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Abstract: Musculoskeletal diseases affect over 100 million people globally and are a leading cause
of severe, prolonged pain, and disability. Recognized as a clinical emergency, prompt and accu-
rate diagnosis of musculoskeletal disorders is crucial, as delayed identification poses the risk of
amputation for patients, and in severe cases, can result in life-threatening conditions such as bone
cancer. In this paper, a hybrid model HRD (Human-Resnet50-Densenet121) based on deep learning
and human participation is proposed to efficiently identify disease features by classifying X-ray
images. Feasibility testing of the model was conducted using the MURA dataset, with metrics such as
accuracy, recall rate, F1-score, ROC curve, Cohen’s kappa, and AUC values employed for evaluation.
Experimental results indicate that, in terms of model accuracy, the hybrid model constructed through
a combination strategy surpassed the accuracy of any individual model by more than 4%. The
model achieved a peak accuracy of 88.81%, a maximum recall rate of 94%, and the highest F1-score
value of 87%, all surpassing those of any single model. The hybrid model demonstrates excellent
generalization performance and classification accuracy.

Keywords: musculoskeletal diseases; X-ray images; HRD hybrid model; MURA dataset; mixed
model strategy

1. Introduction

Musculoskeletal (MSK) diseases encompass disorders affecting the muscles, bones,
soft tissues, joints, and spine. Throughout the entire lifespan, from infancy to old age,
MSK diseases may occur, exerting an impact on work productivity and economic output.
Globally, the latest Global Burden of Disease (GBD) study estimates that 1.71 billion
people worldwide suffer from MSK [1]. X-ray image diagnosis plays an important role
in MSK diagnosis, and clinicians have many X-ray image reading tasks every day. At
Beth Israel Deaconess Medical Center, it was reported that most radiology teachers and
trainees worked more than eight hours in front of a personal computer or PACS monitor,
and 58 percent experienced repetitive stress symptoms [2]. Similarly, in a survey by
Thompson et al. showed that 60.2% of breast imaging radiologists reported repetitive stress
symptoms [3]. Prolonged intensive work harms the accuracy and efficiency of medical
practitioners in diagnosing musculoskeletal disorders. Errors in image interpretation
leading to misdiagnosis or delayed correct diagnosis can cause significant harm to the
patient’s body, and in extreme cases, pose a threat to their life.

In recent years, deep learning algorithms utilizing deep convolutional neural networks
have undergone testing in medical imaging interpretation, achieving significant advance-
ments [4]. Disease classification and diagnostic algorithms have been applied and validated
in various medical imaging technologies including computed tomography (CT), magnetic
resonance imaging (MRI), optical coherence tomography (OCT), and pathological images,
among others [4]. Traditional machine learning algorithms for medical image recognition
mainly involve two components: image feature extraction and image recognition. Human
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intervention is required for extracting features from medical images, leading to relatively
low recognition accuracy [5,6]. Additionally, single models often fail to achieve the desired
results in medical image recognition and classification, exhibiting weak adaptability and
robustness. For instance, Shahedi et al. [7] achieved a segmentation of 83% Dice similarity
coefficient for three-dimensional CT images of the prostate by using an improved U-Net
network. Deep learning, as a data-driven approach, can automatically learn feature repre-
sentations from a large volume of medical imaging data, thereby enhancing the diagnostic
accuracy and efficiency. For instance, Jinbo Hu, Weizhi Nie, and others [8] proposed a
deformable Transformer-assisted model for the diagnosis of chest X-ray image diseases,
utilizing the extended ResNet50 as a feature extraction network. Multiple experiments were
conducted on the ChestX-Ray14 and CheXpert datasets, achieving AUC values of 0.8398
and 0.9061, respectively. Yukun Chen, Zhuomin Zhang et al. [9] proposed a new AI-PLAX,
based on two-stage photographs, that addressed the challenge of using photographs for
the automated evaluation and examination of the placenta, which was capable of accu-
rate morphological characterization and performed well in clinically meaningful feature
analysis tasks. Lianzhong Jian et al. [10] introduced the ConvOS model for the diagnosis
of COVID-19, utilizing the IGOS++ algorithm and an improved ConvNeXt network. The
ConvOS model achieved an accuracy, recall rate, precision, and F1-score of 93.7%, 92.6%,
96.2%, and 94.4%, respectively.

In the field of medical imaging, medical image data present complex characteristics
including noise, uncertainty, and class imbalance, which significantly impact physicians
during pathological diagnosis [11]. However, the models still face challenges such as
limited image granularity and interpretability [12], restricting their application in artificial
intelligence-assisted diagnostic systems. Addressing these issues, this paper proposes a
machine ensemble strategy by combining multiple models and introducing a participatory
deep learning HRD hybrid model. The aim is to enhance model recognition accuracy,
adaptability, and robustness, facilitating efficient and accurate assistance for clinicians in
diagnosing MSK diseases from X-ray images. To validate the feasibility and accuracy of
our research, the MURA dataset was selected for model testing and evaluation. Each image
in the MURA dataset has been manually annotated by radiologists. Experimenting with
this diverse dataset will enable a comprehensive assessment of the model’s performance
and generalization ability. Evaluation metrics such as accuracy, recall rate, F1-score, ROC
curve, and AUC values will be utilized to assess the model performance and compare our
model’s effectiveness with baseline models.

2. Background Literature

A. Deep learning and related research

Deep learning models are gradually replacing traditional machine learning (ML)
models because they can automatically extract useful features from input data, whereas
traditional ML models require manual feature engineering. In the field of biomedical re-
search, the emergence of deep learning has overcome many challenges faced by traditional
machine learning methods [13]. One of the most popular deep learning architectures is
the convolutional neural network (CNN). CNNs are primarily composed of convolutional
layers, pooling layers, and fully connected layers. The convolutional layers are responsible
for extracting features from images, pooling layers perform downsampling and dimen-
sionality reduction on the features, and fully connected layers map the features to labels.
Compared to traditional neural networks, CNNs excel at automatically extracting abstract
feature representations from raw data, especially for image data. Various CNN models
and variants have been applied in the biomedical field including tasks such as microscopic
image classification [14], X-ray reconstruction [15], breast X-ray detection [16], liver lesion
classification [17], brain MRI segmentation [18], and the clustering of plantar pressure
images [19]. Kitamura et al. [20] employed an ensemble model based on CNNs for ankle
joint fracture detection. The proposed model was trained on a small dataset, classifying
ankle joint radiographs as normal or abnormal. The architecture was implemented on both
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single-view and three-view integrated models. Some classic CNN models include LeNet-5,
AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, and DenseNet [21]. The hybrid model
proposed in this paper was constructed using parts of ResNet50 and DenseNet121, among
others.

The continuous increase in the depth of traditional neural networks leads to issues
such as gradient vanishing, gradient exploding, and model overfitting during the training
process [22]. He et al. [23], by introducing identity mappings and implementing skip con-
nections, proposed deep residual networks (ResNet) to alleviate the degradation problem
in deep networks. ResNet primarily addresses the degradation problem in deep neural
networks, where an increase in network depth results in a decline in model performance.
Dense convolutional network (DenseNet) focuses on addressing the problem of informa-
tion loss in deep neural networks. DenseNet tackles this issue through dense connections,
achieving notable success in computer vision tasks such as image classification, object
detection, and medical image analysis.

P. Rajpurkar et al. [24] introduced a large dataset for abnormality detection in muscu-
loskeletal X-ray images, where the authors utilized a multi-view 169-layer DenseNet model
for image classification. The Cohen’s kappa statistic for this model was reported as 0.389. J.
Olczak et al. [25] proposed a DL-based abnormality detection for wrist, hand, and ankle
joint radiographs. Models like VGG-19 were trained to categorize X-rays into four classes:
lateral, fracture, body part, and study view. Except for catagma, all models achieved an
accuracy of over 90% for all classes. In this study, we trained and tested our proposed
hybrid model using the MURA [24] dataset to enhance the accuracy and efficiency of the
model.

B. MURA Dataset and Data Processing

The MURA dataset [24] is the largest publicly available collection of musculoskeletal
radiographic images, encompassing multi-view images of fingers, hands, wrists, forearms,
elbows, humeri, and shoulders in the upper extremity region. It comprises 40,561 mus-
culoskeletal radiographic images from 14,656 studies of 12,173 patients, with each study
containing one or more radiographic images manually annotated by radiologists. This
dataset is collected and released by the Stanford ML group as part of the Bone X-Ray DL
Competition [24]. The training and validation sets consist of 13,457 and 1199 images, respec-
tively, with the total number of images for each study type in the training and validation
sets illustrated in Figure 1a,b.
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Figure 1. (a) Training set statistics for all study types. (b) Valid set statistics for all study types.

MURA classification is a binary task with labels represented as a 0–1 variable, where 0
indicates normal and 1 indicates the presence of an abnormality. In this dataset, there are
1912 studies of the elbow, 2110 studies of the fingers, 2185 studies of the hand, 727 studies of
the humerus, 1010 studies of the forearm, 3015 studies of the shoulder, and 3697 studies of
the wrist. For the test set, the majority vote of three radiologists serves as the gold standard.
The official team trained a baseline model using a 169-layer DenseNet to detect and localize
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abnormalities, achieving an AUROC of 0.929, sensitivity of 0.815 at a working point of
0.815, and specificity of 0.887. When analyzing the dataset, we observed that each study
had one or more images, with most studies having three images, as exemplified in Figure 2,
an illustration of the MURA. dataset.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 18 
 

studies of the humerus, 1010 studies of the forearm, 3015 studies of the shoulder, and 3697 
studies of the wrist. For the test set, the majority vote of three radiologists serves as the 
gold standard. The official team trained a baseline model using a 169-layer DenseNet to 
detect and localize abnormalities, achieving an AUROC of 0.929, sensitivity of 0.815 at a 
working point of 0.815, and specificity of 0.887. When analyzing the dataset, we observed 
that each study had one or more images, with most studies having three images, as exem-
plified in Figure 2, an illustration of the MURA. dataset. 

 
Figure 2. Partial illustration of the MURA dataset. 

When utilizing the MURA dataset for training and validating the feasibility and ac-
curacy of the model, it is also necessary to convert image data into tensors. In computer 
vision, images are typically composed of pixel matrices, with each pixel containing values 
for the red, green, and blue channels. Converting images to tensors is carried out to facil-
itate computer processing and analysis of the images. Typically, the pixel matrix of an 
image is represented as a three-dimensional tensor, where the first dimension denotes the 
number of channels, the second dimension represents the height of the image, and the 
third dimension represents the width of the image. Specifically, if the image is in color, it 
is often represented as a three-dimensional tensor with a shape of [3, H, W], where H is 
the height of the image, and W is the width of the image. If the image is grayscale, it can 
be represented as a three-dimensional tensor with a shape of [1, H, W]. Converting images 
to tensors is a common data preprocessing method in deep learning, typically performed 
before feeding the images into neural networks. 

3. HRD Hybrid Model Construction 
To solve the above problems, this study adopted mixed model theory, a convolu-

tional neural network, and other related theories. The hybrid model proposed in this pa-
per is composed of three modules: ResNet50, DenseNet121, and Human block, so this 

Figure 2. Partial illustration of the MURA dataset.

When utilizing the MURA dataset for training and validating the feasibility and
accuracy of the model, it is also necessary to convert image data into tensors. In computer
vision, images are typically composed of pixel matrices, with each pixel containing values
for the red, green, and blue channels. Converting images to tensors is carried out to
facilitate computer processing and analysis of the images. Typically, the pixel matrix of
an image is represented as a three-dimensional tensor, where the first dimension denotes
the number of channels, the second dimension represents the height of the image, and the
third dimension represents the width of the image. Specifically, if the image is in color, it is
often represented as a three-dimensional tensor with a shape of [3, H, W], where H is the
height of the image, and W is the width of the image. If the image is grayscale, it can be
represented as a three-dimensional tensor with a shape of [1, H, W]. Converting images
to tensors is a common data preprocessing method in deep learning, typically performed
before feeding the images into neural networks.

3. HRD Hybrid Model Construction

To solve the above problems, this study adopted mixed model theory, a convolutional
neural network, and other related theories. The hybrid model proposed in this paper is
composed of three modules: ResNet50, DenseNet121, and Human block, so this model
is defined as the HRD model in this paper. The following sections mainly introduce the
model from ResNet50, DenseNet121, Human block, and naive Bayes architecture.
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3.1. ResNet50

ResNet50 consists of 50 layers of convolutional neural networks including the convo-
lutional layer, pooling layer, and fully connected layer. Unlike traditional convolutional
neural networks, ResNet50 uses the idea of “Residual Learning” to solve the problem of
network degradation by introducing a Residual Block, so that the network can be deeper
and easier to train. Its structure is shown in Figure 3.
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ResNet50 is trained by training strategy. The theoretical support of the training
strategy is mainly based on deep learning optimization algorithms. In the training process
of ResNet50, the optimization algorithm commonly used is Adam. It can adapt the learning
rate adjustment, which can quickly converge and avoid the situation of shock. The formula
of the Adam optimization algorithm is as follows:

mt = βtmt−1 + (1 − β1)gt,
vt = β2vt−1 + (1 − β2)g2

t ,
m̂t =

mt
1−βt

1
,

v̂t =
vt

1−βt
2
,

θt+1 = θt − µ√
v̂t+ϵ

m̂t

(1)

where mt and vt represent the first and second moment estimates, β1 and β2 are decay
rates, gt denotes the current gradient, mt and v̂t are bias-corrected estimates of the moments,
θ denotes the learning rate, and ϵ is a very small number to prevent division by zero.

Training process: After converting the image dataset into a tensor, we can input it into
the ResNet50 model for training, which can be represented by the following mathematical
formula:

Assume the input image is X and the final output is Y. Each convolutional layer,
pooling layer, fully connected layer, etc., can be considered as a function represented by
f1, f2, f3, . . . , fn. The forward pass of the ResNet50 model can be expressed as:

Y = fn( fn−1(. . . f3( f2( f1(X))))), (2)

During the training process, cross-entropy was employed as the loss function in this
study. Assuming the training dataset is D, the cross-entropy loss function L is defined as
follows:

Li = −yilogŷi − (1 − yi)log(1 − ŷi), (3)

where yi represents the actual label and ŷi represents the predicted result. The calculation
formula for this loss function is based on the concept of cross-entropy in information theory.
The intuitive interpretation is to maximize the probability of correct classification (i.e., to
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minimize the difference between the predicted result and the actual label). The overall
calculation formula for the loss function throughout the training process is:

L =
1
n∑n

i=1 Li, (4)

where n represents the total number of samples in the training set and Li represents the cross-
entropy loss function for each sample. This loss function will be used for backpropagation,
calculating gradients, and updating the model parameters.

After obtaining the value of the loss function (Loss), gradient descent is employed to
reduce the L value, thereby improving the model’s classification capability. For the loss
function L, gradients for each layer are computed using the chain rule. Specifically, for the
j-th convolutional layer in the i-th layer, with output feature map Fi,j and input feature map
Fi−1,k, the gradient calculation formula for this convolutional layer is:

∂L
∂Fi−1,k

= ∑j
∂L

∂Fi,j

∂Fi,j

∂Fi−1,k
, (5)

where
∂Fi,j

∂Fi−1,k
represents the gradient from the previous layer and ∂L

∂Fi,j
is the derivative

concerning the convolutional layer. Similar gradient calculation formulas can be used for
batch normalization layers and fully connected layers. Therefore, the training process of the
ResNet50 model can be expressed as follows. In the equations, θ represents the parameters
of the model.

minθ
1
|D|∑(xiyi)ϵD L(yi, fn( fn−1(. . . f3( f2( f1(xi)))) . . .); θ), (6)

Through the above formulas, the training process is illustrated in Figure 4. ResNet50
is divided into five stages, where Stage 0 has a relatively simple structure, serving as
preprocessing for input data. The subsequent four stages are all composed of Bottleneck
units and share a similar structure. Stage 1 contains three Bottleneck units, while the
remaining three stages contain four, six, and three Bottleneck units, respectively. In Stage
0, the notation (3,224,224) represents the input data dimensions (channels, height, width).
The input undergoes convolutional layers, batch normalization (BN) layers, ReLU activation
functions, and MaxPooling layers, resulting in an output shape of (64,56,56). In this
experiment, we modified the full connection layer of ResNet50 to two outputs to meet our
binary classification task.
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3.2. Densenet121

DenseNet121 consists of 121 layers of convolutional neural networks including dense
blocks, transition layers, and global average pooling layers. Like ResNet, DenseNet uses
cross-layer connectivity to enhance the delivery of information.

As shown in Figure 5, dense blocks are an important component of the DenseNet.
In each dense block, the input feature graphs are successively processed through a series
of convolution operations and nonlinear activation functions, and then the outputs of
each convolution layer are spliced together to form a densely connected output. In this
experiment, we changed the output of DenseNet’s fully connected layer to two to cater to
our binary classification task.
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Like ResNet50, DenseNet121 adopts the training strategy of the Adam optimizer. In
the training process, the forward transfer formula of DenseNet can be expressed as follows:

x0 = input,
xl = Hl([x0, x1, . . . , xl−1]),

(7)

where x0 is the input data, xl represents the output of the L-layer, and Hl represents the
nonlinear transformation of the L-layer. [x0, x1, . . . , xl−1] indicates that the output from
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layer 0 to layer L − 1 is concatenated as the input of layer l. For layer l of DenseNet121, the
input and output can be expressed as:

x0 = input,
xl = Hl([x0, x1, . . . , xl−1]),

xi = Hi([x0, x1, . . . , xi−1]) 1 ≤ i ≤ l − 1,
(8)

where Hi represents the convolutional layer and nonlinear transformation in the i-th dense
connected block and [x0, x1, . . . , xi−1] represents the concatenation of the output of the
previous i − 1 layer as the input of the i-th dense connected block. The backpropagation
formula of DenseNet can be expressed as:

∂L
∂xl

=
∂L

∂Hl
([x0, x1, . . . , xl−1]) + ∑l−1

i=0
∂L
∂xi

∂xi
∂xl

, (9)

where L represents the loss function; the rest of the definitions are referred to above.

3.3. Human Block

In the hybrid model, we aimed to facilitate interaction between the model and individ-
uals, enhancing the model’s generalization capabilities and refining its accuracy through
iterative learning with human input. Consequently, within the Human Block module, we
engaged in the tensor processing of human judgments on images, converting them into
a computationally manageable format suitable for computer input. Given the inherent
uncertainty and stochastic nature of human diagnostic quality, we employed a function
within this module to better align the model with human diagnostic input and bolster its
resilience. This function’s parameters span from 0.0 to 1.0, simulating human diagnostic
accuracy. During each batch of model training, the function incorporates dataset labels
into the batch and selectively alters some labels based on pre-established accuracy criteria.
The introduction of bias within the function induces a ±2.5% fluctuation in model training
accuracy, effectively mirroring the stochastic characteristics of human diagnosis. Crucially,
the function randomly alters labels, effectively emulating human diagnostic processes
and circumventing systematic biases that could lead to overfitting. As shown in Figure 6,
the X-ray image is first given a prediction and then probabilistically processed as input
data into the naive Bayesian model. As shown in Figure 7, a set of evaluation inputs is
represented as 0–1, then the corresponding subtraction and dot multiplication operations
are performed, and finally, the probability value is obtained through the operation of
the softmax function in the second dimension. Importantly, these probability values are
calibrated against average human prediction accuracy, with a single set of probabilities
serving as the standard for demonstration.
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Furthermore, to assess the model’s robustness and gauge the influence of human
diagnostic accuracy on model outcomes, additional experiments were conducted. These
experiments involved adjusting parameters to maintain human diagnostic accuracies at
approximately 60%, 70%, and 75%, respectively, while subjecting the models to testing.
The experimental findings are depicted in the accompanying Figure 8. Across the three
depicted stages, the final model accuracy exhibited a corresponding increase alongside
improvements in human diagnostic accuracy, with model accuracy consistently maintained
within the range of 80% to 90%. This observation underscores the hybrid model’s robust-
ness and its significant potential for enhancing the accuracy of musculoskeletal disease
identification. Moreover, it highlights the model’s ability to provide valuable assistance to
clinicians in achieving the rapid and efficient diagnoses of musculoskeletal diseases.
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3.4. HRD Hybrid Model Construction

In the proposed hybrid model in this paper, each image is initially fed into ResNet50
and DenseNet121. The respective feature representations are obtained, and these represen-
tations are concatenated and used as input for the naive Bayes model. This paper assumes
that each feature is conditionally independent of the class. The Bayesian formula is then
applied to calculate the probability of each class, and the class with the highest probability
is selected as the final classification result. The parameters mainly include prior probability
P(Y) and conditional probability P(X|Y), where X represents the input feature vector and
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Y represents the output classification label. Maximum likelihood estimation is used to
estimate these parameter values based on the training dataset, optimizing the model’s
classification performance on the training set under these parameters. Based on the training
dataset, we can estimate the prior probability P(Y) for each classification label as follows:

P(Y = c) =
∑N

i=1 I(yi = c)
N

, (10)

where N represents the size of the training dataset, yi represents the true classification label
of the i-th sample, and i is the indicator function with a value of 1 when the condition in
the parentheses is true, and 0 otherwise.

Next, for each classification label, estimate the conditional probability P(X|Y = c) for
its feature vector X. Since the feature vector X is continuous, it can be modeled using a
Gaussian distribution, that is:

P
(
Xj = xj

∣∣Y = c
)
=

1√
2πσ2

jc

exp(−
(

xj − µjc
)2

2σ2
jc

), (11)

where xj represents the value of the j-th component of the eigenvector X, and µjc and
σjc represent the mean and variance of the j-th feature under the classification label c,
respectively. Finally, according to the Bayes formula, the posterior probability P(Y =
c|X) of the input feature vector X under each classification label can be calculated, and the
classification label with the greatest posterior probability can be selected as the output result.

ŷ = argmax
c

P(Y = c)∏d
j=1 P

(
Xj = xj

∣∣Y = c
)
, (12)

The overall structure diagram of the HRD hybrid model proposed in this paper is
shown in Figure 9. For X-ray image data, on the one hand, the image data are converted
into a tensor, and then the data are passed into the trained neural network model. On the
other hand, the image data are handed over to people for processing, and the specific
classification data (0–1 variable) is given, then converted into the predicted probability
value by Human Block. Finally, the prediction probability values of the three blocks
are summarized, and the concrete prediction values of the image are given by the naive
Bayes model.
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4. Experiments and Results

To validate the effectiveness and accuracy of the proposed hybrid model, feasibility
experiments were conducted using the MUAR dataset as previously mentioned in this
paper. Accuracy, recall, F1-score, ROC curve, and AUC value were adopted as evaluation
metrics. These metrics will aid in assessing the model’s performance and verifying the
efficiency of the proposed hybrid model, along with the feasibility of the hybrid strategy
through comparisons with various baseline models. The following models will be included
in the comparison: ResNet50 and Densenet169.

4.1. Accuracy Rate

The HRD and baseline models were evaluated under the same settings in this study.
All models were trained using identical strategies, and the model with the minimum
cross-entropy loss after training was selected for evaluation. As shown in Table 1, HRD
demonstrated higher accuracy than both baseline models across all types of X-ray images.
For ResNet50, HRD exhibited an accuracy improvement ranging from 4% to 9%, and
for DenseNet169, HRD showed an accuracy improvement ranging from 2% to 6%. This
indicates the effectiveness of the hybrid model. However, evaluating a model’s performance
should not solely rely on accuracy, especially in an imbalanced dataset. Therefore, the
assessment will continue by considering additional metrics.

Table 1. Accuracy of each model.

Resnet50 Densenet169 HRD-Model

XR_ELBOW 0.815 0.823 0.884
XR_FINGER 0.764 0.781 0.837

XR_FOREARM 0.783 0.805 0.845
XR_HAND 0.746 0.784 0.833

XR_HU ERUS 0.843 0.863 0.885
XR_SHOULDER 0.771 0.773 0.816

XR_WRIST 0.803 0.834 0.867

4.2. Confusion Matrix

When testing the mixed model and the baseline model, the confusion matrix can better
understand the performance of the model in various categories. The accuracy rate, recall
rate, and accuracy rate of the mixed model and the baseline model can be obtained through
the confusion matrix to compare the performance differences between the two models. The
confusion matrix of each model in various X-ray images is shown in Table 2, where TP, TN,
FP, and FN represent the results after classification by each model, namely true cases, true
negative cases, false positive cases, and false negative cases, respectively. The equation
related to the confusion matrix is as follows:

Precision = TP/(TP + FP),
Recall = TP/(TP + FN),

F1 − Score = 2 ∗ Precision ∗ Recall/(Precision + Recall),
(13)
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Table 2. Classification results of each model.

TP FN
ResNet50 DenseNet169 HRD-Model

FP TN

XR_ELBOW
218 17 204 31 211 24
73 157 47 183 41 189

XR_FINGER
178 36 176 38 191 23
82 165 70 177 71 176

XR_FOREARM
132 18 139 11 141 9
51 100 48 103 43 108

XR_HAND
240 31 245 26 252 19
91 98 86 103 78 111

XR_HUMERUS
121 27 120 28 128 20
21 119 22 118 16 124

XR_SHOULDER
224 61 217 68 227 58
67 211 76 202 58 220

XR_WRIST
336 28 328 36 330 34
88 207 74 221 69 226

4.3. Precision

Precision ratio is one of the indices to evaluate the performance of the binary classifica-
tion model. It represents the proportion of the samples predicted by the model as positive
examples. The precision ratio of the baseline model and HRD in this experiment are shown
in Table 3.

Table 3. The precision ratio of each model.

Resnet50 Densenet169 HRD-Model

XR_ELBOW 0.7491 0.8127 0.8394
XR_FINGER 0.6846 0.7154 0.7318

XR_FOREARM 0.7213 0.7433 0.7637
XR_HAND 0.7251 0.7472 0.7652

XR_HU ERUS 0.8521 0.8451 0.8881
XR_SHOULDER 0.7698 0.7406 0.7993

XR_WRIST 0.7925 0.8159 0.8234

It can be found that HRD achieved a higher accuracy than ResNet50 and DenseNet169
in all X image types, indicating that the mixed model had a better classification effect on
the MURA dataset than the single ResNet50 and DenseNet169 models. As can be seen
from the table, HRD performed best in the test set of type XR_HUMERUS, with accuracy
improvements of 4.4% and 4.5% over the ResNet50 and DenseNet169 models, showing the
advantages of the hybrid model in some cases.

4.4. Recall

Recall is one of the indicators used to measure the performance of a classification
model, which refers to the ability of a classifier to correctly identify all positive samples.
The recall rates of various models are shown in Table 4.
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Table 4. Recall rate of each model.

Resnet50 Densenet169 HRD-Model

XR_ELBOW 0.9277 0.8681 0.8979
XR_FINGER 0.8318 0.8224 0.8925

XR_FOREARM 0.8800 0.9267 0.9400
XR_HAND 0.8856 0.9041 0.9299

XR_HU ERUS 0.8176 0.8108 0.8649
XR_SHOULDER 0.7860 0.7614 0.7965

XR_WRIST 0.9231 0.9011 0.9066

Based on the recall metrics, HRD outperformed ResNet50 and DenseNet169 in most
categories.

4.5. Comprehensive Comparison of Accuracy Rate and Recall Rate

As can be seen from the confusion matrix shown in Figure 10, HRD was superior to the
ResNet50 and DenseNet169 baseline models in the diagnosis of true cases and true negative
cases, with a recall rate 2% and 3% higher than that of the Resnet50 and Densenet169
baseline models, and a precision rate 4% and 3% higher, respectively. Therefore, the
accuracy rate and recall rate were also higher than the baseline model, indicating that HRD
can classify X-ray images more effectively and reduce the occurrence of misdiagnosis.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 13 of 18 
 

Based on the recall metrics, HRD outperformed ResNet50 and DenseNet169 in most 
categories. 

4.5. Comprehensive Comparison of Accuracy Rate and Recall Rate 
As can be seen from the confusion matrix shown in Figure 10, HRD was superior to 

the ResNet50 and DenseNet169 baseline models in the diagnosis of true cases and true 
negative cases, with a recall rate 2% and 3% higher than that of the Resnet50 and Dense-
net169 baseline models, and a precision rate 4% and 3% higher, respectively. Therefore, 
the accuracy rate and recall rate were also higher than the baseline model, indicating that 
HRD can classify X-ray images more effectively and reduce the occurrence of misdiagno-
sis. 

 
Figure 10. Numerical diagram of a confusion matrix for each model. 

4.6. F1-Score 
The F1-score takes the accuracy and recall into account, giving equal weight to both, 

so that the performance of the model can be evaluated more comprehensively. Table 5 
shows the F1-score table of each model. 

Table 5. F1-score table of each model. 

 Resnet50 Densenet169 HRD-Model 
XR_ELBOW 0.783 0.812 0.877 
XR_FINGER 0.747 0.758 0.799 

XR_FOREARM 0.745 0.786 0.832 
XR_HAND 0.628 0.655 0.697 

XR_HU ERUS 0.831 0.829 0.878 
XR_SHOULDER 0.773 0.747 0.793 

XR_WRIST 0.783 0.800 0.812 

Compared with the baseline model, the HRD model could maintain high accuracy 
while considering the high recall rate of positive examples, that is, it can strike a balance 
between the accuracy and recall rate, and at the same time, has a better classification abil-
ity. 

4.7. ROC Curve and AUC Value 
The ROC curve is a graphical presentation used to evaluate the performance of a 

binary classification model. The ROC curve shows the relationship between the TP rate 
and the TF rate. The AUC value is the area under the ROC curve and represents the prob-
ability that the classifier will rank the positive sample ahead of the negative sample. The 
larger the AUC value, the better the performance of the classifier. AUC values range from 
0.5 to 1, where 0.5 means a random classifier and 1 means a perfect classifier. The AUC 

Figure 10. Numerical diagram of a confusion matrix for each model.

4.6. F1-Score

The F1-score takes the accuracy and recall into account, giving equal weight to both,
so that the performance of the model can be evaluated more comprehensively. Table 5
shows the F1-score table of each model.

Table 5. F1-score table of each model.

Resnet50 Densenet169 HRD-Model

XR_ELBOW 0.783 0.812 0.877
XR_FINGER 0.747 0.758 0.799

XR_FOREARM 0.745 0.786 0.832
XR_HAND 0.628 0.655 0.697

XR_HU ERUS 0.831 0.829 0.878
XR_SHOULDER 0.773 0.747 0.793

XR_WRIST 0.783 0.800 0.812

Compared with the baseline model, the HRD model could maintain high accuracy
while considering the high recall rate of positive examples, that is, it can strike a balance
between the accuracy and recall rate, and at the same time, has a better classification ability.
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4.7. ROC Curve and AUC Value

The ROC curve is a graphical presentation used to evaluate the performance of a
binary classification model. The ROC curve shows the relationship between the TP rate and
the TF rate. The AUC value is the area under the ROC curve and represents the probability
that the classifier will rank the positive sample ahead of the negative sample. The larger
the AUC value, the better the performance of the classifier. AUC values range from 0.5 to 1,
where 0.5 means a random classifier and 1 means a perfect classifier. The AUC value can
be used to evaluate the performance of the binary classification model, especially in the
case of imbalance in the ratio of positive and negative samples, as the AUC value is more
accurate because the AUC value is not affected by the sample proportion.

This article used the XR_HAND category as an example, as shown in Figure 10 and
Table 6. Experiments showed that taking the ROC curve and AUC value as indicators,
compared with the baseline model, the ROC curve was closer to the upper left corner and
the AUC value was higher, indicating that HRD has a better classification performance
and effect. Compared with HRD, the baseline model was closer to the 45-degree line in
different degrees, and the AUC value was significantly lower than that of HRD. The two
sets of baseline models have their advantages and disadvantages in different classifications,
so the improved naive Bayes model can consider the advantages of both.

Table 6. AUC values of each model.

Resnet50 Densenet169 HRD-Model

XR_ELBOW 0.87 0.89 0.94
XR_FINGER 0.85 0.85 0.91

XR_FOREARM 0.84 0.87 0.93
XR_HAND 0.80 0.84 0.91

XR_HU ERUS 0.86 0.90 0.95
XR_SHOULDER 0.84 0.84 0.92

XR_WRIST 0.83 0.89 0.94

4.8. Cohen’s Kappa

In this study, the role and use of Cohen’s kappa values were also added. Cohen’s
kappa values provide insights into the consistency between the predicted and true labels
and are particularly valuable in cases where the dataset is unbalanced. Cohen’s kappa
values provide insights into the agreement between the predicted labels and the ground
truth labels, particularly valuable in scenarios with imbalanced datasets. The results of the
Cohen’s kappa values of the three models on different types of X-ray images are shown in
Table 7.

Table 7. Cohen’s kappa of each model.

ResNet50 DenseNet169 HRD-Model

XR_ELBOW 0.689 0.697 0.796
XR_FINGER 0.625 0.645 0.730

XR_FOREARM 0.647 0.674 0.736
XR_HAND 0.580 0.636 0.711

XR_HUMERUS 0.731 0.766 0.795
XR_SHOULDER 0.627 0.638 0.695

XR_WRIST 0.659 0.711 0.767

The Cohen’s kappa values demonstrate the level of agreement between the models’
predictions and the actual labels, providing a more comprehensive assessment of model
performance, particularly in situations where accuracy alone may not suffice. Additionally,
a comparison between the three models based on Cohen’s kappa values revealed that the
HRD model consistently outperformed both ResNet50 and DenseNet169 across all types of
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X-ray images, indicating its superiority in capturing the agreement between the predicted
and ground truth labels.

4.9. Mixed Model Strategy

This paper also focused on the effectiveness of mixed model strategies. For example,
machine learning models generate preliminary results, which are then reviewed and
corrected by human experts or artificial intelligence systems that analyze and mine large
amounts of data, then human experts make decisions based on the analytical results. In this
paper, the submodels ResNet50 and DenseNet121 in HRD were taken out and combined
with Human Block in pairs to test whether the hybrid strategy is effective, as shown in
Figure 11. It is biased for a classification model to simply consider the accuracy of the
model on the test set. Therefore, this paper adopted the same verification strategy as above,
and formulated the confusion matrix, accuracy rate, recall rate, F1-score, ROC curve, etc. of
various mixed models. Figure 12 shows the AUC values for the various hybrid models.
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Using ResNet50 and DenseNet121 as benchmarks, it was found that the accuracy
and AUC value of any combination strategy containing ResNet50 was significantly better
than that of a single ResNet50 model. In the XR_SHOULDER and XR_HAND categories,
the accuracy and AUC values were significantly improved when combined with either
module. In all categories, the combination of ResNet50 with Human Block outperformed
DenseNet169 in accuracy and AUC values, while the combination with DenseNet121 also
had higher accuracy and AUC values. Similarly, the combination strategy experiment
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based on DenseNet121 also reached a similar conclusion, that is, the combination of small
models could reach or even surpass the performance of large models, thus verifying the
rationality of the mixed model strategy.

For any two model combinations, the hybrid model could improve the accuracy
and AUC value. In particular, the performance of the combined model of ResNet50
and DenseNet121 was no worse than that of DenseNet169 under the condition of less
computation, which further verifies the correctness of adopting the mixed model strategy.

5. Conclusions and Limitations

In this study, our primary focus centered on the application of deep learning method-
ologies in the diagnosis of musculoskeletal (MSK) diseases. Leveraging the MURA dataset,
we constructed a hybrid neural network architecture to assess the model’s performance,
subsequently analyzing the experimental outcomes. Our findings underscore the con-
siderable promise of deep learning methodologies augmented by human involvement,
showcasing their potential applicability across diverse practical domains. Examples include
but are not limited to spam filtering, misinformation detection on public platforms, and
industrial anomaly detection, where the integration of deep learning models with human
inputs significantly enhances the data accuracy and efficacy.

Within our experimental framework, the HRD hybrid model exhibited prediction
accuracies ranging between 75% and 90%. Notably, in real-world scenarios, the model can
be easily tailored to accommodate various levels of diagnostic accuracy within the Human
Block, thereby facilitating medical diagnosis for novice and general practitioners alike,
boasting a simplicity of deployment and operational efficiency. Moreover, comparative
analysis revealed that the hybrid model outperformed its single-model counterparts across
multiple metrics, demonstrating superior generalization capabilities and classification
accuracy.

Nevertheless, the study findings exhibited less discernible impact among the senior
physicians specializing in musculoskeletal disease diagnosis. Future research endeav-
ors could explore the replacement of the ResNet50 and DenseNet121 models within the
proposed hybrid framework, potentially yielding a more optimized hybrid model. Further-
more, while the present study categorized X-ray image results into binary classifications (i.e.,
abnormal or normal), future investigations could delve into finer-grained categorizations
of abnormal conditions such as fractures, strains, arthritis, etc.

Importantly, the study overlooked crucial environmental factors, suggesting avenues
for future exploration. Incorporating uncertainty estimation techniques such as Monte
Carlo dropout could bolster the methodological robustness, reliability, and practical appli-
cability within clinical settings, particularly in critical medical scenarios.

While our study validated the feasibility of the HRD hybrid model, its efficacy, robust-
ness, and generalization capabilities in identifying musculoskeletal abnormalities warrant
further enhancement. Through iterative refinement and adjustment of the model, we aspire
to elevate the hybrid model to a gold standard in lesion detection, potentially alleviating
diagnostic burdens associated with MSK conditions and facilitating expedited and accurate
patient treatment.
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