Utilizing Cost-Effective Determination Techniques to Authenticate Cosmetics
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Grouping
2.3. MALDI-TOF Analysis
2.4. GC-MS Analysis
2.5. Mid-IR Analysis
3. Results
3.1. Identified Cosmetic Ingredients via MALDI-TOF Analysis
3.2. Identified Cosmetic Ingredients via GC-MS Analysis
3.3. Identified Ink and Adhesive on the Outer Packaging via Mid-IR Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pun, H.; Hou, P.W. Combating copycatting from emerging market suppliers in global supply chains. Prod. Oper. Manag. 2022, 31, 3304–3319. [Google Scholar] [CrossRef]
- Mondello, A.; Salomone, R.; Mondello, G. Exploring circular economy in the cosmetic industry: Insights from a literature review. Environ. Impact Assess. Rev. 2024, 105, 107443. [Google Scholar] [CrossRef]
- Kolling, C.; Ribeiro, J.L.D.; de Medeiros, J.F. Performance of the cosmetics industry from the perspective of Corporate Social Responsibility and Design for Sustainability. Sustain. Prod. Consum. 2022, 30, 171–185. [Google Scholar] [CrossRef]
- Manousi, E.; Chatzitaki, A.; Vakirlis, E.; Karavasili, C.; Fatouros, D.G. Development and in vivo evaluation of 3D printed hydrogel patches for personalized cosmetic use based on skin type. J. Drug Deliv. Sci. Technol. 2024, 92, 105306. [Google Scholar] [CrossRef]
- Martins, A.M.; Marto, J.M. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustain. Chem. Pharm. 2023, 35, 101178. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of essential oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Z.; Tian, R.; Niu, Y.; Gao, S.; Liu, H. Total synchronous fluorescence spectroscopy coupled with deep learning to rapidly identify the authenticity of sesame oil. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021, 244, 118841. [Google Scholar] [CrossRef] [PubMed]
- Ficheux, A.; Gomez-Berrada, M.; Roudot, A.; Ferret, P. Consumption and exposure to finished cosmetic products: A systematic review. Food Chem. Toxicol. 2019, 124, 280–299. [Google Scholar] [CrossRef]
- Suphasomboon, T.; Vassanadumrongdee, S. Toward sustainable consumption of green cosmetics and personal care products: The role of perceived value and ethical concern. Sustain. Prod. Consum. 2022, 33, 230–243. [Google Scholar] [CrossRef]
- Alexander-White, C.; Bury, D.; Cronin, M.; Dent, M.; Hack, E.; Hewitt, N.J.; Kenna, G.; Naciff, J.; Ouedraogo, G.; Schepky, A.; et al. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment. Regul. Toxicol. Pharm. 2022, 129, 105094. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharmaceut. Biomed. 2020, 177, 112849. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.; Lin, Y.; Chen, Y.; Feng, C. Chemical derivatization combined with capillary LC or MALDI-TOF MS for trace determination of lipoic acid in cosmetics and integrated protein expression profiling in human keratinocytes. Talanta 2014, 130, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, B.; Canfyn, M.; Pype, M.; Baudewyns, S.; Hanot, V.; Courselle, P.; De Beer, J.O.; Rogiers, V.; De Paepe, K.; Deconinck, E. HS-GC-MS method for the analysis of fragrance allergens in complex cosmetic matrices. Talanta 2015, 131, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Surek, M.; Cobre, A.D.F.; Fachi, M.M.; Santos, T.G.; Pontarolo, R.; Crisma, A.R.; Felipe, K.B.; Souza, W.M.D. Propolis authentication of stingless bees by mid-infrared spectroscopy and chemometric analysis. LWT 2022, 161, 113370. [Google Scholar] [CrossRef]
- Lee, S.; Sung, B.; Phau, I.; Lim, A. Communicating authenticity in packaging of Korean cosmetics. J. Retail. Consum. Serv. 2019, 48, 202–214. [Google Scholar] [CrossRef]
- Kritikou, A.S.; Aalizadeh, R.; Damalas, D.E.; Barla, I.V.; Baessmann, C.; Thomaidis, N.S. MALDI-TOF-MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration. Food Chem. 2022, 370, 131057. [Google Scholar] [CrossRef] [PubMed]
- Feizi, N.; Hashemi-Nasab, F.S.; Golpelichi, F.; Saburouh, N.; Parastar, H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. TrAC Trends Anal. Chem. 2021, 138, 116239. [Google Scholar] [CrossRef]
- Md Ghazi, M.G.; Lee, L.C.; Sino, H.; Abdul Halim, M.I. Review of contemporary chemometric strategies applied on preparing GC-MS data in forensic analysis. Microchem. J. 2022, 181, 107732. [Google Scholar] [CrossRef]
- Sokołowski, A.; Dybowski, M.P.; Oleszczuk, P.; Gao, Y.; Czech, B. Fast and reliable determination of phthalic acid esters in soil and lettuce samples based on QuEChERS GC-MS/MS. Food Chem. 2024, 440, 138222. [Google Scholar] [CrossRef]
- Xiao, G.; Yuan, L.; Liao, D.; Dong, H.; Luo, X.; Huang, Y. A study on the applicability of one-step vortex extraction and purification combined with gas chromatography-tandem mass spectrometry for analysis of four skin penetration enhancers in cosmetics. J. Chromatogr. A 2023, 1710, 464379. [Google Scholar] [CrossRef]
- Alshebly, S.M.; Mahmoud, S.S.; Aly, E.M.; Awad, S.M.; Kamal, G.M. Effects of non-toxic doses of various food additives on the structure of mammalian retina: Investigation by mid-infrared spectroscopy. Vib. Spectrosc. 2022, 123, 103469. [Google Scholar] [CrossRef]
- Cobbinah, E.; Generalao, O.B.; Ke, G.; Malaluan, R.; Lubguban, A.; Dumancas, G.G. A rapid analytical method for turmeric essential oil authentication using mid-infrared spectroscopy and chemometrics. J. Food Compos. Anal. 2024, 129, 106102. [Google Scholar] [CrossRef]
- Luengo, G.S.; Fameau, A.; Léonforte, F.; Greaves, A.J. Surface science of cosmetic substrates, cleansing actives and formulations. Adv. Colloid Interfac. 2021, 290, 102383. [Google Scholar] [CrossRef] [PubMed]
- Jeverica, S.; Nagy, E.; Mueller-Premru, M.; Papst, L. Sample preparation method influences direct identification of anaerobic bacteria from positive blood culture bottles using MALDI-TOF MS. Anaerobe 2018, 54, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Bočánek, O.; Aedo, O.; Pekár, S.; Zdráhal, Z. Evaluation of sample preparation protocols for spider venom profiling by MALDI-TOF MS. Toxicon 2017, 133, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, N.; Li, W.; Lin, J. A membrane separation technique for optimizing sample preparation of MALDI-TOF MS detection. Chin. Chem. Lett. 2019, 30, 95–98. [Google Scholar] [CrossRef]
- Badía, J.D.; Strömberg, E.; Ribes-Greus, A.; Karlsson, S. Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide). Eur. Polym. J. 2011, 47, 1416–1428. [Google Scholar] [CrossRef]
- Zdravkovic, S.A. Solid phase extraction in tandem with GC/MS for the determination of semi-volatile organic substances extracted from pharmaceutical packaging/delivery systems via aqueous solvent systems. J. Pharmaceut. Biomed. 2015, 112, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Bhardwaj, A.; Sunder Raman, R. Chemical characterization, source identification and potential health effects of PM2.5-bound non-polar organic compounds over a COALESCE network site—Bhopal, India. Sci. Total Environ. 2024, 920, 170957. [Google Scholar] [CrossRef]
- Casey, J.S.; Jackson, S.R.; Ryan, J.; Newton, S.R. The use of gas chromatography—High resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. J. Chromatogr. A 2023, 1693, 463884. [Google Scholar] [CrossRef]
- Lopez, P.; van Sisseren, M.; De Marco, S.; Jekel, A.; de Nijs, M.; Mol, H.G.J. A straightforward method to determine flavouring substances in food by GC-MS. Food Chem. 2015, 174, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Lan, S.; Zhao, Y.; Xiong, Y.; Yang, W.; Du, Y. Characterization of skin moisture and evaluation of cosmetic moisturizing properties using miniature near-infrared spectrometer. Infrared Phys. Technol. 2023, 132, 104759. [Google Scholar] [CrossRef]
- Deconinck, E.; Bothy, J.L.; Desmedt, B.; Courselle, P.; De Beer, J.O. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy. J. Pharmaceut. Biomed. 2014, 98, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Gamberini, M.C.; Baraldi, C.; Palazzoli, F.; Ribechini, E.; Baraldi, P. MicroRaman and infrared spectroscopic characterization of ancient cosmetics. Vib. Spectrosc. 2008, 47, 82–90. [Google Scholar] [CrossRef]
- Dias Santos, J.; Pinto, P.F.; Edwards, H.G.M.; Cappa De Oliveira, L.F. Characterization by Raman and infrared spectroscopy and fluorescence microscopy of human hair treated with cosmetic products. Spectrochim. Acta Mol. Biomol. Spectrosc. 2022, 280, 121577. [Google Scholar] [CrossRef] [PubMed]
- Skobeeva, S.; Banyard, A.; Rooney, B.; Thatti, R.; Thatti, B.; Fletcher, J. Near-infrared spectroscopy combined with chemometrics to classify cosmetic foundations from a crime scene. Sci. Justice 2022, 62, 327–335. [Google Scholar] [CrossRef]
- Maric, M.; de Haan, E.; Hogendoorn, S.M.; Wolters, L.H.; Huizenga, H.M. Evaluating Statistical and Clinical Significance of Intervention Effects in Single-Case Experimental Designs: An SPSS Method to Analyze Univariate Data. Behav. Ther. 2015, 46, 230–241. [Google Scholar] [CrossRef]
Group | Sample | Substance Number | Similarity (within Groups, %) |
---|---|---|---|
SL1 | SL1-1 | 221 | 99.7 |
SL1-2 | 224 | ||
SL2 | SL2-1 | 257 | 98.9 |
SL2-2 | 253 | ||
SL3 | SL3-1 | 219 | 99.1 |
SL3-2 | 212 | ||
SL4 | SL4-1 | 286 | 98.4 |
SL4-2 | 284 | ||
SL5 | SL5-1 | 266 | 99.5 |
SL5-2 | 267 |
Group | Sample | Substance Number | Similarity (within Groups, %) | Similarity (Different Procurement Location, %) |
---|---|---|---|---|
SL11 | SL11-1 | 215 | 99.5 | 97.4 |
SL11-2 | 214 | |||
SL11-3 | 211 | |||
SL11-4 | 210 | |||
SL22 | SL22-1 | 127 | 98.1 | 73.5 |
SL22-2 | 138 | |||
SL22-3 | 126 | |||
SL22-4 | 123 | |||
SL33 | SL33-1 | 227 | 99.2 | 98.0 |
SL33-2 | 222 | |||
SL33-3 | 229 | |||
SL33-4 | 232 | |||
SL44 | SL44-1 | 266 | 98.8 | 97.5 |
SL44-2 | 261 | |||
SL44-3 | 267 | |||
SL44-4 | 269 | |||
SL55 | SL55-1 | 119 | 98.1 | 69.3 |
SL55-2 | 121 | |||
SL55-3 | 113 | |||
SL55-4 | 117 |
Group | Sample | Substance Number | Similarity (within Groups, %) |
---|---|---|---|
SC1 | SC1-1 | 137 | 99.1 |
SC1-2 | 131 | ||
SC2 | SC2-1 | 172 | 99.3 |
SC2-2 | 179 | ||
SC3 | SC3-1 | 165 | 98.9 |
SC3-2 | 161 | ||
SC4 | SC4-1 | 131 | 98.7 |
SC4-2 | 125 | ||
SC5 | SC5-1 | 136 | 99.4 |
SC5-2 | 140 |
Group | Sample | Substance Number | Similarity (within Groups, %) | Similarity (Different Procurement Location, %) |
---|---|---|---|---|
SC11 | SC11-1 | 129 | 98.9 | 98.2 |
SC11-2 | 134 | |||
SC22 | SC22-1 | 168 | 99.2 | 98.7 |
SC22-2 | 161 | |||
SC33 | SC33-1 | 52 | 99.4 | 63.2 |
SC33-2 | 51 | |||
SC44 | SC44-1 | 139 | 98.7 | 97.1 |
SC44-2 | 143 | |||
SC55 | SC55-1 | 145 | 99.1 | 98.3 |
SC55-2 | 142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Qu, H.; Ning, X.; Cui, S.; Cao, J. Utilizing Cost-Effective Determination Techniques to Authenticate Cosmetics. Appl. Sci. 2024, 14, 3198. https://doi.org/10.3390/app14083198
Jin S, Qu H, Ning X, Cui S, Cao J. Utilizing Cost-Effective Determination Techniques to Authenticate Cosmetics. Applied Sciences. 2024; 14(8):3198. https://doi.org/10.3390/app14083198
Chicago/Turabian StyleJin, Shaoming, Hongren Qu, Xiao Ning, Shenghui Cui, and Jin Cao. 2024. "Utilizing Cost-Effective Determination Techniques to Authenticate Cosmetics" Applied Sciences 14, no. 8: 3198. https://doi.org/10.3390/app14083198
APA StyleJin, S., Qu, H., Ning, X., Cui, S., & Cao, J. (2024). Utilizing Cost-Effective Determination Techniques to Authenticate Cosmetics. Applied Sciences, 14(8), 3198. https://doi.org/10.3390/app14083198