Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity
Abstract
:Featured Application
Abstract
1. Introduction
2. Physical Model
2.1. Experimental Setup and Geometry
2.2. Material Properties
3. Numerical Model
3.1. Geometry
3.2. Heat Transfer Physics
3.3. Energy Conservation and Phase Change Modelling
3.4. Convective Boundary Modelling
3.5. Mesh Independence Study
3.6. Impact of Mushy-Zone Temperature Range
3.7. Model Validation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Renewables 2023—Analysis and Forecast to 2028; International Energy Agency (IEA): Paris, France, 2024; 143p.
- Letcher, T.M. Storing Energy with Special Reference to Renewable Energy Sources; Elsevier: New York, NY, USA, 2016; 565p. [Google Scholar]
- Cabeza, L.F. Advances in Thermal Energy Storage Systems: Methods and Applications, 2nd ed.; Elsevier: Cambridge, UK, 2021; 775p. [Google Scholar]
- Groulx, D. Design of latent heat energy storage systems using phase change materials. In Advances in Thermal Energy Storage Systems, 2nd ed.; Cabeza, L., Ed.; Elsevier: Cambridge, MA, USA, 2021; pp. 331–357. [Google Scholar]
- Agyenim, F.; Hewitt, N.; Eames, P.; Smyth, M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 2010, 14, 615–628. [Google Scholar] [CrossRef]
- Kalapala, L.; Devanuri, J.K. Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage—A review. J. Energy Storage 2018, 20, 497–519. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Noël, J.A.; Kahwaji, S.; Desgrosseilliers, L.; Groulx, D.; White, M.A. Phase Change Materials. In Storing Energy with Special Reference to Renewable Energy Sources, 2nd ed.; Letcher, T.M., Ed.; Elsevier: Cambridge, MA, USA, 2022; pp. 503–535. [Google Scholar]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.; Barreneche, C. Thermal conductivity measurement techniques for characterizing thermal energy storage materials—A review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- Diarce, G.; Campos-Celador, Á.; Quant, L.; Garcia-Romero, A. A Simple and Fast Methodology for the Design of Plate-Based LHTESS Systems. In Proceedings of the 12th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning (PCM 2018), Orford, QC, Canada, 21–23 May 2018. [Google Scholar]
- Kuznik, F.; Arzamendia Lopez, J.P.; Baillis, D.; Johannes, K. Design of a PCM to air heat exchanger using dimensionless analysis: Application to electricity peak shaving in buildings. Energy Build. 2015, 106, 65–73. [Google Scholar] [CrossRef]
- Saydam, V.; Parsazadeh, M.; Radeef, M.; Duan, X. Design and experimental analysis of a helical coil phase change heat exchanger for thermal energy storage. J. Energy Storage 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Mehling, H.; Cabeza, L.F. Heat and Cold Storage with PCM; Springer: Berlin, Germany, 2008; 308p. [Google Scholar]
- Gonzalez-Nino, D.; Boteler, L.M.; Ibitayo, D.; Jankowski, N.R.; Urciuoli, D.; Kierzewski, I.M.; Quintero, P.O. Experimental evaluation of metallic phase change materials for thermal transient mitigation. Int. J. Heat Mass Transf. 2018, 116, 512–519. [Google Scholar] [CrossRef]
- White, M.A.; Kahwaji, S.; Noel, J.A. Recent advances in phase change materials for thermal energy storage. Chem. Commun. 2024, 60, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Groulx, D. The Rate Problem: Search for Application Specific Optimization of Energy Storage Density and Exchange Rate. In Proceedings of the 12th IIR Conference on Phase-Change Materials and Slurries for Refrigeration and Air Conditioning (PCM 2018), Orford, QC, Canada, 21–23 May 2018. [Google Scholar]
- Agyenim, F.; Eames, P.; Smyth, M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew. Energy 2010, 35, 198–207. [Google Scholar] [CrossRef]
- Herbinger, F.; Groulx, D. Experimental comparative analysis of finned-tube PCM-heat exchangers’ performance. Appl. Therm. Eng. 2022, 211, 118532. [Google Scholar] [CrossRef]
- Khanna, S.; Newar, S.; Sharma, V.; Reddy, K.S.; Mallick, T.K. Optimization of fins fitted phase change material equipped solar photovoltaic under various working circumstances. Energy Convers. Manag. 2019, 180, 1185–1195. [Google Scholar] [CrossRef]
- Joybari, M.M.; Haghighat, F.; Seddegh, S.; Al-Abidi, A.A. Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging. Energy Convers. Manag. 2017, 152, 136–156. [Google Scholar] [CrossRef]
- Vogel, J.; Johnson, M. Natural convection during melting in vertical finned tube latent thermal energy storage systems. Appl. Energy 2019, 246, 38–52. [Google Scholar] [CrossRef]
- Xie, J.; Lee, H.M.; Xiang, J. Numerical study of thermally optimized metal structures in a Phase Change Material (PCM) enclosure. Appl. Therm. Eng. 2019, 148, 825–837. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, H.; Liu, Z.; Gao, Z. Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam. Int. J. Therm. Sci. 2018, 123, 73–85. [Google Scholar] [CrossRef]
- MacDevette, M.M.; Myers, T.G. Contact melting of a three-dimensional phase change material on a flat substrate. Int. J. Heat Mass Transf. 2012, 55, 6798–6807. [Google Scholar] [CrossRef]
- Rozenfeld, T.; Kozak, Y.; Hayat, R.; Ziskind, G. Close-contact melting in a horizontal cylindrical enclosure with longitudinal plate fins: Demonstration, modeling and application to thermal storage. Int. J. Heat Mass Transf. 2015, 86, 465–477. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, R.-H.; Zhang, S.-T.; Liu, J.; Fan, L.-W. A laser interferometric measurement on the melt film thickness during close-contact melting on an isothermally-heated horizontal plate. Int. J. Heat Mass Transf. 2019, 138, 713–718. [Google Scholar] [CrossRef]
- Gunasekara, S.N.; Ignatowicz, M.; Chiu, J.N.; Martin, V. Thermal conductivity measurement of erythritol, xylitol, and their blends for phase change material design: A methodological study. Int. J. Energy Res. 2019, 43, 1785–1801. [Google Scholar] [CrossRef]
- D’Oliveira, E.J.; Pereira, S.C.C.; Groulx, D.; Azimov, U. Thermophysical properties of Nano-enhanced phase change materials for domestic heating applications. J. Energy Storage 2022, 46, 103794. [Google Scholar] [CrossRef]
- Eisapour, M.; Eisapour, A.H.; Shafaghat, A.H.; Mohammed, H.I.; Talebizadehsardari, P.; Chen, Z. Solidification of a nano-enhanced phase change material (NePCM) in a double elliptical latent heat storage unit with wavy inner tubes. Sol. Energy 2022, 241, 39–53. [Google Scholar] [CrossRef]
- Sadrameli, S.M.; Motaharinejad, F.; Mohammadpour, M.; Dorkoosh, F. An experimental investigation to the thermal conductivity enhancement of paraffin wax as a phase change material using diamond nanoparticles as a promoting factor. Heat Mass Transf. 2019, 55, 1801–1808. [Google Scholar] [CrossRef]
- Groulx, D. Numerical Study of Nano-Enhanced PCMs: Are they Worth it? In Proceedings of the 1st Thermal and Fluid Engineering Summer Conference, TFESC, New York, NY, USA, 9–12 August 2015. [Google Scholar]
- Desgrosseilliers, L.; Whitman, C.A.; Groulx, D.; White, M.A. Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl. Therm. Eng. 2013, 53, 37–41. [Google Scholar] [CrossRef]
- Liu, C.; Groulx, D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int. J. Therm. Sci. 2014, 82, 100–110. [Google Scholar] [CrossRef]
- Azad, M.; Groulx, D.; Donaldson, A. Solidification of phase change materials in horizontal annuli. J. Energy Storage 2023, 57, 106308. [Google Scholar] [CrossRef]
- Groulx, D.; Biwole, P.H. Solar PV Passive Temperature Control using Phase Change Materials. In Proceedings of the 15th International Heat Transfer Conference (IHTC-15), Kyoto, Japan, 10–15 August 2014. [Google Scholar]
- Ogoh, W.; Groulx, D. Stefan’s Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process. In Proceedings of the COMSOL Conference 2010, Boston, MA, USA, 9–7 October 2010. [Google Scholar]
- Kheirabadi, A.C.; Groulx, D. Simulating Phase Change Heat Transfer using COMSOL and FLUENT: Effect of the Mushy-Zone Constant. Comput. Therm. Sci. 2015, 7, 427–440. [Google Scholar] [CrossRef]
- Rohsenow, W.M.; Hartnett, J.P.; Cho, Y.I. Handbook of Heat Transfer, 3rd ed.; McGraw-Hil: Boston, MA, USA, 1998; 1344p. [Google Scholar]
Property | Value |
---|---|
cp,s @ 20 °C | 1.95 ± 0.03 kJ/kg∙K |
cp,l @ 45 °C | 2.4 ± 0.2 kJ/kg∙K |
ks @ 30°C | 0.160 ± 0.004 W/m∙K |
kl @ 50 °C | 0.150 ± 0.004 W/m∙K |
ρs @ 22 °C | 930 ± 20 kg/m3 |
ρl @ 50 °C | 885 ± 20 kg/m3 |
Tm | 43.3 ± 1.5 °C |
L | 184 ± 9 kJ/kg |
Mesh | Domain Elements | Boundary Elements | Total Elements | Average Element Size | Simulation Time |
---|---|---|---|---|---|
1 | 5135 | 888 | 6023 | 0.00090 m | 17 s |
2 | 8152 | 985 | 9137 | 0.00057 m | 16 s |
3 | 15,419 | 1140 | 16,559 | 0.00046 m | 23 s |
4 | 30,907 | 1805 | 32,712 | 0.00030 m | 46 s |
5 | 130,768 | 3617 | 134,385 | 0.00013 m | 194 s |
Validation Study | # of Fins | (L/min) | ||
---|---|---|---|---|
1 | 12 | 9 | 65 to 21 | 1590.32 |
2 | 12 | 9 | 55 to 31 | 1624.05 |
3 | 8 | 9 | 65 to 21 | 1953.44 |
4 | 8 | 9 | 55 to 31 | 2285.66 |
5 | 4 | 9 | 65 to 21 | 3809.42 |
6 | 4 | 9 | 55 to 31 | 4180.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belinson, M.; Groulx, D. Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity. Appl. Sci. 2024, 14, 3318. https://doi.org/10.3390/app14083318
Belinson M, Groulx D. Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity. Applied Sciences. 2024; 14(8):3318. https://doi.org/10.3390/app14083318
Chicago/Turabian StyleBelinson, Maxim, and Dominic Groulx. 2024. "Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity" Applied Sciences 14, no. 8: 3318. https://doi.org/10.3390/app14083318
APA StyleBelinson, M., & Groulx, D. (2024). Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity. Applied Sciences, 14(8), 3318. https://doi.org/10.3390/app14083318