Monitoring Horizontal Displacements with Low-Cost GNSS Systems Using Relative Positioning: Performance Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cakir, Z.; Dogan, U.; Akoğlu, A.M.; Ergintav, S.; Özarpacı, S.; Özdemir, A.; Nozadkhalil, T.; Çakır, N.; Zabcı, C.; Erkoç, M.H.; et al. Arrest of the Mw 6.8 January 24, 2020 Elaziğ (Turkey) earthquake by shallow fault creep. Earth Planet. Sci. Lett. 2023, 608, 118085. [Google Scholar] [CrossRef]
- Özkan, A.; Solak, H.İ.; Tiryakioğlu, İ.; Şentürk, M.D.; Aktuğ, B.; Gezgin, C.; Poyraz, F.; Duman, H.; Masson, F.; Uslular, G.; et al. Characterization of the co-seismic pattern and slip distribution of the February 06, 2023, Kahramanmaraş (Turkey) earthquakes (Mw 7.7 and Mw 7.6) with a dense GNSS network. Tectonophysics 2023, 866, 230041. [Google Scholar] [CrossRef]
- Vardic, K.; Clarge, P.J.; Whitehouse, P.L. A GNSS velocity field for crustal deformation studies: The influence of glacial isostatic adjustment on plate motion models. Geophys. J. Int. 2022, 231, 426–458. [Google Scholar] [CrossRef]
- Shu, B.; He, Y.; Wang, L.; Zhang, Q.; Li, X.; Qu, X.; Huang, G.; Qu, W. Real-time high-precision landslide displacement monitoring based on a GNSS CORS network. Measurement 2023, 217, 113056. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Nie, G.; Yang, Z.; Wu, J.; Qian, C.; Shu, B. Performance evaluation of a real-time high-precision landslide displacement detection algorithm based on GNSS virtual reference station technology. Measurement 2022, 199, 111457. [Google Scholar] [CrossRef]
- Segina, E.; Peternel, T.; Urbancic, T.; Realini, E.; Zupan, M.; Jez, J.; Caldera, S.; Gatti, A.; Tagliaferro, G.; Consoli, A.; et al. Monitoring Surface Displacement of a Deep-Seated Landslide by a Low-Cost and near Real-Time GNSS System. Remote Sens. 2020, 12, 3375. [Google Scholar] [CrossRef]
- Bellone, T.; Dabove, P.; Manzino, A.M.; Taglioretti, C. Real-time monitoring for fast deformations using GNSS low-cost receivers, Geomatics. Nat. Hazards Risk 2016, 7, 458–470. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Sterle, O.; Pavlovcic, P. A Cost-Effective GNSS Solution for Continuous Monitoring of Landslides. Remote Sens. 2023, 15, 2287. [Google Scholar] [CrossRef]
- Xi, R.; He, Q.; Meng, X. Bridge monitoring using multi-GNSS observations with high cutoff elevations: A case study. Measurement 2021, 168, 108303. [Google Scholar] [CrossRef]
- Paziewski, J.; Stepniak, K.; Sieradzki, R.; Yigit, C.O. Dynamic displacement monitoring by integrating high-rate GNSS and accelerometer: On the possibility of downsampling GNSS data at reference stations. GPS Solut. 2023, 27, 157. [Google Scholar] [CrossRef]
- Bezcioglu, M.; Yigit, C.O.; Mazzoni, A.; Fortunato, M.; Dindar, A.A.; Karadeniz, B. High-rate (20Hz) single-frequency GPS/GALILEO variometric approach for real-time structural health monitoring and rapid risk assessment. Adv. Space Res. 2022, 70, 1388–1405. [Google Scholar] [CrossRef]
- Caldera, S.; Barindelli, S.; Sanso, F.; Pardi, L. Monitoring of Structures and Infrastructures by Low-Cost GNSS Receivers. Appl. Sci. 2022, 12, 12468. [Google Scholar] [CrossRef]
- Konca, A.O.; Karabulut, H.; Güvercin, S.E.; Eskiköy, F.; Özarpacı, S.; Özdemir, A.; Floyd, M.; Doğan, U. From Interseismic Deformation with Near-Repeating Earthquakes to Co-Seismic Rupture: A Unified View of the 2020 Mw6.8 Sivrice (Elazığ) Eastern Turkey Earthquake. J. Geophys. Res. Solid Earth 2021, 126, e2021JB021830. [Google Scholar] [CrossRef]
- Gezgin, C.; Ekercin, S.; Tiryakioğlu, İ.; Aktuğ, B.; Erdoğan, H.; Gürbüz, E.; Orhan, O.; Bilgilioğlu, S.S.; Torun, A.T.; Gündüz, H.İ.; et al. Determination of Recent Tectonic Deformations Along the Tuz Gölü Fault Zone in Central Anatolia (Turkey) with Gnss Observations. Turkish J. Earth Sci. 2022, 31, 20–33. [Google Scholar]
- Abe, D.; Yoshioka, S. Spatiotemporal distributions of interplate coupling in Tohoku, northeast Japan, for 14 years prior to the 2011 Tohoku-oki earthquake inverted from GNSS data. Tectonophysics 2022, 838, 229479. [Google Scholar] [CrossRef]
- Hung, G.; Du, S.; Wang, D. GNSS techniques for real-time monitoring of landslides: A review. Satell. Navig. 2023, 4, 5. [Google Scholar] [CrossRef]
- Aykut, N.O.; Gülal, E.; Akpınar, B. Performance of Single Base RTK GNSS Method versus Network RTK. Earth Sci. Res. J. 2015, 19, 135–139. [Google Scholar] [CrossRef]
- Yigit, C.O.; Coskun, M.Z.; Yavasoglu, H.; Arslan, A.; Kalkan, Y. The potential of GPS Precise Point Positioning method for point displacement monitoring: A case study. Measurement 2016, 91, 398–404. [Google Scholar] [CrossRef]
- Yigit, C.O.; El-Mowafy, A.; Dindar, A.A.; Bezcioglu, M.; Tiyakioglu, I. Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table. J. Surv. Eng. 2020, 147, 05020011. [Google Scholar] [CrossRef]
- Topal, G.; Akpinar, B. High rate GNSS kinematic PPP method performance for monitoring the engineering structures: Shake table tests under different satellite configurations. Measurement 2022, 189, 110451. [Google Scholar] [CrossRef]
- Xi, R.; Jiang, W.; Meng, X.; Chen, H.; Chen, Q. Bridge monitoring using BDS-RTK and GPS-RTK techniques. Measurement 2018, 120, 128–139. [Google Scholar] [CrossRef]
- Zuliani, D.; Tunini, L.; Traglia, F.D.; Chersich, M.; Curone, D. Cost-Effective, Single-Frequency GPS Network as a Tool for Landslide Monitoring. Sensors 2022, 22, 3526. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, L.; Luo, D.; Huang, H.; Ye, Q.; Zhang, Y. Landslide monitoring analysis of single-frequency BDS/GPS combined positioning with constraints on deformation characteristics. Surv. Rev. 2019, 51, 364–372. [Google Scholar] [CrossRef]
- Squarzoni, C.; Delacourt, C.; Allemand, P. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng. Geol. 2005, 79, 215–229. [Google Scholar] [CrossRef]
- Janos, D.; Kuras, P. Evaluation of Low-Cost GNSS Receiver under Demanding Conditions in RTK Network Mode. Sensors 2021, 21, 552. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Ambrozic, T.; Turk, G.; Sterle, O. Testing Multi-Frequency Low-Cost GNSS Receivers for Geodetic Monitoring Purposes. Sensors 2020, 20, 4375. [Google Scholar] [CrossRef]
- Topal, O.G.; Karabulut, M.F.; Aykut, N.O.; Akpınar, B. Performance of low-cost GNSS equipment in monitoring of horizontal displacements. Surv. Rev. 2023, 55, 536–545. [Google Scholar] [CrossRef]
- Xue, C.; Psimoulis, P.A.; Meng, X. Feasibility analysis of the performance of low-cost GNSS receivers in monitoring dynamic motion. Measurement 2022, 202, 111819. [Google Scholar] [CrossRef]
- Carretero-Garrido, M.S.; Lacy-Perez de los Cobos, M.C.; Borque-Arancon, M.J.; Ruiz-Armenteros, A.M.; Moreno-Guerrero, R.; Gil-Cruz, A.J. Low-cost GNSS receiver in RTK positioning under the standard ISO-17123-8: A feasible option in geomatics. Measurement 2019, 137, 168–178. [Google Scholar] [CrossRef]
- Biagi, L.; Grec, C.F.; Negretti, M. Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements. Sensors 2016, 16, 2140. [Google Scholar] [CrossRef]
- Hamza, V.; Stopar, B.; Sterle, O.; Pavlovcic-Preseren, P. Low-Cost Dual-Frequency GNSS Receivers and Antennas for Surveying in Urban Areas. Sensors 2023, 23, 2861. [Google Scholar] [CrossRef]
- Robustelli, U.; Cutugno, M.; Publiano, G. Low-Cost GNSS and PPP-RTK: Investigating the Capabilities of the u-blox ZED-F9P Module. Sensors 2023, 23, 6074. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. Introduction to GAMIT/GLOBK; Release 10.35; Massachussetts Institute of Technology: Cambridge, MA, USA, 2009. [Google Scholar]
- National Geodetic Survey Antenna Calibration. Available online: https://geodesy.noaa.gov/ANTCAL/ (accessed on 26 March 2024).
- Takasu, T.; Yasuda, A. Development of the low-cost RTK-GPS receiver with an open-source program package RTKLIB. In Proceedings of the International Symposium on GPS/GNSS, Jeju, Republic of Korea, 4–6 November 2009. [Google Scholar]
- Estey, L.H.; Meertens, C.M. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
Technical Features | U-Blox GNSS Receiver |
---|---|
GNSS chip | ZED-F9P |
Constellations | GPS, GLONASS, Galileo, and BeiDou |
Frequencies | L1/L2 |
Signals | L1C/A, L1OF, E1, B1l, L2C, L2OF, E5b, and B2l |
Channels | 184 |
Weight | 19.5 g |
Size | 69 mm 53 mm |
Ports | 5 |
Messages | UBX, NMEA, and RTCM3 |
Supply voltage range | 4.5–5.5 V |
Supply current | 80 mA |
Technical Features | AS-ANT2BCAL Antenna |
---|---|
Supported positioning signal bands | GPS: L1, L2 GLONASS: G1, G2 BeiDou: B1, B2 Galileo: E1, E5b QZSS: L1, L2 SBAS: WAAS, EGNOS, MSAS, and GAGAN |
Polarization | RHCP |
Peak gain | 5 dBi |
Axial Ratio @ zenith | <3 dB |
Azimuth coverage | 360 degrees |
Impedance | 50 ohm |
Phase center error | ±1 mm |
Maximum length | 152 mm |
Weight | 400 g |
Mounting style | Magnetic base or 5/8″ × 11TPI thread |
Connector | TNC female |
Period (Day) | Displacement (mm) | GPS Days | Observation Time (Hours) | Record Interval (Seconds) |
---|---|---|---|---|
1 (Initial) | 0 | 076 | 24 | 30 |
2 | 2 | 077 | 24 | 30 |
3 | 4 | 078 | 24 | 30 |
4 | 6 | 079 | 24 | 30 |
5 | 8 | 080 | 24 | 30 |
6 | 10 | 081 | 24 | 30 |
7 | 20 | 082 | 24 | 30 |
8 | 30 | 082 | 24 | 30 |
9 | 40 | 084 | 24 | 30 |
10 | 50 | 085 | 24 | 30 |
3 h | 6 h | 8 h | 12 h | |
---|---|---|---|---|
Time interval | 00:00–03:00 03:00–06:00 06:00–09:00 09:00–12:00 12:00–15:00 15:00–18:00 18:00–21:00 21:00–24:00 | 00:00–06:00 06:00–12:00 12:00–18:00 18:00–24:00 | 00:00–08:00 08:00–16:00 16:00–24:00 | 00:00–12:00 12:00–24:00 |
Displacement | RMSE (mm) | |||
---|---|---|---|---|
(mm) | 3 h | 6 h | 8 h | 12 h |
2 | 5.9 | 2.1 | 1.4 | 0.9 |
4 | 7.4 | 2.0 | 1.8 | 1.8 |
6 | 3.0 | 2.0 | 2.2 | 1.3 |
8 | 9.7 | 4.4 | 3.2 | 1.0 |
10 | 9.1 | 3.9 | 1.9 | 1.5 |
20 | 7.3 | 6.2 | 4.8 | 2.3 |
30 | 10.0 | 7.0 | 4.4 | 2.0 |
40 | 7.6 | 4.6 | 3.6 | 1.6 |
50 | 8.1 | 2.8 | 3.2 | 2.0 |
3 h | 6 h | 8 h | 12 h | |
---|---|---|---|---|
RMSE (mm) | 7.6 | 3.9 | 2.9 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpınar, B.; Özarpacı, S. Monitoring Horizontal Displacements with Low-Cost GNSS Systems Using Relative Positioning: Performance Analysis. Appl. Sci. 2024, 14, 3634. https://doi.org/10.3390/app14093634
Akpınar B, Özarpacı S. Monitoring Horizontal Displacements with Low-Cost GNSS Systems Using Relative Positioning: Performance Analysis. Applied Sciences. 2024; 14(9):3634. https://doi.org/10.3390/app14093634
Chicago/Turabian StyleAkpınar, Burak, and Seda Özarpacı. 2024. "Monitoring Horizontal Displacements with Low-Cost GNSS Systems Using Relative Positioning: Performance Analysis" Applied Sciences 14, no. 9: 3634. https://doi.org/10.3390/app14093634
APA StyleAkpınar, B., & Özarpacı, S. (2024). Monitoring Horizontal Displacements with Low-Cost GNSS Systems Using Relative Positioning: Performance Analysis. Applied Sciences, 14(9), 3634. https://doi.org/10.3390/app14093634