validation datasets illustrates
its ability to discriminate between Moderate, Severe, and Normal sinus cases based on
varying classification thresholds.

Test

The area under the curve (AUC) values for the test set across different classes and folds
demonstrate the consistently high performance of the ResNet-50 model in classification
tasks, as shown in Figure 13. Across all folds, the AUC scores for each class, including
Moderate, Severe, and Normal, consistently exceeded 0.98, indicating strong discrimina-
tive power and robustness in distinguishing between different severity levels of sinus
pathologies. Notably, the Severe class consistently exhibited the highest AUC scores, often
surpassing 0.99, suggesting that the model excels particularly in identifying severe cases
with high confidence levels. These results underscore the effectiveness of the ResNet-50
model in accurately classifying sinus pathologies based on severity levels.
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Validation

Similar to the test set, the validation set’s results also demonstrate the strong per-
formance of the ResNet-50 model in terms of AUC values across different classes and
folds, as shown in Figure 14. The AUC scores for each class consistently remained above
0.97, reaffirming the model’s ability to generalize well to unseen data and maintain high
discriminative power. Once again, the Severe class exhibited the highest AUC scores,
underscoring the model’s proficiency in identifying severe sinus pathologies with high
confidence levels. These findings highlight the robustness and reliability of the ResNet-50
model in accurately categorizing sinus pathologies based on severity levels, making it a
valuable tool for medical diagnosis and decision-making.
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4.5.2. ResNeXt-50

Similar to ResNet-50, the evaluation of the ResNeXt-50 model through Receiver Oper-
ating Characteristic (ROC) curves in both the test and validation datasets offers valuable
insights into its classification performance across diverse categories of sinus pathologies.

Test

The AUC values for the ResNeXt-50 model in the test set demonstrate consistent
and robust performance across different severity classes and folds, as shown in Figure 15.
Across all folds, the AUC scores for each class, including Moderate, Severe, and Normal,
consistently exceeded 0.98, indicating strong discriminatory power and reliable classifica-
tion capabilities. Particularly noteworthy is the consistently high AUC score for the Severe
class, often surpassing 0.99, indicating the model’s exceptional ability to accurately identify
severe cases with high confidence levels. These results highlight the ResNeXt-50 model’s
effectiveness in accurately classifying sinus pathologies based on severity levels, making it
a valuable tool for medical diagnosis and decision-making.
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Validation

Similar to the test set, the validation set results also showcase the ResNeXt-50 model’s
strong performance in terms of AUC values across different severity classes and folds,
as shown in Figure 16. The AUC scores for each class consistently remained above 0.95,
reaffirming the model’s ability to generalize well to unseen data and maintain robust dis-
criminative power. Once again, the Severe class exhibited the highest AUC scores across all
folds, indicating the model’s proficiency in identifying severe sinus pathologies with high
confidence levels. These findings underscore the ResNeXt-50 model’s reliability and effec-
tiveness in accurately categorizing sinus pathologies based on severity levels, highlighting
its utility in clinical applications for diagnosing and managing sinus-related conditions.
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5. Conclusions

This work explores the effectiveness of applying GANs to expand datasets and enhance
the quality of synthetic images for the training of deep learning models for the detection of
sinus pathologies. Employing the lightweight GAN architecture, synthetic images were
produced to overcome the challenge of limited training data, specifically for the Moderate
and Severe categories. The incorporation of GANs not only increased the diversity and
realism of the dataset but also improved the robustness and generalization ability of the
classification models. The synthetic images were produced using thorough evaluation and
selection processes to make them look as close to the real images as possible. This ensured
a close resemblance, which then boosted the performance of the developed deep learning
model. ResNeXt-50 was the top-performing model, outperforming ResNet-50 in terms of
accuracy and precision in the diagnosis of sinus pathologies. Lastly, this study emphasizes
the importance of synthetic data generation techniques for the performance gain in medical
image analysis tasks and the use of GANs for diagnostic capabilities’ enhancement in
healthcare applications.

Despite the fact that this study has made significant contributions, it is crucial to
mention some limitations. One of the limitations is the small dataset size used in this study,
which may limit the applicability of the developed deep learning models. Although the
attempt to develop a diverse dataset via GAN-based augmentation was made, the size of
the original dataset was still small, which may restrict the model’s capability in grasping
the full range of variability in sinus diseases. Additionally, the study focused more on
Moderate and Severe classes, while the Normal class was overlooked which may impact
the model’s performance in detecting the less severe cases. Moreover, while GANs offer a
promising approach for synthetic data generation, their effectiveness may vary depending
on factors such as model architecture and hyperparameters, introducing variability in the
quality of generated images.

Future research can investigate the transferability and scalability of the developed
models to different medical imaging modalities or clinical settings. Applying GAN data
augmentation methods beyond sinus pathologies to other medical domains can widen
the horizon of their application and, consequently, their usefulness in health care. Addi-
tionally, understanding the interpretability and explainability of deep learning models
when trained on synthetic data is critical in gaining the trust and use of this technology
in clinical practice. Incorporating domain knowledge as well as expert input into models
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and an iterative review in real-world clinical studies are also necessary for realizing the full
potential of GANs and deep learning in medical image analysis and diagnosis. Also, future
research may also involve leveraging larger datasets to further enhance the robustness
and generalization capabilities of the developed deep learning models for sinus-related
medical imaging.

Author Contributions: Conceptualization, M.A. and A.G.F.; methodology, M.A. and A.G.F.; software,
M.A.; validation, M.A. and A.G.F.; investigation, M.A. and A.G.F.; resources, M.A.; data curation,
M.A. and A.G.F.; writing—original draft preparation, M.A. and A.G.F.; writing—review and editing,
M.A.; visualization, M.A.; supervision, A.G.F. and M.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Hail Health Cluster, Hail,
Saudi Arabia, with number H-08-L-074-2023-72.

Informed Consent Statement: Patient consent was waived by the IRBs because of the retrospective
nature of this investigation and the use of anonymized patient data.

Data Availability Statement: The datasets generated and analyzed during the current study are avail-
able from the corresponding author on reasonable request, subject to the approval of the Institutional
Review Boards of the participating institutions.

Acknowledgments: The authors gratefully acknowledge the support provided by the Faculty of Com-
puting and Information Technology (FCIT), King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Hastan, D.; Fokkens, W.J.; Bachert, C.; Newson, R.B.; Bislimovska, J.; Bockelbrink, A.; Bousquet, P.J.; Brozek, G.; Bruno, A.; Dahlén,

S.E.; et al. Chronic rhinosinusitis in Europe—An underestimated disease. A GA 2LEN study. Allergy Eur. J. Allergy Clin. Immunol.
2011, 66, 1216–1223. [CrossRef] [PubMed]

2. Abualnasr, S.A.; Alattas, A.M.; Abualnasr, A.A.; Aljeraisi, H.A.A.; Aljeraisi, T. Prevalence of Chronic Rhino Sinusitis and It’S
Recurrent after Treatment Compare to Its Recurrent after Surgery at Saudi Arabia, 2016. Int. J. Adv. Res. 2017, 5, 2310–2318.
[CrossRef] [PubMed]

3. Hamilos, D.L. Chronic rhinosinusitis: Epidemiology and medical management. J. Allergy Clin. Immunol. 2011, 128, 693–707.
[CrossRef] [PubMed]

4. Papadopoulou, A.-M.; Chrysikos, D.; Samolis, A.; Tsakotos, G.; Troupis, T. Anatomical Variations of the Nasal Cavities and
Paranasal Sinuses: A Systematic Review. Cureus 2021, 13, e12727. [CrossRef] [PubMed]

5. Whyte, A.; Boeddinghaus, R. The maxillary sinus: Physiology, development and imaging anatomy. Dentomaxillofacial Radiol. 2019,
48, 20190205. [CrossRef] [PubMed]

6. Keir, J. Why do we have paranasal sinuses? J. Laryngol. Otol. 2009, 123, 4–8. [CrossRef] [PubMed]
7. Márquez, S.; Tessema, B.; Clement, P.A.R.; Schaefer, S.D. Development of the ethmoid sinus and extramural migration: The

anatomical basis of this paranasal sinus. Anat. Rec. 2008, 291, 1535–1553. [CrossRef] [PubMed]
8. Ah-See, K.W.; Evans, A.S. Sinusitis and its management. Br. Med. J. 2007, 334, 358–361. [CrossRef]
9. Oh, S.L.; Jahmunah, V.; Arunkumar, N.; Abdulhay, E.W.; Gururajan, R.; Adib, N.; Ciaccio, E.J.; Cheong, K.H.; Acharya, U.R. A

novel automated autism spectrum disorder detection system. Complex Intell. Syst. 2021, 7, 2399–2413. [CrossRef]
10. Jung, S.K.; Lim, H.K.; Lee, S.; Cho, Y.; Song, I.S. Deep active learning for automatic segmentation of maxillary sinus lesions using

a convolutional neural network. Diagnostics 2021, 11, 688. [CrossRef]
11. Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation

for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [CrossRef]
12. Kang, M.; Shim, W.; Cho, M.; Park, J. Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training. Adv. Neural Inf. Process.

Syst. 2021, 28, 23505–23518.
13. Zeng, P.; Song, R.; Lin, Y.; Li, H.; Chen, S.; Shi, M.; Cai, G.; Gong, Z.; Huang, K.; Chen, Z. Abnormal maxillary sinus diagnosing on

CBCT images via object detection and ‘straight-forward’ classification deep learning strategy. J. Oral Rehabil. 2023, 50, 1465–1480.
[CrossRef] [PubMed]

14. Morgan, N.; Van Gerven, A.; Smolders, A.; de Faria Vasconcelos, K.; Willems, H.; Jacobs, R. Convolutional neural network for
automatic maxillary sinus segmentation on cone-beam computed tomographic images. Sci. Rep. 2022, 12, 7523. [CrossRef]

https://doi.org/10.1111/j.1398-9995.2011.02646.x
https://www.ncbi.nlm.nih.gov/pubmed/21605125
https://doi.org/10.21474/IJAR01/3013
https://www.ncbi.nlm.nih.gov/pubmed/38474259
https://doi.org/10.1016/j.jaci.2011.08.004
https://www.ncbi.nlm.nih.gov/pubmed/21890184
https://doi.org/10.7759/cureus.12727
https://www.ncbi.nlm.nih.gov/pubmed/33614330
https://doi.org/10.1259/dmfr.20190205
https://www.ncbi.nlm.nih.gov/pubmed/31386556
https://doi.org/10.1017/S0022215108003976
https://www.ncbi.nlm.nih.gov/pubmed/18957158
https://doi.org/10.1002/ar.20775
https://www.ncbi.nlm.nih.gov/pubmed/18951481
https://doi.org/10.1136/bmj.39092.679722.BE
https://doi.org/10.1007/s40747-021-00408-8
https://doi.org/10.3390/diagnostics11040688
https://doi.org/10.1016/j.neucom.2018.09.013
https://doi.org/10.1111/joor.13585
https://www.ncbi.nlm.nih.gov/pubmed/37665121
https://doi.org/10.1038/s41598-022-11483-3


Appl. Sci. 2024, 14, 3083 27 of 28

15. Lim, S.H.; Kim, J.H.; Kim, Y.J.; Cho, M.Y.; Jung, J.U.; Ha, R.; Jung, J.H.; Kim, S.T.; Kim, K.G. Aux-MVNet: Auxiliary Classifier-
Based Multi-View Convolutional Neural Network for Maxillary Sinusitis Diagnosis on Paranasal Sinuses View. Diagnostics 2022,
12, 736. [CrossRef] [PubMed]

16. Serindere, G.; Bilgili, E.; Yesil, C.; Ozveren, N. Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam
computed tomographic images using a convolutional neural network. Imaging Sci. Dent. 2022, 52, 187–195. [CrossRef] [PubMed]

17. Bryanskaya, E.O.; Dremin, V.V.; Shupletsov, V.V.; Kornaev, A.V.; Kirillin, M.Y.; Bakotina, A.V.; Panchenkov, D.N.; Podmasteryev,
K.V.; Artyushenko, V.G.; Dunaev, A.V. Digital diaphanoscopy of maxillary sinus pathologies supported by machine learning. J.
Biophotonics 2023, 16, e202300138. [CrossRef] [PubMed]

18. Kim, Y.; Lee, K.J.; Sunwoo, L.; Choi, D.; Nam, C.M.; Cho, J.; Kim, J.; Bae, Y.J.; Yoo, R.E.; Choi, B.S.; et al. Deep Learning in
Diagnosis of Maxillary Sinusitis Using Conventional Radiography. Investig. Radiol. 2019, 54, 7–15. [CrossRef] [PubMed]

19. Ozbay, S.; Tunc, O. Deep Learning in Analysing Paranasal Sinuses. Elektron. Elektrotechnika 2022, 28, 65–70. [CrossRef]
20. Jeon, Y.; Lee, K.; Sunwoo, L.; Choi, D.; Oh, D.Y.; Lee, K.J.; Kim, Y.; Kim, J.W.; Cho, S.J.; Baik, S.H.; et al. Deep learning for diagnosis

of paranasal sinusitis using multi-view radiographs. Diagnostics 2021, 11, 250. [CrossRef]
21. Kotaki, S.; Nishiguchi, T.; Araragi, M.; Akiyama, H.; Fukuda, M.; Ariji, E.; Ariji, Y. Transfer learning in diagnosis of maxillary

sinusitis using panoramic radiography and conventional radiography. Oral Radiol. 2023, 39, 467–474. [CrossRef] [PubMed]
22. Xu, J.; Wang, S.; Zhou, Z.; Liu, J.; Jiang, X.; Chen, X. Automatic CT image segmentation of maxillary sinus based on VGG network

and improved V-Net. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1457–1465. [CrossRef] [PubMed]
23. Kim, H.G.; Lee, K.M.; Kim, E.J.; Lee, J.S. Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using

multiple deep learning models. Quant. Imaging Med. Surg. 2019, 9, 942–951. [CrossRef] [PubMed]
24. Hwang, I.K.; Kang, S.R.; Yang, S.; Kim, J.M.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Yi, W.J.; Kim, T. Il SinusC-Net for automatic

classification of surgical plans for maxillary sinus augmentation using a 3D distance-guided network. Sci. Rep. 2023, 13, 11653.
[CrossRef] [PubMed]

25. Choi, H.; Jeon, K.J.; Kim, Y.H.; Ha, E.G.; Lee, C.; Han, S.S. Deep learning-based fully automatic segmentation of the maxillary
sinus on cone-beam computed tomographic images. Sci. Rep. 2022, 12, 14009. [CrossRef]

26. Mori, M.; Ariji, Y.; Katsumata, A.; Kawai, T.; Araki, K.; Kobayashi, K.; Ariji, E. A deep transfer learning approach for the detection
and diagnosis of maxillary sinusitis on panoramic radiographs. Odontology 2021, 109, 941–948. [CrossRef]

27. Kuwana, R.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nozawa, M.; Kuwada, C.; Muramatsu, C.; Katsumata, A.; Fujita, H.; Ariji, E.
Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic
radiographs. Dentomaxillofacial Radiol. 2020, 50, 20200171. [CrossRef] [PubMed]

28. Murata, M.; Ariji, Y.; Ohashi, Y.; Kawai, T.; Fukuda, M.; Funakoshi, T.; Kise, Y.; Nozawa, M.; Katsumata, A.; Fujita, H.; et al.
Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography.
Oral Radiol. 2019, 35, 301–307. [CrossRef]

29. Parmar, P.; Habib, A.R.; Mendis, D.; Daniel, A.; Duvnjak, M.; Ho, J.; Smith, M.; Roshan, D.; Wong, E.; Singh, N. An artificial
intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J.
Laryngol. Otol. 2020, 134, 328–331. [CrossRef]

30. Laura, C.O.; Hofmann, P.; Drechsler, K.; Wesarg, S. Automatic detection of the nasal cavities and paranasal sinuses using deep
neural networks. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy,
8–11 April 2019; pp. 1154–1157. [CrossRef]

31. Cheong, R.C.T.; Jawad, S.; Adams, A.; Campion, T.; Lim, Z.H.; Papachristou, N.; Unadkat, S.; Randhawa, P.; Joseph, J.; Andrews,
P.; et al. Enhancing paranasal sinus disease detection with AutoML: Efficient AI development and evaluation via magnetic
resonance imaging. Eur. Arch. Oto-Rhino-Laryngol. 2024, 281, 2153–2158. [CrossRef]

32. Hamd, Z.Y.; Aljuaid, H.; Alorainy, A.; Osman, E.G.; Abuzaid, M.; Elshami, W.; Elhussein, N.; Gareeballah, A.; Pathan, R.K.;
Naseer, K.A.; et al. Machine learning as new approach for predicting of maxillary sinus volume, a sexual dimorphic study. J.
Radiat. Res. Appl. Sci. 2023, 16, 100570. [CrossRef]

33. Oh, J.H.; Kim, H.G.; Lee, K.M.; Ryu, C.W.; Park, S.; Jang, J.H.; Choi, H.S.; Kim, E.J. Effective end-to-end deep learning process
in medical imaging using independent task learning: Application for diagnosis of maxillary sinusitis. Yonsei Med. J. 2021, 62,
1125–1135. [CrossRef] [PubMed]

34. Dong, N.; Trullo, R.; Lian, J.; Petitjean, C.; Ruan, S.; Wang, Q.; Shen, D. Medical Image Synthesis with Context-Aware Generative
Adversarial Networks. Physiol. Behav. 2019, 176, 139–148. [CrossRef]

35. Guibas, J.T.; Virdi, T.S.; Li, P.S. Synthetic Medical Images from Dual Generative Adversarial Networks. arXiv 2017,
arXiv:1709.01872.

36. Kong, H.J.; Kim, J.Y.; Moon, H.M.; Park, H.C.; Kim, J.W.; Lim, R.; Woo, J.; Fakhri, G.E.; Kim, D.W.; Kim, S. Automation of
generative adversarial network-based synthetic data-augmentation for maximizing the diagnostic performance with paranasal
imaging. Sci. Rep. 2022, 12, 18118. [CrossRef] [PubMed]

37. Lévêque, L.; Outtas, M.; Liu, H.; Zhang, L. Comparative study of the methodologies used for subjective medical image quality
assessment. Phys. Med. Biol. 2021, 66, 15TR02. [CrossRef] [PubMed]

38. Iqbal, T.; Ali, H. Generative Adversarial Network for Medical Images (MI-GAN). J. Med. Syst. 2018, 42, 231. [CrossRef]
39. Liao, C.; Dong, M. Acwgan: An Auxiliary Classifier Wasserstein Gan-Based Oversampling Approach for Multi-Class Imbalanced

Learning. Int. J. Innov. Comput. Inf. Control 2022, 18, 703–721. [CrossRef]

https://doi.org/10.3390/diagnostics12030736
https://www.ncbi.nlm.nih.gov/pubmed/35328288
https://doi.org/10.5624/isd.20210263
https://www.ncbi.nlm.nih.gov/pubmed/35799961
https://doi.org/10.1002/jbio.202300138
https://www.ncbi.nlm.nih.gov/pubmed/37272252
https://doi.org/10.1097/RLI.0000000000000503
https://www.ncbi.nlm.nih.gov/pubmed/30067607
https://doi.org/10.5755/j02.eie.31133
https://doi.org/10.3390/diagnostics11020250
https://doi.org/10.1007/s11282-022-00658-3
https://www.ncbi.nlm.nih.gov/pubmed/36166134
https://doi.org/10.1007/s11548-020-02228-6
https://www.ncbi.nlm.nih.gov/pubmed/32676871
https://doi.org/10.21037/qims.2019.05.15
https://www.ncbi.nlm.nih.gov/pubmed/31367548
https://doi.org/10.1038/s41598-023-38273-9
https://www.ncbi.nlm.nih.gov/pubmed/37468515
https://doi.org/10.1038/s41598-022-18436-w
https://doi.org/10.1007/s10266-021-00615-2
https://doi.org/10.1259/dmfr.20200171
https://www.ncbi.nlm.nih.gov/pubmed/32618480
https://doi.org/10.1007/s11282-018-0363-7
https://doi.org/10.1017/S0022215120000444
https://doi.org/10.1109/ISBI.2019.8759481
https://doi.org/10.1007/s00405-023-08424-9
https://doi.org/10.1016/j.jrras.2023.100570
https://doi.org/10.3349/ymj.2021.62.12.1125
https://www.ncbi.nlm.nih.gov/pubmed/34816643
https://doi.org/10.1007/978-3-319-66179-7
https://doi.org/10.1038/s41598-022-22222-z
https://www.ncbi.nlm.nih.gov/pubmed/36302815
https://doi.org/10.1088/1361-6560/ac1157
https://www.ncbi.nlm.nih.gov/pubmed/34225264
https://doi.org/10.1007/s10916-018-1072-9
https://doi.org/10.24507/ijicic.18.03.703


Appl. Sci. 2024, 14, 3083 28 of 28

40. Benedicto, A.; Rives, T.; Soliva, R. The 3D Fault Segmentation Development —A Conceptual Model. Implications of Fault Sealing.
In Proceedings of the First EAGE International Conference on Fault and Top Seals-What do We Know and Where do We Go?
Montpellier, France, 8–11 September 2003. [CrossRef]

41. Hopkins, C.; Browne, J.P.; Slack, R.; Lund, V.; Brown, P. The Lund-Mackay staging system for chronic rhinosinusitis: How is it
used and what does it predict? Otolaryngol.—Head Neck Surg. 2007, 137, 555–561. [CrossRef]

42. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159. [CrossRef]
43. Rajasenbagam, T.; Jeyanthi, S.; Pandian, J.A. Detection of pneumonia infection in lungs from chest X-ray images using deep

convolutional neural network and content-based image retrieval techniques. J. Ambient Intell. Humaniz. Comput. 2021. [CrossRef]
[PubMed]

44. Liu, B.; Zhu, Y.; Song, K.; Elgammal, A. Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis.
arXiv 2021, arXiv:2101.04775.

45. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; Volume 2016.

46. Pant, A.; Jain, A.; Nayak, K.C.; Gandhi, D.; Prasad, B.G. Pneumonia Detection: An Efficient Approach Using Deep Learning. In
Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020. [CrossRef]

47. Bharati, S.; Podder, P.; Mondal, M.R.H. Artificial neural network based breast cancer screening: A comprehensive review. Int. J.
Comput. Inf. Syst. Ind. Manag. Appl. 2020, 12, 125–137.

48. Xie, S.; Girshick, R.; Doll, P. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

49. Rai, H.M.; Chatterjee, K.; Dashkevich, S. Automatic and accurate abnormality detection from brain MR images using a novel
hybrid UnetResNext-50 deep CNN model. Biomed. Signal Process. Control 2021, 66, 102477. [CrossRef]

50. Hira, S.; Bai, A.; Hira, S. An automatic approach based on CNN architecture to detect COVID-19 disease from chest X-ray images.
Appl. Intell. 2021, 51, 2864–2889. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3997/2214-4609.201405839
https://doi.org/10.1016/j.otohns.2007.02.004
https://doi.org/10.2307/2529310
https://doi.org/10.1007/s12652-021-03075-2
https://www.ncbi.nlm.nih.gov/pubmed/33777251
https://doi.org/10.1109/ICCCNT49239.2020.9225543
https://doi.org/10.1016/j.bspc.2021.102477
https://doi.org/10.1007/s10489-020-02010-w

	Introduction 
	Related Studies 
	Convolutional Neural Network (CNN) 
	Transfer Learning Techniques 
	Conventional Techniques 
	Generative Adversarial Networks in Medical Imagining 

	Methodology 
	Data Collection and Generation 
	Imaging Modality and View 
	Temporal Scope and Demographic 
	Data Characteristics 

	Data Labeling 
	Pre-processing 
	Image Generation Using GANs 
	Lightweight GAN 
	Best Model Selection 
	Selection of Generated Images 
	Selected Metric 
	Data Split 
	Transfer Learning Models 
	Hyperparameters 

	Experimental Setup 

	Results 
	Confusion Metrics 
	Train 
	Test 
	Validation 
	Receiver Operating Characteristic (ROC) 
	ResNet-50 
	ResNeXt-50 


	Conclusions 
	References

