
Citation: Gurgenc, E.; Altay, O.; Altay,

E.V. AOSMA-MLP: A Novel Method

for Hybrid Metaheuristics Artificial

Neural Networks and a New

Approach for Prediction of

Geothermal Reservoir Temperature.

Appl. Sci. 2024, 14, 3534. https://

doi.org/10.3390/app14083534

Academic Editors: Jan Blachowski,

Jörg Benndorf, Damian Kasza and

Isabel Fernandes

Received: 14 March 2024

Revised: 10 April 2024

Accepted: 20 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

AOSMA-MLP: A Novel Method for Hybrid Metaheuristics
Artificial Neural Networks and a New Approach for Prediction of
Geothermal Reservoir Temperature
Ezgi Gurgenc 1,* , Osman Altay 2 and Elif Varol Altay 2

1 Department of Mechanical Engineering, Firat University, Elazig 23119, Turkey
2 Department of Software Engineering, Manisa Celal Bayar University, Manisa 45400, Turkey;

osman.altay@cbu.edu.tr (O.A.); elif.altay@cbu.edu.tr (E.V.A.)
* Correspondence: egurgenc@firat.edu.tr

Featured Application: The proposed models can help uncover the usage areas of geothermal
waters by determining the reservoir temperatures in advance. Thus, they can be used as a decision
support system to make the most appropriate selection.

Abstract: To ascertain the optimal and most efficient reservoir temperature of a geothermal source,
long-term field studies and analyses utilizing specialized devices are essential. Although these
requirements increase project costs and induce delays, utilizing machine learning techniques based
on hydrogeochemical data can minimize losses by accurately predicting reservoir temperatures. In
recent years, applying hybrid methods to real-world challenges has become increasingly prevalent
over traditional machine learning methodologies. This study introduces a novel machine learning ap-
proach, named AOSMA-MLP, integrating the adaptive opposition slime mould algorithm (AOSMA)
and multilayer perceptron (MLP) techniques, specifically designed for predicting the reservoir tem-
perature of geothermal resources. Additionally, this work compares the basic artificial neural network
and widely recognized algorithms in the literature, such as the whale optimization algorithm, ant lion
algorithm, and SMA, under equal conditions using various evaluation regression metrics. The results
demonstrated that AOSMA-MLP outperforms basic MLP and other metaheuristic-based MLPs, with
the AOSMA-trained MLP achieving the highest performance, indicated by an R2 value of 0.8514.
The proposed AOSMA-MLP approach shows significant potential for yielding effective outcomes in
various regression problems.

Keywords: hydrogeochemistry; reservoir temperature; geothermal energy; adaptive opposition slime
mould multilayer perceptron; artificial neural network; metaheuristic optimization

1. Introduction

Today, driven by increased urbanization and improvements in living standards, the
energy consumed in homes and living spaces is on the rise. Buildings are now responsible
for about 40% of energy consumption and nearly 36% of greenhouse gas emissions in
the European Union (EU). A significant portion of this energy is used for heating and
cooling [1,2]. Consequently, there has been a notable increase in the demand for fossil fuels,
raising concerns about energy supply security, environmental pollution, and greenhouse
gas emissions in recent years [3]. These concerns can be alleviated by employing renew-
able energy sources with low carbon emissions, such as biomass, solar, and geothermal
energy [2,4,5]. Among these energy sources, geothermal energy, independent of weather
conditions, has significant potential. Due to its positive attributes, geothermal energy has
become increasingly important for heating, cooling, and other energy applications [2,6–9].
Moreover, geothermal energy is recognized as a renewable energy source crucial for eco-
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nomic development, reducing environmental pollution and greenhouse gases, and ensuring
energy security [3,10,11].

Geothermal energy, stored beneath the Earth’s crust and at its depths, originates
from the natural internal heat of the planet. It has various applications, ranging from
direct use to electricity production, depending on the reservoir temperature (RT). These
applications include the heating and cooling of buildings, electricity generation in power
plants, agricultural applications, and uses in balneology. While some applications require
low- to medium-temperature fluids, others necessitate medium- to high-temperature fluids
for heating, cooling, and electric power generation [3,12]. As such, the value of RTs is
crucial for determining the usability of geothermal water [12].

Hydrogeochemical analyses of geothermal waters provide insights into their formation
mechanisms, enabling predictions about RTs [13]. Extensive research is vital prior to
drilling in geothermal resource areas to determine the most suitable locations, which can
help reduce the costs associated with geothermal drilling and enhance the utilization of
geothermal resources. Identifying RTs of geothermal waters necessitates complex geological
surveys and analyses, which are time-consuming, costly, and complex [14–22].

Machine learning techniques, successfully applied in various fields, offer a promis-
ing approach to address these challenges by predicting RTs. RTs have been predicted
using methods like linear regression, linear support vector machine, and deep neural
networks [12]. Additionally, there are studies on predicting geothermal heat flow and
deep RTs using methods like gradient-assisted R-regression trees and artificial neural
networks (ANNs) [23,24].

ANNs are extensively used in regression problems, with various models such as
feed-forward networks (FNNs) [25] and radial basic function (RBF) [26] networks found in
the literature. The multilayer perceptron (MLP), a type of FNN, is particularly popular [27].
While classic optimization algorithms are commonly used, they may encounter issues like
becoming stuck at local minima, premature convergence, and suboptimal performance.
To overcome these issues, using metaheuristic optimization algorithms during the MLP
training phase is suggested [28–30].

Among the proposed methods, whale optimization (WOA-MLP) [31], the ant lion
optimizer (ALO-MLP) [32], and the slime mould algorithm (SMA-MLP) [33] are widely
cited in the literature. However, because SMA has limitations in the exploration and
exploitation phase due to its reliance on two random search agents, the adaptive opposition
SMA (AOSMA) was introduced to mitigate these disadvantages [34].

This study seeks to accurately estimate the reservoir temperatures (RTs) of geothermal
resources by leveraging hydrogeochemical data through a novel methodology. The pri-
mary goal is to mitigate the financial, temporal, and labor-intensive demands traditionally
associated with geothermal projects. This is achieved by devising a new expert system
designed to supplant the necessity for protracted fieldwork and the reliance on special-
ized personnel and equipment. Central to this research is the innovative application of
the adaptive opposition-based slime mould algorithm (AOSMA) during the multilayer
perceptron (MLP) training phase—a first in this context. This newly proposed method
aims to adeptly predict RTs. Furthermore, it undergoes a comparative analysis against
the one-step secant backpropagation artificial neural network (ANN), a first-order opti-
mization technique, as well as other methodologies trained with distinct metaheuristic
optimization algorithms, including whale optimization algorithm-MLP (WOA-MLP), ant
lion optimizer-MLP (ALO-MLP), and slime mould algorithm-MLP (SMA-MLP).

2. Material and Methods
2.1. Data Acquisition

In this study, we utilized a dataset comprising 161 data points, previously assembled
by researchers within our team. This dataset, initially used to predict the application areas
of reservoir temperatures (RTs) through classification approaches, is the foundation for our
current investigation [17]. Herein, we propose a hybrid machine learning approach, the
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adaptive opposition-based slime mould algorithm–multilayer perceptron (AOSMA-MLP),
applied to tackle this real-world problem by predicting the numerical values of RTs—a task
commonly addressed with regression techniques in machine learning literature.

To facilitate a comprehensive understanding of the present study, it is pertinent to
briefly revisit some critical aspects of the dataset, detailed in our prior research [17]. Figure 1
illustrates the modeling’s input and output parameters, encompassing seven inputs and one
output. The selection of ions as input parameters is primarily influenced by their availability
in the fluid, given that geothermal fluids, deriving their components from either a degassing
magma heat source or the surrounding rock, often contain high concentrations of these ions.
Notably, the Na+ and K+ ion concentrations are essential for understanding water–rock
interactions at elevated temperatures. Moreover, an increased B content typically signifies
deep feeding and a high-temperature deep reservoir. Cl− is a major anion that enhances
the salinity of geothermal fluids. The silica concentration, affected by temperature, is
another crucial parameter. In a geothermal system, SiO2’s solubility decreases with falling
temperature. Additionally, silica is vital for estimating reservoir temperatures in thermal
springs, and its precipitation can influence the operational process. The dissolved ion
content in geothermal fluids, indicative of the temperature and reservoir geology of an area,
varies with temperature. Low-temperature fluids contain fewer dissolved solids than their
high-temperature counterparts, making electrical conductivity (EC) an important measure
for assessing dissolved particles in geothermal fluids [12].
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This section meticulously details the compilation of a comprehensive dataset utilized
in the current study, drawing from various sources focusing on the hydrogeochemical
properties and reservoir temperatures (RTs) of geothermal resources across Turkey, par-
ticularly within Anatolia. Following is a concise rephrasing to clarify and streamline
the information:

The dataset used in this study amalgamates hydrogeochemical data and RTs from
several geothermal resources across Western, Central, and Eastern Anatolia, Turkey. It
integrates the following.

Western Anatolia: a collection of 83 datasets from [12], detailing hydrogeochemical
properties and RTs of geothermal resources. Central Anatolia (Çamlıdere): hydrogeochemi-
cal data and RTs sourced from 12 different locations, as reported by [35]. Eastern Anatolia:
a selection of 42 datasets from [36], specifically focusing on hot water sources from various
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cities and locations. Central Anatolia (Nevşehir, Kozaklı): nine datasets from research doc-
umented in [37], excluding data from point 4 for consistency. Central Anatolia (Terme and
Karakurt, Kırşehir): this study contributed seven datasets, excluding cold spring data but
including hydrogeochemical and RT data [38]. Central Anatolia (Seydişehir, Kavak, Konya):
eight datasets derived from literature [39], omitting cold spring data but incorporating
measurements from April. Each dataset has been meticulously selected to ensure a robust
analysis, excluding cold springs, to maintain focus on the geothermal energy potential.
The range and specifics of the hydrogeochemical and RT data are tabulated in Table 1,
providing a foundation for the comprehensive analysis undertaken in this study.

Table 1. Range of hydrogeochemical and RT dataset.

Parameter Unit Value

In
pu

tD
at

a

pH - 2.4–9.7
EC microS/cm 203–10,434

K+

mg/L

0.7–191
Na+ 2.6–2600
Boron 0–38
SiO2 11–650
Cl− 2.8–2500

O
ut

pu
tD

at
a

RT ◦C 11–245

2.2. Artificial Neural Network

The artificial neural network (ANN) is a computational model inspired by the human
brain’s neural network. It typically consists of three primary layers: the input layer, one
or more hidden layers, and the output layer [40,41]. The primary goal in training an
ANN is continuous optimization, which involves mapping input to output to find optimal
bias and weight values within the fewest possible iterations. The multilayer perceptron
(MLP) is the most frequently utilized ANN structure in the literature. This section delves
into MLP and the metaheuristic methods increasingly adopted for MLP training in recent
years. Additionally, it covers evaluation metrics for regression problem assessments and
data-normalization techniques.

Multi-Layer Perceptron Neural Networks

Similar to ANNs, the MLP functions by mapping a set of input values to a corre-
sponding set of output values. This mapping is achieved through a transformation process
designed to derive the output. An MLP consists of three layers: the input layer contains n
input values; the hidden layer, positioned between the input and output layers, varies in
size depending on the problem type; and the output layer, which aggregates the results
of the MLP network [42]. Figure 2a,b illustrate the fundamental MLP structure and a
single neuron’s architecture, respectively. The input layer hosts n neurons, the output layer
includes k neurons, and the hidden layer comprises m neurons. Each neuron in the hidden
layer performs two critical operations: summation and activation. The sum obtained is
subsequently passed through an activation function, as depicted in Equation (1).

Sumj = ∑n
i=1 wij·ini + bj (1)

where wij is the connection weight between the hidden neuron j and the input neuron i. bj
is the bias value.

yj = f
(
Sumj

)
(2)
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where yj is the output value of neuron j, and f is the sigmoid function. Its calculation is
shown in Equation (3).

f
(
Sumj

)
=

1

1 + e−Sumj
(3)
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At the end of these operations, the final output value Ŷi is calculated using the sum
and activation operations. These operations are given in Equations (5) and (6).

Sumj = ∑m
i=1 wij·yj + bj (4)

Ŷj = f
(
Sumj

)
(5)

Here Yj is the final output of j.

2.3. Whale Optimization Algorithm

Mirjalili and Lewis (2016) introduced the whale optimization algorithm (WOA), a
metaheuristic optimization technique inspired by the social behavior of humpback whales
specifically designed to tackle challenging optimization problems [43]. Humpback whales
are known for their unique hunting strategy, wherein they can pinpoint and entirely engulf
their prey. In the context of WOA, this behavior is simulated by allowing the simulated
whales to adjust their positions relative to a designated optimal search agent, analogous to
the target prey in their natural hunting process. This adaptation of humpback whale behav-
ior into a computational model is encapsulated in the mathematical formulations presented
in Equations (6) and (7), detailing the algorithm’s mechanics of search and optimization.

→
D =

∣∣∣∣→C .
→
X∗(t)−

→
X(t)

∣∣∣∣ (6)

→
X(t + 1) =

→
X∗(t)−

→
A.

→
D (7)
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The location vector of the optimal solution that has been found up to this point is

denoted by
→
X∗.

→
A and

→
C coefficient vectors are calculated in Equations (8)–(10). The

position vector is denoted by
→
X. t represents the most recent iteration.

→
A = 2.

→
a .

→
r −→

a (8)

→
a = 2 − 2

t
tmax

(9)

→
C = 2.

→
r (10)

In the whale optimization algorithm (WOA), a coefficient vector “a” decreases linearly
from 2 to 0 over the course of iterations, influencing both the exploration and exploitation
phases. The vector “r” is a randomly generated vector within the range of [0, 1], with
“t_max” representing the maximum number of iterations and “t” denoting the current
iteration number. Equations (8) and (9) are designed to maintain a balance between explo-
ration and exploitation during the optimization process. In these equations, “r” generates a
random number, introducing stochastic elements into the population’s location updates.
Exploration is initiated when A ≥ 1, while exploitation occurs when A < 1, enabling the
algorithm to transition between exploration and exploitation at any optimization stage.

The unique bubble-net attacking strategy of humpback whales is mimicked within
WOA through two main mechanisms: the spiral update position mechanism and the shrink-
ing encircling mechanism. The coefficient vector A, which influences these mechanisms,
is determined by setting the value of “a” within the range of [−1, 1] [−1, 1], while the
shrinking encircling mechanism reduces the value of “a” linearly through iterations. This
approach positions the new location midway between its current location and that of the
optimal search agent. To emulate the humpback whales’ spiral movements toward their
prey, the spiral equation defining the path between the whale and the prey’s location
is established. This mathematical representation captures the essence of the humpback
whales’ hunting strategy, applying it to the optimization process in WOA.

→
X(t + 1) =

→
D’.ebl .cos(2πl) +

→
X∗(t) (11)

→
D’ =

∣∣∣∣ →X∗(t)−
→
X(t)

∣∣∣∣ (12)

where
→
D’ is the distance of the i whale from its target (the best solution so far), l is a random

value within the range [−1, 1], and b is a constant used to define the logarithmic spiral’s
form. Because humpback whales swim in a circle that gets smaller and smaller around their
prey while at the same time moving along the path in a spiraling fashion, the shrinking
containment method and the spiral approach are used simultaneously. In order to model
this behavior, it is presumed that each mechanism has a probability of occurring of fifty
percent [44]. The method based on the variation of vector A can be utilized for hunting
(exploration). Random searches are conducted by humpback whales based on one another’s
locations. As a result, A is used in conjunction with random values less than or greater
than 1 to force the search agent to depart from the reference whale. During the exploration
phase, in contrast to the exploitation phase, they do not update the position of a search
agent according to the best search agent discovered up to this point. Instead, they choose a
search agent at random and base the update on that. This mechanism highlights the A > 1
discovery phase and allows WOA to conduct a global search. Equations (13) and (14) are a
mathematical model of the process of hunting prey.

→
D =

∣∣∣∣→C .
−−−→
Xrand −

→
X
∣∣∣∣ (13)
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→
X(t + 1) =

−−−→
Xrand −

→
A.

→
D (14)

where
−−−→
Xrand is a randomly selected whale from the current population whose position

vector is random.

2.4. Ant Lion Algorithm

The ant lion optimizer (ALO) algorithm models the interaction between ant lions
and ants within the context of a trap [45]. In this algorithm, ant lions set traps to capture
ants, thereby enhancing their fitness through successful predation. Ants, symbolizing
potential solutions within the search space, navigate through this space to mirror these
natural interactions. Reflecting the stochastic movement of ants in their quest for food, the
algorithm employs a specific random walk strategy to simulate the ants’ movement patterns.
This approach captures the essence of the dynamic and unpredictable interactions that occur
in nature, translating them into a computational method for solving optimization problems.

X(t) = [0, cumsum(2r(t1)− 1), cumsum(2r(t2)− 1, . . . , cumsum(2r(tn)− 1))], (15)

where cumsum is a function that calculates the cumulative sum, n is the maximum number
of iterations that may occur, t represents the step of a random walk (referred to as an
iteration in this research), and r(t) is a stochastic function defined as follows:

r(t) =
{

1, i f rand > 0.5
0, i f rand ≤ 0.5

(16)

where rand is a uniformly distributed random number in the range [0, 1]. In the following
matrix, the ant’s location is noted and used for optimization:

Mant =


A1,1 A1,2 . . . . . . A1,d
A2,1 A2,2 . . . . . . A2,d

.

.
An,1 An,2 . . . . . . An,d

 (17)

where Mant stores the location of each ant, Ai,j indicates the ith ant’s jth variable (dimen-
sion), d is the number of variables, and n is the number of ants. During optimization, a
fitness (objective) function is used to assess each ant, and the fitness value of each ant is
stored in the following matrix:

MOA =


f ([A 1,1 A1,2 . . . . . . A1,d])

f ([A 2,1 A2,2 . . . . . . A2,d])

.

.
f ([A n,1 An,2 . . . . . . An,d])

 (18)

where MOA is the matrix used for preserving each ant’s fitness, and f is the fitness (objective)
function. In addition, the ant lions lurk in the search area. Their locations are saved using
the following matrices:

MAntlion =


AL1,1 AL1,2 . . . . . . AL1,d
AL2,1 AL2,2 . . . . . . AL2,d

.

.
ALn,1 ALn,2 . . . . . . ALn,d

 (19)



Appl. Sci. 2024, 14, 3534 8 of 19

MAntlion is the matrix used to store each ant lion’s location.

MOAL =


f ([AL 1,1 AL1,2 . . . . . . AL1,d])

f ([AL 2,1 AL2,2 . . . . . . AL2,d])

.

.
f ([AL n,1 ALn,2 . . . . . . ALn,d])

 (20)

MOAL is the matrix used to save each ant lion’s fitness.

2.4.1. Random Walks of Ants

Equation (21) is used to normalize ants’ positions and restrict them from wandering
outside of the search area.

Xt
i =

(X t
i − ai

)
−
(
di − ct

i
)

dt
i − ai

+ ci (21)

where ai denotes the smallest random walk for the ith variable, ct
i denotes the smallest

variable at the tth iteration, and dt
i represents the largest variable at the tth iteration.

2.4.2. Trapping in Antlion’s Pits

Ant lion traps affect random ant walks. The following equations are proposed to
describe this supposition:

ct
i = Antliont

j + ct (22)

dt
i = Antliont

j + dt (23)

where ct stands for the vector containing all variables’ minimum values at iteration t; dt

stands for the vector containing all variables’ maximum values at iteration t; ct
i and dt

i
represent the minimum and maximum values of all variables for the i-th ant, respectively;
and Antliont

j represents the position of the selected j-th.

2.4.3. Building Trap

The capacity of ant lions to hunt should be modeled using a selection method. The
more fit the ant lion, the greater its chance of catching an ant. The roulette wheel selection
method was used to choose ant lions based on their fitness value.

2.4.4. Sliding Ants towards Antlion

Ants must walk in a random pattern, while ant lions can construct traps according to
their fitness. Antlions spray sand from the pit once an ant is inside the trap. This behavior
hinders an ant’s escape. In order to show this behavior, the size of the ants’ random walk’s
hypersphere is made smaller. In this respect, the following equations are suggested:

ct =
ct

l
(24)

dt =
dt

l
(25)

where ct represents the lowest value for all variables at iteration t, dt is the vector containing
ts’ maximum value for all variables, and I is a ratio, as described by Equation (26).

l = 10w t
tmax

(26)

where w is a constant determined depending on the current iteration (w = 2 when
t > 0.1tmax, w = 3 when t > 0.5tmax, w = 4 when t > 0.75tmax, w = 5 when t > 0.9tmax,
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and w = 6 when t > 0.95tmax), where t is the current iteration, and tmax is the maxi-
mum number of iterations. In essence, the constant w allows for exploitation accuracy
level adjustment.

2.4.5. Sliding Ants towards Antlion

The prey is captured by the ant lion’s jaws as it descends to the bottom of the pit
during the last phase of the hunt. The ant lion then drags the ant into the sand, where it eats
the insect’s body. When an ant becomes more physically fit than its comparable ant lion, it
is considered that prey is captured. In order to expand its capacity for hunting fresh ants,
the ant lion must thus change its posture to that of the hunted ant. Equation (27) represents
this process:

Antliont
j = Antt

i i f f
(

Antt
i
)
> f

(
Antliont

j

)
(27)

where Antliont
j displays the position of chosen j-th antlion at the t-th iteration, and Antt

i
shows the position of the i-th ant at the t-th iteration.

2.4.6. Elitism

The ant lion that is fittest in each iteration is labeled an elite. The chosen ant lion and
the elite ant lion direct the random walk of an ant using the selection process, and so the
repositioning of a particular ant follows Equation (28).

Antt
i =

Rt
A + Rt

E
2

(28)

where Antt
i denotes the location of the i-th ant at the t-th iteration, Rt

A denotes the t-th
iteration’s random walk around the ant lion chosen by the roulette wheel, and Rt

E denotes
the t-th iteration’s random walk around the elite.

2.5. Slime Mould Algorithm and Adaptive Opposition Slime Mould Algorithm

A stochastic optimizer called SMA has been proposed by Li et al. [46]. Inspired by
the oscillation of the mode of slime mould in nature, the proposed SMA method has been
successfully applied in many studies in the literature [47,48]. Suppose there are N slime
moulds with a lower boundary (LB) and upper boundary (UB) in the search space. The
position of the ith slime mould in d dimensions is represented as Xi =

(
x1

i , x2
i , . . . , xd

i
)
,

∀i ∈ [1, N], and the fitness of i-th slime is expressed as f(Xi), ∀i = [1, N]. Thus, the position
of N slime mould and its fitness at the present moment (iteration) t may be stated according
to Equations (29) and (30):

X(t) =


x1

1 x2
1 · · · xd

1
x1

2 x2
2 · · · xd

2
...
...
...

...
x1

N x2
N · · · xd

N

 =


X1
X2
...

XN

 (29)

f (X) = [ f (X1), f (X2), . . . , f (XN)] (30)

For the next iteration (t + 1) in the SMA, the position of the slime mould is updated
using Equation (31).

Xi(t + 1) =


XLB(t) + Vb(W·XA(t)− XB(t)) r1 ≥ δ and r2 < pi

Vc·Xi(t) r1 ≥ δ and r2 ≥ pi
rand ·(UB − LB) + LB r1 < δ

, ∀i ∈ [1, N] (31)

where Vb and Vc represent random velocity, XLB represents the best local individual for
the current iteration, W represents the weight vector, and XA and XB represent randomly
pooled slime mould samples from the available populations. r1 and r2 are random values
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between 0 and 1. The probability that the slime mould will appear at a random search site
is set at δ 0.03. pi is the i-th slime mould’s threshold value, which assists in picking the
slime mould position using the best individual or itself for the following iteration, and is
computed as shown in Equation (32).

pi = tan h| f (Xi)− fGB|,∀i ∈ [1, N], (32)

where f(Xi) is the fitness value of the i-th slime mould Xi, and f(XGB) is the global best
fitness value fGB derived by Equation (33) of the global best position XGB.

fGB = f (XGB) (33)

Equation (34) may be used to calculate the weight W of N different types of slime
mould in the current iteration:

W
(

sortInd f (i)
)
=

1 + rand ·log
(

fLB− f (Xi)
fLB− fLW

+ 1
)

1 ≤ i ≤ N
2

1 − rand·log
(

fLB− f (Xi)
fLB− fLW

+ 1
)

N
2 < i ≤ N

(34)

where “rand” represents a random number between [0, 1]. The local worst fitness value is
represented by fLw, and the local best fitness value is represented by fLB. fLB and fLw are
calculated based on the fitness value f given in Equation (30). We can sort the fitness value
in ascending order for a minimization problem, as shown in Equation (35):[

Sort f , SortInd f

]
= sort( f ) (35)

The local worst fitness value Equation (36), the local best fitness value Equation (37),
and the corresponding local best individual value Equation (38) are subtracted as follows:

fLw = f
(

Sort f (N)
)

(36)

fLB = f
(

Sort f (1)
)

(37)

XLB = X
(

SortInd f (1)
)

(38)

where Vb and Vc represent random velocities selected from a continuous uniform distribu-
tion in the [−b, b] range and in the [−c, c] range. The b and c values for the t iteration are
calculated as shown in Equations (39) and (40):

b = arctanh(−
(

t
T

.
)
+ 1) (39)

c = 1 − t
T

(40)

The ideal feeding path for slime mould may be improved in the search process, as
explained in Equation (31) [34]. Based on δ and pi, the next iteration position update rule
of slime mould in SMA is dependent on the following three cases:

Case 1: When r1 ≥ δ and r2 < pi, the slime mould search trajectory is directed by
the best local slime XLB and two randomly pooled slimes XA and XB with the velocity Vb.
It balances exploration and exploitation. Case 1 indicates that XA and XB are arbitrarily
combined slime mould; therefore, the solutions we acquire are not well explored and
exploited [34]. This limitation may be solved by substituting XA with the best local XLB. In
this case, the equation can be updated, as shown in Equation (41).
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Xni(t) = XLB(t) + Vb(W·XLB(t)− XB(t)), i f r1 ≥ δ and r2 < pi
Xni(t) = Vc·Xi(t), i f r1 ≥ δ and r2 ≥ pi

Xni(t) = rand·(UB − LB) + LB, i f r1 < δ
(41)

Case 2: The slime mould trajectory is directed by its own location with a velocity Vc
when r1 ≥ δ and r2 ≥ pi. This helps with exploitation. According to Case 2, the slime
mould utilizes a neighboring location; thus, it may take a different route with a lower
fitness value. An adaptive decision (AD) strategy might be a better option to overcome
this limitation [34].

Case 3: When r1 < δ, in the search space, the slime mould re-initializes, assisting
with exploration. Based on Case 3, the SMA provides a provision for devoted exploration;
nevertheless, the exploration is limited since δ has a small value. We must add more
exploration to SMA in order to assist it in circumventing this limitation and exceeding the
local minima. To address the limitations of Cases 2 and 3, we employ an AD technique to
determine if it is necessary to investigate further using OBL [34].

2.5.1. Opposition-Based Learning

The OBL updated the location of the subsequent iterations by comparing an estimate
Xoi in the search space that is the exact opposite of the position Xni for each slime mould
(i = 1, 2, ..., N). With increased convergence, this step reduces the likelihood of being
stranded in the local minima. Thus, it is calculated that the Xoi for the i-th slime mould in
the j-th dimension is,

Xoj
i(t) = min(Xni(t)) + max(Xni(t))− Xnt

i(t) (42)

where i = 1, 2, ..., N and j = 1, 2, ..., d. i is chosen for the Xsi minimization problem. The
slime mould position is as follows:

Xsi(t) =
{

Xoi(t) i f f (Xoi(t)) < f (Xni(t))
Xni(t) i f f (Xoi(t)) ≥ f (Xni(t))

(43)

2.5.2. Adaptive Decision Strategy

An AD is made based on the present fitness value of f(Xni(t)) and the old fitness value
of f(Xi(t)) while the slime mould is pursuing a decedent nutrition route. When necessary,
the AD uses OBL to augment the investigation. The AD method of AOSMA is then used to
adjust the location for the next iteration and is depicted as shown in Equation (44).

Xi(t + 1) =
{

Xni(t) i f f (Xni(t)) ≤ f (Xi(t))
Xsi(t) i f f (Xni(t)) > Xi(t)

, ∀i ∈ [1, N] (44)

Surprisingly, the suggested AOSMA improves the efficiency of SMA by using an AD
technique to determine if OBL is required along the search trajectory.

2.6. Metaheuristic Optimization Algorithms for Learning Mlp

In the literature, many metaheuristic methods have been proposed to develop the
MLP network in the training phase. SMA, ALO, WOA and AOSMA metaheuristic methods
are among those that are widely used with success. The successful application of these
methods to benchmark functions and real-world problems in the literature has motivated
the selection of the methods. In the training phase of MLP, metaheuristic optimization
methods are used to determine the bias and weight values that make up the network
connections. Four methods are used to find the optimal set of bias and weight values. There
is no accepted equation in the literature for selecting the number of hidden nodes. In this
study, it was obtained using the following equation:

m = 2·d + 1 (45)
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Here, d is the number of data features, and m is the number of neurons. The n value,
that is, the total weight and bias value, was calculated using the equation below.

n = (d·m) + (2·m) + 1 (46)

Search agents commonly found in metaheuristic optimization methods represent a vec-
tor with n floating-point numbers. The flow chart of the proposed methods is demonstrated
in Figure 3. The use of metaheuristic methods in the training phase of MLP generally covers
four processes. First, initialization is initiated by specifying the MLP structure, such as the
number of neurons (m) and the total weight and bias values (n). Then, the MLP network
set—that is, the bias and weight values—are randomly generated. Then, the second step,
the fitness evaluation step, is passed. In this step, the fitness value is calculated. For the
fitness value, the fitness function must be selected. In this study, the MSE value was chosen,
and its equation is given below.

MSE =
1
k ∑k

i=1

(
Yi − Ŷi

)2 (47)
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Here, ŷi is the predictive value, yi is the actual value, and k is the number of samples
in the training set. In the third step, the update step, the best global fitness value, and
personal fitness values are updated for each search agent. Finally, there is the termination
step. The termination step is used to continue training the MLP until the maximum number
of iterations is achieved.
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2.7. Evaluation Metrics

Four different evaluation metrics, namely, R2, R, RMSE, and MAE, were used in this
study. These metrics are widely used in the literature to compare the performances of
the models proposed for predicting regression problems [40,49]. Equations of evaluation
metrics are given in Equations (48)–(51).

R2 = 1 −

∑j
(
Yj − Ŷj

)2

∑j
(
Yj − Ŷ

)2

 (48)

p
(
Y, Ŷ

)
=

1
n − 1∑n

j=1

(Yj − µY

σY

)( Ŷj − µŶ
σŶ

)
(49)

RMSE =

√(
1
n

)
× ∑j

∣∣Yj − Ŷj
∣∣2 (50)

MAE =
1
n∑n

j=1

∣∣Yj − Ŷj
∣∣ (51)

2.8. Normalization

In this study, min-max [0, 1] normalization was applied to the dataset. The min-max
normalization equation is given in Equation (52).

min − max; x′i,n =
xi,n − min(x i)

max(x i)−min(x i)
(52)

3. Results

In this study, the reservoir temperature (RT) was predicted using several approaches:
an MLP trained with a classical optimization method, MLPs trained with three distinct
metaheuristic methods, and the AOSMA-MLP, which was proposed for the first time.
The dataset comprised 161 samples, encompassing hydrogeochemical data and RTs from
geothermal resources across various regions in Anatolia, Turkey. Understanding RTs is
essential for determining the most effective use of geothermal resources, whether for direct
heating applications or electricity generation, depending on the RT. The dataset was divided
into training and test sets, constituting 80% (128 samples) and 20% (33 samples) of the
data, respectively. This division ensured consistency across the four models proposed in
the study. The metaheuristic methods employed were the whale optimization algorithm
(WOA), ant lion optimizer (ALO), slime mould algorithm (SMA), and the newly proposed
adaptive opposition-based slime mould algorithm (AOSMA). Characteristics of the MLPs
trained using these metaheuristic optimization methods are detailed in Table 2, including
the number of hidden neurons (HNO), which was kept consistent across all models. For the
classical optimization-based training of MLP, the one-step secant backpropagation method
was utilized. Table 2 outlines various parameters, including the number of attributes
(NA), samples (NS), training samples (NTRS), test samples (NTS), hidden neurons (HNO),
dimension (Dim), weight (W), bias (B), and neural network structure (NNS). Additionally,
Table 3 lists the parameters of the employed metaheuristic optimization methods, with the
maximum number of iterations and the number of search agents standardized at 200 and
30, respectively, to facilitate equal evaluation conditions across all methods.

Table 2. Properties of the MLP.

NA NS NTRS NTS HNO Dim W B NNS

7 161 128 33 15 136 120 16 7-15-1
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Table 3. The parameters of the metaheuristic optimization methods.

Algorithm Parameters Values

WOA
→
a

Shape of the logarithmic spiral (b)
Linearly decreased from 2 to 0

1

SMA δ 0.03

AOSMA δ 0.03

The training durations for the metaheuristic optimization methods, namely, ALO-MLP,
WOA-MLP, SMA-MLP, and AOSMA-MLP, were recorded as 13.07, 8.06, 8.17, and 8.26 min,
respectively, highlighting the efficiency and potential applicability of these advanced
computational techniques in geothermal resource evaluation.

4. Discussion

To assess the effectiveness of the models proposed in this study, four widely recognized
evaluation metrics were employed: R-squared (R2), correlation coefficient (R), root mean
square error (RMSE), and mean absolute error (MAE). The comparative results of the
four models are systematically presented in Table 4, with the most favorable outcomes
highlighted for clarity.

Table 4. Performance of ANN, ALO-MLP, WOA-MLP, SMA-MLP, and AOSMA-MLP on hydrogeo-
chemical and RT data.

R2 R RMSE MAE

ANN 0.7169 0.8701 36.94 29.28
WOA-MLP 0.7765 0.8969 32.82 25.26
ALO-MLP 0.8096 0.9049 30.29 25.67
SMA-MLP 0.7955 0.8974 31.39 26.81

AOSMA-MLP 0.8514 0.9233 26.76 21.45

A detailed analysis revealed the following insights based on the evaluation metrics:

• R2 Value: The AOSMA-MLP algorithm outperformed the ANN, WOA-MLP, ALO-
MLP, and SMA-MLP methods by 18.76%, 9.65%, 5.16%, and 7.03%, respectively,
indicating a more accurate fit to the data.

• R Value: In terms of correlation, the AOSMA-MLP method exhibited superior per-
formance by 6.11%, 2.94%, 2.03%, and 2.89% compared to the ANN, WOA-MLP,
ALO-MLP, and SMA-MLP algorithms, respectively, suggesting stronger linear rela-
tionships between predicted and observed values.

• RMSE Value: The AOSMA-MLP model demonstrated a significant reduction in
prediction error, showing improvements of 27.56%, 18.46%, 11.65%, and 14.75% over
the ANN, WOA-MLP, ALO-MLP, and SMA-MLP algorithms, respectively.

• MAE: In terms of absolute errors, the AOSMA-MLP approach was found to be more
precise, reducing errors by 26.74%, 15.08%, 16.44%, and 19.99% compared to the ANN,
WOA-MLP, ALO-MLP, and SMA-MLP algorithms, respectively.

Upon a comprehensive review of Table 4, the AOSMA-MLP model surpasses its
counterparts across all evaluated metrics, establishing its superiority and effectiveness in
predicting the reservoir temperatures (RTs) of geothermal resources. This comparative
analysis underscores the potential of the AOSMA-MLP approach as a more accurate and
reliable method for RT prediction in geothermal studies. In the study conducted by Tut
Hakkidir, the RT value was predicted using linear regression, a linear support vector
machine, and a deep neural network (DNN). A total of 83 different datasets were used in
the study, and the best result was obtained in DNN. DNN achieved an MAE value of 6.45
and an RMSE value of 8.29 [12]. In the study conducted by Bemah et al., the RT value was
estimated using natural gradient boosting (NGB), extreme learning machine, group method
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of data handling, generalized regression neural network, and back propagation neural
network methods. A total of 83 different datasets were used in the study, and the best result
was obtained with the NGB method. The NGB MAE was calculated at 3.97, RMSE at 4.59,
and R2 at 0.9959 [50]. In another study by Quan et al., the RT value was estimated using
ANN, support vector regression genetic algorithm SVR, and improved support vector
machine (M-GASVR) methods. The M-GASVR method yielded the best results in the study.
The M-GASVR was calculated as MAE 0.45, RMSE 0.556, and R2 0.903 [51]. Perez-Zarate
and colleagues conducted a study using different ANN models to predict the RT value. In
the study, the ANN model that gave the best results was calculated as MAE 18.32, RMSE
26.4971, and R 0.7165 [24].

Figure 4 compares predicted and actual reservoir temperatures (RTs) using four distinct
models. Figure 4 shows that the multilayer perceptron (MLP) trained via the adaptive
opposition-based slime mould algorithm (AOSMA) yields predictions that are significantly
closer to actual values compared to other models. Notably, at index numbers 1, 15, 17, and
28, AOSMA-MLP demonstrates remarkable accuracy, predicting values that closely mirror
the true RTs.
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Further insight is provided by scatter plots depicted in Figure 5. This graphical
representation reinforces the accuracy of AOSMA-MLP, showcasing its predictions in
close alignment with real RT values. The scatter plots vividly illustrate the precision of
AOSMA-MLP, underscoring its superior performance in forecasting RTs based on the
hydrogeochemical characteristics of geothermal resources.
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The ability to accurately predict RTs from the hydrogeochemical properties of geother-
mal resources signifies a substantial advancement. This approach mitigates the drawbacks
associated with traditional geological studies, which are often time-consuming, expensive,
and reliant on specialized equipment. Consequently, the financial burden on geothermal
energy projects is lessened, offering a considerable advantage to investors. Moreover, this
predictive capability enhances flexibility in feasibility assessments for engineers and experts
engaged in geothermal energy projects. The proposed models not only aid in determining
the potential applications of geothermal waters by preemptively identifying RTs but also
serve as a decision-support system, enabling the selection of the most suitable options for
exploiting geothermal resources.

5. Conclusions

In this study, the adaptive opposition-based slime mould algorithm (AOSMA) was
innovatively applied during the training phase of the multilayer perceptron (MLP) for the
first time. This novel approach was specifically tailored for predicting reservoir tempera-
tures (RTs) and was benchmarked against a conventional first-order optimization technique,
one-stage secant backpropagation, and three distinct stochastic metaheuristic optimization
methods. The metaheuristic techniques compared included the whale optimization algo-
rithm (WOA), ant lion optimizer (ALO), and slime mould algorithm (SMA), all of which
are extensively recognized in the literature. Key findings from this comparative analysis
are as follows:

• The AOSMA-MLP demonstrated superior performance relative to the other meta-
heuristic optimization algorithms tested. By leveraging AOSMA for ANN training
with hydrogeochemical and RT data derived from geothermal sources, it effectively
addressed common limitations of alternative methods, such as susceptibility to local
minima and constraints on global exploration capabilities.
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• Across the board, AOSMA-MLP showcased a distinct advantage over competing
methods across the four different evaluation metrics employed in this study. This
underscores its efficacy and robustness in predicting RTs.

• In terms of accuracy of fit to the data, the AOSMA-MLP algorithm performed better
than the ANN, WOA-MLP, ALO-MLP, and SMA-MLP approaches by 18.76%, 9.65%,
5.16%, and 7.03%, respectively.

• The promising outcomes achieved with AOSMA-MLP indicate its potential applicabil-
ity across a broad spectrum of regression problems, extending beyond the scope of
this study.

• The AOSMA-MLP model demonstrated a significant reduction in prediction error,
showing improvements of 27.56%, 18.46%, 11.65%, and 14.75% over the ANN, WOA-
MLP, ALO-MLP, and SMA-MLP algorithms, respectively.

• The application of the AOSMA-MLP model for predicting RTs in geothermal resources
is projected to significantly aid engineers and project planners in identifying optimal
drilling locations. Given the typically time-intensive, expensive, and complex nature
of such determinations, this model can substantially reduce project costs and enhance
flexibility within the investment and design phases of geothermal energy projects.

• Overall, the introduction and application of AOSMA-MLP represent a significant ad-
vancement in geothermal energy research, offering practical benefits for the planning
and execution of geothermal projects.
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Abbreviations

EU European Union
RT Reservoir temperature
ANN Artificial Neural Network
FNNS Feed-Forward Networks
MLP Multilayer Perceptron
WOA-MLP Whale Optimization
ALO-MLP Ant Lion Optimizer
SMA-MLP Slime Mould Algorithm
AOSMA Adaptive Opposition SMA
EC Electrical Conductivity
Cl− Chloride ion
K+ Potassium ion
B Boron
Na+ Sodium ion
SiO2 Silicon dioxide
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