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Abstract: The areas around the Ching-Shuei River saw numerous landslides (2004–2017) after the
Jiji earthquake, profoundly harming the watershed’s geological environment. The 33 catchment
areas in the Ching-Shuei River watershed and five typhoon and rainstorm events, with a total of
165 occurrences and non-occurrences, were analyzed, and the training and validation were catego-
rized into 70% training and 30% validation. A landslide disaster is deemed, for the purposes of this
research, to have taken place if SPOT satellite images taken before and after an incident show a Nor-
malized Difference Vegetation Index difference larger than 0.25, a slope of less than 30 degrees, and a
number of connected grids greater than 10. The analysis was carried out using the instability index
method analysis with Rogers regression analysis and artificial neural network. The accuracy rates
of neural network, logit regression, and instability index analyses were, respectively, 93.3%, 80.6%,
and 70.9%. The neural network’s area under the curve was 0.933, indicating excellent discrimination
ability; that of the logit regression analysis was 0.794, which is considered good; and that of the
instability index analysis was 0.635, or fair. This suggests that any of the three models are suitable for
the danger assessment of large post-earthquake debris flows. The results of this study also provide a
reference and evidence for specific sites’ potential susceptibility to debris flows.

Keywords: debris-flow disasters; artificial neural network; instability index method analysis; logistic
regression analysis

1. Introduction

In this time of climate change, Taiwan’s rainy seasons are becoming shorter but more
intense, increasing the likelihood of extreme rainfall events and rain-related disasters.
In mountainous areas, episodic events such as landslides, debris flows, and avalanches
are the main drivers of sediment migration [1]. A debris flow is a saturated mixture of
granular dirt, organic matter, and other debris that moves in a steep, specified channel at an
incredibly fast rate [2]. Due to their ability to quickly displace other material, debris flows
are among the most highly destructive hydrogeomorphic processes and present serious
risks to infrastructure and people [3]. One of their main causes is intense precipitation,
and mudslides caused ultimately by rainfall are typically triggered by debris flows [4,5].
According to various studies, global warming may lead to an increase in the number of
extreme precipitation occurrences worldwide [6,7].

Hazard studies focused on landslide-induced debris flows tend to include thorough
the inventories of landslides as a means of understanding the primary factors that govern
and trigger their occurrence [3,8]. These governing factors, in turn, are tied to influencing
conditions that vary according to each area’s features [3,9]. In the wake of a pioneering study
by Melton (1958), there have been numerous attempts to pinpoint the crucial morphological
factors that influence the inception of landslides in particular catchment areas [9–12].
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Landslides caused by the 1999 Jiji earthquake in Taiwan considerably increased both the
numbers and the sizes of the country’s subsequent rainfall-driven landslides [13,14], and
a similar process was also observed in areas severely damaged by the 2008 Wenchuan
earthquake [15–17].

Over the past decade, scientists have investigated a number of approaches to eval-
uate the risks posed by debris flows, a process critical to disaster mitigation and preven-
tion [13,15,18–20]. Following earthquakes, modeling based on geographic information
system (GIS) is frequently utilized as a means of hazard assessment [21,22], as are statistical
analysis [23–25], dynamic methods such as Dynamic Analysis and the three-dimensional
model DAN [26,27], the interpretation of aerial photographs or satellite images [28,29],
and debris-flow monitoring [30,31]. One of the most-used techniques in the multivariate
analysis of areas’ landslide susceptibility is logistic regression, also known as logit regres-
sion or LR [32,33]. Recent studies of debris flows have also used LR [34,35] and found
its performance in determining the key variables that influence the occurrence of such
flows to be satisfactory. More specifically, as compared to previous multivariate techniques
of landslide susceptibility investigation, LR has lower error magnitudes [35]; this could
potentially also be the case if the topic of this study were debris flows. Although slope
catastrophe assessments are still carried out traditionally, i.e., via in-person inspection,
many hilly regions with exceptionally steep terrain remain inaccessible. The present work
is intended to help address that problem by interpreting debris-flow disaster events using
satellite images taken before and after they occurred, thus greatly expanding the number
of available examples. Remote sensing images can be used as a basis for the thorough
detection and analysis of large-scale areas and to improve prediction capabilities using en-
vironmental characteristics, which can usefully be subdivided into terrestrial, material, and
trigger factors. In order to prevent the occurrence of landslide disasters and the planning
and utilization of national land, it is obviously an important task to investigate the potential
areas of geotechnical flows and to establish the sensitivity prediction of the potential areas
of geotechnical flows. The purpose of predicting the sensitivity of debris-flow potential
areas is to assess the most sensitive areas of the environment and to investigate the causes
of sensitivity so that protective measures can be initiated to minimize the occurrence of
disasters. However, there is still no generally recognized methodology, and even the land-
slide of information that should be investigated is not certain. Despite methodological and
operational differences, all approaches are based on an underlying conceptual model. First,
a map of the geological-terrain factors that are directly or indirectly related to landslide
instability in the debris-flow potential area needs to be identified and investi-gated. Then,
it is necessary to include both an assessment of the relative contribution of these factors to
slope failure and a classification of the different sensitivities at the surface [36]. In this study,
the streams in the Ching-Shuei River watershed were divided into 33 catchment areas to
analyze the parameters affecting debris-flow hazards, and the accuracy of the occurrence
of debris-flow hazards was determined using the instability index method (IIM), Rogers
regression analysis (RRA), and artificial neural network (ANN) analyses to determine the
accuracy of the occurrence of debris-flow hazards, as well as to determine the advantages
and disadvantages of the analytical models and to build up the formulaic model. It is
expected to provide an early warning when a disaster occurs and then reduce the loss of life
and property, which will be helpful to reference earthflow-related research and contribute
to the disaster prevention work on slopes. It also compares and verifies the effectiveness of
the three analysis methods in the prediction.

2. Materials and Methods
2.1. Study Area

The 46 km length of the Ching-Shuei River, a branch of the Jhuoshuei, originates
at the northern foot of Alishan Mountain. In Tongtou, upstream of the Ershui Railway
Bridge, its bed progressively widens before it empties into the Jhuoshuei. From upstream to
downstream, the Ching-Shuei’s main tributaries include the Chenyoulan, the Shigupan, the
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Shuishecha (a.k.a. Alishan), the Ruili (a.k.a. Shengmaoshu), and the Jiazuoliao. Mountains
with elevations greater than 2000 m, including Jinganshu, Songkeng, and Data, are also
located within the Ching-Shuei watershed. The Zengwun and Bazhang rivers are located
separately to the southeast and south of Gesui Mountain. Figure 1 illustrates the locations
of the water systems in the Nantou, Chiayi, and Yunlin portions of the Ching-Shuei River
catchment area.
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Figure 1. Geographical location of the Ching-Shuei River watershed. Central Weather Administration.
Available online: https://www.cwa.gov.tw/eng/ (accessed on 5 January 2024).

The Ching-Shuei River catchment area encompasses approximately 422 square kilo-
meters. Its highest elevation is just under 2660 m, and its lowest is about 54 m. Figure 2
indicates how elevation is distributed across the area.

https://www.cwa.gov.tw/eng/
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Figure 2. Elevation distribution map of the Ching-Shuei River’s watershed. Geological Survey and
Mining Management Agency, Ministry of Economic Affairs. Available online: https://www.gsmma.
gov.tw/nss/p/index (accessed on 5 January 2024).

This paper’s primary research objects are the Ching-Shuei River watershed’s potential
debris-flow streams, of which there are 33 (Bureau of Soil and Water Conservation, 2019),
as shown in Figure 3.

https://www.gsmma.gov.tw/nss/p/index
https://www.gsmma.gov.tw/nss/p/index
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each debris-flow potential stream are used in this study. 

Figure 3. Distribution map of potential streams and catchment areas. Agency of Rural Development
and Soil and Water Conservation, MOA. Available online: https://www.ardswc.gov.tw/Home/eng/
(accessed on 5 January 2024).

The distribution of measurement stations around the catchment region of each debris-
flow potential stream is depicted in Figure 4, and the reference rainfall stations of each
debris-flow potential stream are used in this study.

https://www.ardswc.gov.tw/Home/eng/
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Figure 4. Distribution map of potential debris streams and their catchment areas. Agency of Rural
Development and Soil and Water Conservation, MOA. Available online: https://www.ardswc.gov.
tw/Home/eng/ (accessed on 5 January 2024).

2.2. Research Methods

The following four subsections provide information on how the researchers collected
and organized the information needed to characterize the impact variables of the 33 poten-
tial debris-flow streams.

Data Collection

Digital terrain model. A digital terrain model (DTM) of the focal geographical area
was provided by Taiwan’s Ministry of the Interior (2016) via its open-government data
platform. It has a data resolution of 20 × 20 m.

https://www.ardswc.gov.tw/Home/eng/
https://www.ardswc.gov.tw/Home/eng/
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Geological map. Taiwan’s open-data platform also includes a 1:250,000 regional
geological digital map of Taiwan prepared by the Central Geological Survey Institute of the
Ministry of Economic Affairs (2013). The geological data for this study was derived from
that map.

Satellite imagery. National Central University’s Center for Space and Remote Sensing
Research, which has a 12.5 m × 12.5 m analytical imaging capacity, was the source for
this paper’s satellite photographs. The photos analyzed included ones taken before and
after the typhoons Mindulli (15 January–18 October 2004), Sinlaku (9 March–12 November
2008), and Morakot (12 April–1 November 2009) and before and after the torrential rains
of 3 May 2012 (i.e., 16 February–26 October 2012) and 1 June 2017 (i.e., 28 January–17
November 2017).

Rainfall data. The Department of Atmospheric Sciences at Chinese Culture University
maintains an Atmospheric Hydrology Research Database (2004–2017), which was the
source of this paper’s rainfall information. After collection, the data required for this
research were trimmed and screened using a rain field.

2.3. Judgment of Debris Flows Based on Satellite Images

To make it easier to nest with the potential debris-flow catchment areas for further
study, the data generated from Satellite Pour l’Observation de la Terre (SPOT) pictures also
include (1) the average Normalized Difference Vegetation Index (NDVI) before the incident
of interest and (2) the size of the damage to the catchment area.

The SPOT satellite image data used in this study were obtained from the Center
for Space and Remote Sensing Research at National Central University. The researchers
also collected historical data on typhoons in the Ching-Shuei River watershed, which
produced at least 40 mm of rain in one hour and/or 200 mm in 24 h, as determined by
the Central Weather Bureau of Taiwan’s Ministry of Transportation and Communications.
Figures 5 and 6 show photos that were used in this research after screening in combination
with the above-mentioned SPOT images.
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2.4. Interpretation of Debris Flows

The more red light that green plants absorb and the more near-infrared light they
reflect, the greater the difference between red light and near-infrared light. This enables us
to compute an NDVI value ranging from −1 to +1 as follows:

NDVI =
NIR − R
NIR + R

(1)

where NIR is the near-infrared light band’s reflection intensity, and IR is the red light band’s
reflection intensity. If NDVI is less than zero, non-vegetation features, including the cloud
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layer, surface water, roads, and buildings, are typically responsible. Thus, a higher NDVI
equates to greener biomass being present.

Appl. Sci. 2024, 14, 3802 9 of 32 
 

  
Before the heavy rain of 3 May 2012 

(16 March 2012) 
After the heavy rain of 3 May 2012 

(26 October 2012) 

  
Before the heavy rain of 1 June 2017 

(28 January 2017) 
After the heavy rain of 1 June 2017 

(17 November 2017) 

Figure 6. Pairs of satellite images from before and after two non-typhoon-related instances of heavy 
rainfall. 

2.4. Interpretation of Debris Flows 
The more red light that green plants absorb and the more near-infrared light they 

reflect, the greater the difference between red light and near-infrared light. This enables 
us to compute an NDVI value ranging from −1 to +1 as follows:  𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅 + 𝑅 (1)

Figure 6. Pairs of satellite images from before and after two non-typhoon-related instances of heavy
rainfall.

In this study, the NDVI value of each phase of the image was calculated using QGIS
3.20 software’s raster-calculator tool. Figures 7 and 8 graphically represent NDVI changes
for each event of interest.
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Figure 8. Vegetation cover before and after two non-typhoon-related instances of heavy rainfall.

To determine whether a given event caused a landslide, we recorded the NDVI values
prior to and following the incident and computed the average NDVI value prior to the
event for the whole affected area. Then, to eliminate most landslide occurrences, they
filtered out slopes of less than 30 degrees and subtracted post-event NDVI from pre-event
NDVI (Figure 9). Next, they found relevant NDVI differences by superimposing QGIS and
SPOT images (Figures 10 and 11).

When the NDVI difference is 0.2, coverage is excessive. When it is 0.25, most of
the landslides or riverbank erosion in satellite images are covered, and when the NDVI
difference is 0.3, fewer areas are left uncovered. The difference in NDVI was 0.25, which is
in the range of 0.2 and 0.3. Because a more cautious estimate was used in this investigation,
the NDVI difference of 0.25 is more constant. Those landslides or riverbanks having a
length of more than 200 m (10 grids) in the indicated potential valley and/or visible debris
flows and alluvial fans were defined as debris-flow events.

2.5. Statistics, Test Screening, and Analysis of Geographical Factors

All 33 potential debris-flow catchment areas in the Ching-Shuei River watershed
were examined using SPOT satellite images taken before and after five rainfall events
that occurred between 2004 and 2017. This yielded a total of 165 occurrences and non-
occurrences as samples for analysis, which became the basis for the researchers’ database
of geophysical parameters.
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2.5.1. Database Generated from Digital Terrain Model Data: Topographic Factors

The selection of factors likely to influence debris flows’ commencement was based on
previous studies [9,12,35,37–39], as well as on the researchers’ prior knowledge of the causes
of debris flows in the study area. Using the QGIS nesting approach, they created a unique
terrestrial factor database for each of the 33 potential debris-flow streams comprising its
total area, average slope, length, average slope of the stream bed, and shape coefficient,
among other variables. The calculation of each such variable is explained, in turn, below.

Total area of catchment (A, unit: m2). The area of a given subdivision of the whole
river catchment area pertinent to a particular potential debris flow is calculated as follows:

A = a × n × 10−6, (2)

where a is the area of the grid in m2, and n is the number of grids the catchment subdivision
contains.

Average slope of the catchment (S, unit: degrees). The average slope of a given
potential debris flow’s catchment area is computed as follows:

S =
∑ slope

n
, (3)

where slope is the slope value of each of its grids.
Length (L, unit: m). The ArcMap program was used to nest the DTM with each

potential debris-flow stream’s catchment area. Then, using hydrological analysis, its length
was established by adding the number of connected grids as follows:

L = n × W, (4)

where n is the number of grids, and W is the width of the grid in m.
Average slope of the stream bed (S, unit: degrees). The average slope of each potential

debris-flow stream bed is computed as follows:

S = tan − 1 (HL), (5)

where H is the difference between the upstream elevation and the downstream elevation,
in m, and L is the stream’s length.
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Shape coefficient (F). The shape coefficient of a given potential debris-flow stream is
calculated as the ratio of its length to the width of its watershed, i.e.,

F =
A
L2 , (6)

where A is the total area of its catchment in m2, and L is its length in m.

2.5.2. Values of the Selected Topographic Factors

As noted above, our data contained a total of 165 opportunities for a debris flow to
have occurred in a potential debris-flow stream, i.e., five weather events ×33 catchments.
Table 1 presents the minimum, maximum, and mean values of each terrestrial factor across
those 165 debris-flow opportunities, along with their standard deviations (SDs).

Table 1. Values and standard deviations of topographic factors for all 33 potential debris-flow areas.

Topographic Factors Minimum
Value

Maximum
Value Average Standard

Deviation

Total area of catchment (m2) 2.3 3949.2 317.2 708.3
Average slope of the
catchment (degrees) 20.3 38.8 30.8 4.2

Length of stream (m) 127.0 9163.0 1859.0 1991.9
Average slope of stream bed (degrees) 8.4 35.3 18.1 6.9

Shape coefficient 0.596 0.918 0.773 0.588

2.5.3. Correlation Test of Topographic Factors

A Pearson correlation coefficient test was run following the computation of the to-
pographic factors. Table 2 shows the resulting correlation matrix of the five topographic
factors after normalization. In such a matrix, a correlation is considered significant if its
absolute value is larger than 0.7, moderately significant if it is between 0.3 and 0.7, and
marginally significant if it is below 0.3.

Table 2. Pearson correlation coefficients for the topographic factors.

Total Area of
Catchment

Average Slope of
Catchment

Length of
Stream

Average Slope of
Stream Bed

Shape
Coefficient

Total area of catchment 1 0.086 0.858 −0.363 −0.137
Average slope of catchment 0.086 1 0.153 0.386 0.137

Length of stream 0.858 0.153 1 −0.525 −0.382
Average slope of stream bed −0.363 −0.525 0.386 1 0.357

Shape coefficient −0.137 −0.382 0.137 0.3577 1

Catchment size was so strongly correlated to stream length that the researchers elected
to omit the latter from further analyses. The remaining four topographic factors, however,
could be deemed independent of one another because their eigenvalues were all less than
0.7, and all were, therefore, retained.

2.6. Database Generated from Digital Geological Maps and SPOT Satellite Images: Material
Factors

Distance from faults and type of stratum are the two key components of the database
the researchers created based on a digital geological map. Identifications of the catchment
areas with the strongest potential for debris flows were statistically analyzed following Wu
and Chen’s [40] grading criteria.
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2.6.1. Geological Materials: Type of Stratum

Figure 12 shows the scale of the geological map used in this study, and Table 3 lists
the scoring criteria. A stratum score is higher if the associated debris-flow ratio is higher
and indicates that the stratum is more brittle; conversely, a lower stratum score means the
stratum is stronger. After calculating those scores, the researchers conducted a nesting
study using QGIS aimed at assessing each catchment area’s potential for debris flows. The
types of strata in each potential debris-flow catchment area were obtained after the data had
been sorted, and such flows were then estimated based on the proportion of each stratum
to the area of the catchment area according to its weight, summarized. and counted.
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Table 3. Stratum scoring criteria [40].

Stratum Name Score Landslide
Ratio Stratum Name Score Landslide

Ratio

Sanhsia Group and equivalents 10 2.8% Tatungshan Formation 1.91 0.28%
Sandstone 9.76 2.73% Tableland Deposits 1.87 0.27%

Lushan formation 7.42 2% Toukoshan Formation and
equivalents 1.80 0.25%

Chinshui Shale and equivalents 6.73 1.78% Cholan Formation and equivalents 1.79 0.25%

Kankou Formation 5.81 1.5% Hsitsun Formation, Hsinkao
Formation 1.28 0.09%

Juifang Group and equivalents 3.81 0.87% Alluvium 1.03 0.01%
Yehliu Group and equivalents 3.69 0.84% Lateritic Terrace Deposits 1.03 0.01%

Tananao Schist 2.21 0.38% Mafic igneous rocks 1.00 0%

2.6.2. Geological Structure: Distance from the Region’s Central Fault

Distance from the nearest part of the geological fault system that runs through the
centroid of the study area serves as this research’s primary geological structure variable.
Figure 13 illustrates the fault system, and Table 4 presents the researchers’ scoring criteria.
Scores increase and decrease according to proximity to the defect, with greater proxim-
ity being reflected in a higher score. The researchers calculated the distances from the
faults in each catchment area separately and then totaled and tallied them before analyz-
ing this information in light of the Ching-Shuei River watershed’s previously calculated
debris-flow potential.

Table 4. Scoring criteria for fault assessment [40].

Distance between the
Assessment Point and the

Fault Zone
Score

Distance between the
Assessment Point and the

Fault Zone
Score

<100 m 10 600–700 m 4
100–200 m 9 700–800 m 3
200–300 m 8 800–900 m 2
300–400 m 7 900–1000 m 1
400–500 m 6 >1000 m 0
500–600 m 5

Two material factors, type of stratum and distance from a fault, were statistically
evaluated for each of the 33 catchment areas and 165 occurrences of heavy rains. The results
are presented in Table 5.

Table 5. Values of material factors for all 33 catchment areas.

Minimum Value Maximum
Value Average Standard

Deviation

Type of stratum 1.79 10.00 8.22 2.75
Distance from the fault 0.00 10.00 5.30 3.11

2.7. Processing and Collection of Rainfall Data: Trigger Factors

Rainfall is an important debris-flow initiator. The researchers, therefore, gathered
rainfall data from 2004 to 2017, as well as SPOT images from each time period, to choose
an appropriate event and then established each such event’s rainfall statistics. Figure 14
shows the locations of the 12 rain gauge stations that were used for that purpose.
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Rainfield Cutting

As shown in Table 6, rainfield cutting comprises a set of methods that are used to make
sense of the relationship between data from major rainfall events and slope damage [41].
In this study, Method 5 was adopted for the division of the rainfields. This was because
Methods 1, 2, and 4 cut rainfields into time periods that are too long, thus artificially
reducing their average intensity value, while Method 3 errs in the opposite direction,
making some rainfall data too easy to ignore. Of Methods 5 and 6, the latter has a longer
delay time, which also reduces the apparent average intensity of rainfall.

https://www.gsmma.gov.tw/nss/p/index
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Table 6. The six rainfield-cutting methods.

Method Correction
Method Start of Rain End of Rain

1 No rain for previous 24 h No rain for 24 consecutive hours
2 1 No rain for previous 12 h No rain for 12 consecutive hours

3 Hourly rainfall is greater than 4 mm Rainfall is less than 4 mm for three
consecutive hours

4 Cumulative rainfall is at least 10 mm in the
first 24 h

Cumulative rainfall is less than 10 mm for
24 consecutive hours

5 3 Hourly rainfall is greater than 4 mm Rainfall is less than 4 mm for six consecutive hours

6 4 Cumulative rainfall is at least 10 mm in the
first 12 h

Cumulative rainfall is less than 10 mm for
12 consecutive hours

https://www.cwa.gov.tw/eng/
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Because their centers were dispersed, the temporal and spatial distributions of the
rainfall events in each of the 12 above-mentioned rain gauge stations’ records were inconsis-
tent with one another. Therefore, the structural properties of the known spatial distribution
of observed values are used in an approach known as kriging, which provides estimations
closer to real-world events than conventional estimation techniques do.

After classifying each event’s rainfall, a Pearson correlation-coefficient test was run.
Table 7 shows the correlation matrix among the various debris flows following the nor-
malization of four separate sets of rainfall data. The eigenvalues for cumulative rainfall,
maximum daily rainfall, and rainfall intensity (RI) are all greater than 0.7, demonstrating
a strong correlation between these three factors. Maximum hourly rainfall can only be
determined after a rainfall event has ended; however, the cumulative rainfall and rainfall
intensity, which also have a significant impact on debris flows, can be computed while a
rainfall event is still in progress. Extrapolating maximum daily rainfall from cumulative
rainfall is quicker and more practical than measuring maximum daily rainfall directly.
Therefore, using the maximum daily and hourly rainfall of the event as the key debris-
flow triggers is more in line with the primary goal of this study: developing a basis for
a real-time early warning of such flows. Tables 8–10 display the maximum daily rainfall
and maximum hourly rainfall associated with each of the focal rainfall events. Rainfall
distribution maps based on those data (Figures 15 and 16) were then created in QGIS using
the kriging algorithm.

Table 7. Pearson correlation coefficients.

Factors Maximum Daily
Rainfall

Maximum
Hourly Rainfall

Cumulative
Rainfall

Rainfall
Intensity

Maximum Daily
Rainfall 1.00 0.59 0.89 0.89

Maximum Hourly
Rainfall 0.59 1.00 0.67 0.69

Cumulative Rainfall 0.89 0.67 1.00 0.89
Rainfall Intensity 0.89 0.69 0.89 1.00

Table 8. Rainfall data from the typhoons Mindulle and Sinlaku.

Event
Station

Typhoon Mindulle in 2004 Typhoon Sinlaku in 2008

Maximum Daily
Rain (mm)

Maximum
Hourly Rainfall

(mm)

Maximum Daily
Rain (mm)

Maximum
Hourly Rainfall

(mm)

Alishan 616 84.5 738 53
Ruili 423 76.5 481.5 41

Shipanlong 525.5 77.5 984 68
Fenqihu 499 87 889 62.5
Da-an 0 0 441.5 46.5
Dapu 180.5 33 184 24

Shenmu Village 513 72.5 630.5 41
Zhongxinlun 217 50.5 345 33

Tongtou 293.5 44 408 44.5
Caoling 370 53 568.5 46.5

Fengshan 424 73.5 856 56
Meishan 0 0 0 0
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Table 9. Rainfall data for Typhoon Morakot and the heavy rain of 3 May 2012.

Event
Station

Typhoon Morakot in 2009 0503 Heavy Rain in 2012

Maximum Daily
Rain (mm)

Maximum
Hourly Rainfall

(mm)

Maximum Daily
Rain (mm)

Maximum
Hourly Rainfall

(mm)

Alishan 1165.5 123 481.5 49.5
Ruili 675.5 105 208.5 26.5

Shipanlong 1183 106 247.5 35.5
Fenqihu 1187 110.5 304 43
Da-an 238.5 20 164 30.5
Dapu 159.5 20.5 73.5 22.5

Shenmu Village 910.5 95 411 39.5
Zhongxinlun 334 33.5 152.5 28

Tongtou 513.5 65 150.5 43
Caoling 643 88 191.5 32.5

Feng Shan 705 121.5 311.5 39.5
Meishan 0 0 0 0

Table 10. Rainfall data from the heavy rain of 1 June 2017.

Event
Station

0601 Heavy Rain in 2017
Maximum Daily Rain (mm) Maximum Hourly Rainfall (mm)

Alishan 622.5 61
Ruili 423 71.5

Shipanlong 297 44.5
Fenqihu 421 51
Da-an 490.5 75.5
Dapu 0 0

Shenmu Village 611.5 60.5
Zhongxinlun 504.5 89.5

Tongtou 588.5 90
Caoling 539 87.5

Feng Shan 0 0
Meishan 362 85.5
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2.8. Instability Index Method

The scores of each variable of the method have been standardized to provide a more
objective statistical method of weighting the variables, which is defined by the formula
Dtotal = D1

W1 × D2
W2 × D3

W3 . . . × Dn
Wn· · · (D1, D2, and Dn represent the indeterminate

index value of each evaluation variable, such as slope, elevation, fault variable, etc. W1, W2,
and Wn represent the weight value of the variables, and D_total represents the sensitivity of
the occurrence of the potential area of geotechnical flow after summing up each variable.)

2.9. Rogers Regression

The Rogers Regression analysis is the odds ratio Odds = P/(1 − P), which is the
probability of failure of the geotechnical potential zone (Y = 1) divided by the probability of
no failure of the geotechnical potential zone (Y = 0), with P being the probability of failure
of the geotechnical potential zone with a value between 0 and 1. P is the likelihood of
failure of the geotechnical potential area, with a value between 0 and 1. Therefore, the odds
ratio from 0 to 1 (P from 0 to 0.5) indicates a low probability of failure in the geotechnical
potential zone (P = 0.5 implies the same probability of occurrence and non-occurrence of
failure in the geotechnical potential zone) [42].

Odds(Y = 1) =
P(Y = 1)

1 − P(Y = 1)
(7)

2.10. Artificial Neural Network

Artificial neural network is an information system modeled after biological neural
transmission. It can obtain relevant information (input) from external or other artificial
neurons, output it to external or other artificial neurons (output), and then operate it to
build a system model (and the relationship between output and input), which can be
used for prediction, decision-making, and judgment. The regression formulas in common
regression analysis are also built using a set of samples, so neural networks can also be
regarded as a special statistical technique.
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The classification error matrix and the ROC (receiver operating characteristic, ROC)
curve are the general methods for evaluating a model’s strengths and weaknesses [43–46].
Lee and Fei (2011) pointed out that the error matrix needs to be categorized with the help
of clear categorization of landslide potential areas (e.g., artificially defining those above
a certain value as belonging to the collapse group of a geotechnical potential area and
those below a certain value as being in the non-collapse group of a geotechnical potential
area) [39]. According to Gorsevski et al. (2006), the ROC curve is a graphical representation
of the accuracy of the predicted probability, and the use of the area under the curve (AUC)
under the ROC curve facilitates the measurement of the overall model fitness and the
comparison between different models [46]. In addition, the ROC curve is plotted by the
ability to explain the failure of the geotechnical potential zone with successive sensitivity
values, and there is no need for artificial boundaries between the failure and non-failure
classification of the geotechnical potential zone, so it is more suitable for the evaluation
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of the advantages and disadvantages of the failure sensitivity model of the geotechnical
potential zone.

3. Results and Discussion
3.1. Judgment Results, Instability Index Method

The main objectives of this study’s analyses were (1) to assess variability in each
debris-flow risk factor, (2) calculate the values of prediction for each of the potential debris
flows, (3) assign impact weightings in accordance with the magnitude of the variation
value, and (4) assign a score value and weights to each risk factor. In addition, the slope
instability index Dt (Equation (7)) was presented as a highly flexible mathematical model
for statistical measurement. It was computed as follows:

Dt = E0.038
a × E0.025

s × E0.023
sbs × E0.003

s f × F0.013 × D0.009 × R0.799
d × R0.092

h , (8)

where Es f is the shape coefficient, F is the distance from a fault, Ea is the total area of the
catchment, D is the strata type, Es is the average slope of the catchment area, Rd is the
maximum daily rainfall, Esbs is the average slope of the stream bed, and Rh is the maximum
hourly rainfall.

The upper- and lower-interval statistical methods were used to classify this study’s ob-
servations as a means of verifying its debris-flow prediction model’s probability of yielding
misjudgments. The grading and scoring results of each factor were used as an independent
variable matrix and were included in the slope-instability index of Equation (7). The results
are displayed in Table 11. Stability index analysis of the model’s training sample showed
to have an interpretation accuracy rate of 67.8%, and the parallel figure for its validation
sample was 78.7%, equating to an overall interpretation accuracy rate of 70.9%.

Table 11. Instability index analysis and judgment results.

Classification Result
TotalCategory 0 1

Training sample
(118 rows)

0 67 (87.0%) 10 (13.0%) 77 (100%)
1 28 (68.3%) 13 (31.7%) 41 (100%)

Accurate discrimination rate = [(67 + 13)/(77 + 41)] × 100% = 67.8%
Validation

sample (47 rows)
0 34 (87.2%) 5 (12.8%) 39 (100%)
1 5 (62.5%) 3 (37.5%) 8 (100%)

Accurate discrimination rate = [(34 + 3)/(39 + 8)] × 100% = 78.7%
Overall sample

(165 rows)
0 101 (87.1%) 15 (12.9%) 116 (100%)
1 33 (67.3%) 16 (32.7%) 49 (100%)

Accurate discrimination rate = [(101 + 16)/(116 + 49)] × 100% = 70.9%

By analyzing the landslide potential factor of the Ching-Shuei River using the in-
stability index method, it was found that the advantage of the instability index method
was that it could understand the landslide susceptibility zones of the landslide potential
factor in detail and assign corresponding scoring values to understand the degree of im-
pact on the catchment area of each grade distance of the collapse potential factor, and its
disadvantage lied in that its weighting value was easily affected by the grade distance
of the assessment process. The weights of the instability index method were obtained by
dividing the standard deviation of each potential factor by the coefficient of variation of
the mean. The process of finding the appropriate level of spacing of a potential factor will
affect the standard deviation of the factor and the degree of importance of the factor in the
subsequent evaluation, and the instability index method utilizes the linear superposition
method of calculation [40,47,48]. The calculation process amplifies the influence of potential
factors with high weighting values and reduces the influence of potential factors with low
weighting values [49]. The results are similar to those of past scholars [49–52].
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3.2. Judgment Results, Logit Regression

The same eight factors debris-flow variables were subjected to logit regression analysis
according to the following two equations:

P =
1

1 + e−λ
, (9)

λ = ∑m
i=1 WiLi + ∑n

j=1 Wm+jLj + ∑0
K=1 Wm+n+kLk + C, (10)

in which P is the likelihood that a debris flow will occur, L is the debris-flow factor
resulting from Equation (8), and W is the regression coefficient. Table 12 shows the weight
coefficients for each factor, and the polynomial resulting from the logit regression analysis
is the following:

λ = 0.173 × L1 + 0.118 × L2 − 0.013 × L3 − 1.378 × L4 − 0.010 × L5 + 0.044 × L6 − 0.002 × L7 + 0.057 × L8 − 6.978 (11)

Table 12. Coefficient table of the logit regression.

Code Name Factor Coefficient Coefficient Value

L1 Total area of the catchment area W1 0.173
L2 Average slope of the catchment area W2 0.118
L3 Average slope of the stream bed W3 −0.013
L4 Shape coefficient W4 −1.378
L5 Type of stratum W5 −0.010
L6 Distance from the fault W6 0.044
L7 Maximum daily rain W7 −0.002
L8 Maximum hourly rainfall W8 0.057

Constant −6.978

The likelihood value of a debris flow occurring was then obtained by substituting the
results obtained from Equation (10) into Equation (8). If the value of P was greater than
or equal to 0.5, it indicated that that such an event had happened. If P was smaller than
0.5, on the other hand, it had not happened. Table 13, which presents the researchers’ logit
regression findings, shows that the validation sample’s interpretation accuracy rate was
83.0%, and that of the training sample was 79.7%, making for an overall interpretation-
accuracy rate of 80.6%. The ratio of occurrence and non-occurrence in logit regression
should ideally be 1:1, which could explain why its accuracy was not higher. Given the
small number of debris-flow disasters relative to the number of rainfall events that could
potentially trigger them, therefore, the difference in the parameters themselves is larger, so
its correct interpretation is worse.

Table 13. Logit regression analysis and judgment results.

Classification Result
TotalCategory 0 1

Training sample
(118 rows)

0 74 (96.1%) 3 (3.9%) 77 (100%)
1 21 (51.2%) 20 (48.8%) 41 (100%)

Correct discrimination rate = [(74 + 20)/(77 + 41)] × 100% = 79.7%
Validation

sample (47 rows)
0 35 (89.7%) 4 (10.3%) 39 (100%)
1 4 (50%) 4 (50%) 8 (100%)

Correct discrimination rate = [(35 + 4)/(39 + 8)] × 100% = 83.0%
Overall sample

(165 rows)
0 109 (98.4%) 7 (1.6%) 116 (100%)
1 25 (51.9%) 24 (48.1%) 49 (100%)

Correct discrimination rate = [(109 + 24)/(116 + 49)] × 100% = 80.6%

By analyzing the slope potential factors of the Ching-Shuei River using Rogers regres-
sion, the relationship between the coefficients and landslide could be understood through
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the positive and negative coefficients, and the probability of collapse for each landslide
potential factor could be known, which was equivalent to the coefficients of variability of
the instability index method; however, the disadvantage was that the coefficients obtained
from the analysis were susceptible to the influence of the selection of the data, which led to
the results of the positive and negative coefficients of different values for the same rainfall
conditions. The Rogers regression was obtained by multiplying the analyzed coefficients
with the failure potential factors. Therefore, the number of potential failure factors analyzed
after the Rogers regression was more than the coefficients obtained from the instability
index analysis, which means that it magnified the extent of the impact of each failure
potential factor on the slopes. Furthermore, Chan et al. (2015) mentioned that when the
collapse catalog is plotted on extreme events, it tends to result in a lower importance of the
potential factor [48]. Their results are similar to those of past scholars [48,49,53,54].

3.3. Judgment Results, Back-Propagation Neural Network

The same eight variables were normalized before being entered into IBM SPSS for back-
propagation neural network analysis. The overall process of such analysis can be broken
down into three parts, each of which is described in detail in its own subsection below.

3.3.1. Normalization of Debris-Flow Factors

Normalizing the input parameters prior to training increases both the accuracy and the
efficiency of neural network learning and helps avoid convergence issues that might arise
from the varying data ranges of the various debris-flow components [55]. The researchers
primarily translated their data on the eight debris-flow factors from 0.1 to 0.9 using the
mapping approach, i.e.,

Xnorm = (X + a)/b,
Among a = (Xmax − 9Xmin)/8, b = (Xmax − Xmin)/0.8,

(12)

where X represents the actual value, Xmax the actual value’s maximum value, and Xmin the
actual value’s minimum value.

3.3.2. Back-Propagation Neural Network

This paper’s five focal weather events were entered into SPSS simultaneously for
reverse-transfer neural network analysis, with 70% of the data used for training and 30%
for verification. Table 14 presents the findings of such analysis. The verification sample’s
interpretation accuracy rate was 91.5%, and that of the training sample was 94.1%, making
for an overall accuracy of 93.3%. Table 15 shows the relative importance of each factor to
accurate debris-flow disaster prediction.

Table 14. Results of the analysis of the back-propagation neural network.

Classification Result
TotalCategory 0 1

Training sample
(118 rows)

0 77 (97.5%) 2 (2.5%) 79 (100%)
1 5 (12.8%) 34 (87.2%) 39 (100%)

Correct discrimination rate = [(77 + 34)/(79 + 39)] × 100% = 94.1%
Validation

sample (47 rows)
0 36 (97.3%) 1 (2.7%) 37 (100%)
1 3 (30.0%) 7 (70.0%) 10 (100%)

Correct discrimination rate = [(36 + 7)/(37 + 10)] × 100% = 91.5%
Overall sample

(165 rows)
0 113 (97.4%) 3 (2.6%) 116 (100%)
1 8 (16.3%) 41 (83.7%) 49 (100%)

Correct discrimination rate = [(113 + 41)/(116 + 49)] × 100% = 93.3%
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Table 15. Results of the importance of the factors of the back-propagation neural network.

Factor Importance Importance of Normalization

Total area of the catchment area 0.228 100.0%
Average slope of the catchment area 0.104 45.5%

Average slope of the stream bed 0.043 18.7%
Ahape coefficient 0.227 99.8%
Type of stratum 0.065 28.6%

Distance from the fault 0.052 22.9%
Maximum daily rainfall 0.169 74.3%

Maximum hourly rainfall 0.112 48.9%

The back-propagation neural network predicted the potential area of slope disaster up
to more than 90%, and the results were similar to those of past scholars [56–58].

3.4. Receiver Operating Characteristic Curves

A receiver operating characteristic (ROC) curve is a graphical analysis tool made up of
a false-positive rate (FPR) on the x-axis and a true-positive rate (TPR) on the y-axis. Clarity
and sensitivity are terms used to describe FPR and TPR, respectively. A binary classification
model derives the coordinate points from the observed values and expected values of all
samples. The ROC is situated in a square between 0 and 1 if the coordinate points are
drawn on the x–y plane and connected with straight lines; during the judgment process,
the space is divided into upper-left and lower-right blocks using the diagonal line from
(0, 0) to (1, 1) as a reference line. As illustrated in Figure 17, an ROC curve’s classification
result is better if it is above the diagonal line and travels to the upper left. Conversely, its
classification result is worse if it is below the diagonal line.
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The main output of ROC analysis is a binary classification model, such as occurred/not
occurred. A threshold value is needed to define a continuous data output result. The
following equations were used for calculating TPR and FPR:

TPR =
TP

TP + FN
, (13)

FPR =
FP

FP + TN
, (14)

where, as indicated in Table 16, TP and TN represent the correctness and error of interpreta-
tion, respectively.

Table 16. Receiver operating characteristic curve evaluation form.

Observed Value
Unstable StablePredictive Value

Unstable True Positive (TP) False Positive (FP)
Stable False Negative (FN) True Negative (TN)

The area under the ROC curve, known as AUC, is a measure of how accurately
landslides can be interpreted based on values that are observed and predicted. AUC’s
value ranges from 0 to 1. The more AUC points there are, the more accurate the judgment.
Perfect categorization is indicated by an AUC of 1. A model is considered to have no
predictive value if its AUC is lower than 0.5, a fair predictive value if it is at least 0.5 but
less than 0.7, a good predictive value if it is at least 0.7 but less than 0.9, and an excellent
predictive value if 0.9 or higher.

The ROC curves for each type of analysis are shown in Figures 18–20. Specifically, the
AUC of the neural network was computed as 0.93, indicating this technique’s excellent
ability to predict when a debris-flow disaster will occur. The AUC of logit regression
analysis was 0.79, i.e., good, and that of the instability index method was 0.64, i.e., fair.
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As can be observed from the AUC area, all three models reached above 0.7, represent-
ing the ability to effectively predict the occurrence of a landslide in the Ching-Shuei River
using the instability index, Rogers regression, and artificial neural network. By comparing
the three methods of evaluating model accuracy, it could be found that the accuracy of the
ROC curve was higher than that of the categorical error matrix. It is hypothesized that
the reason for this is that the total accuracy of the model of the categorical error matrix is
limited by the correct rate of the collapse and the correct rate of the non-landslide, and
the difference in the number of base grids of the landslide and the non-landslide is very
large, which then influences the subsequent calculation of the correct rate of the two and
the total accuracy, respectively. In contrast, the ROC curve only considers the proportion of
accurately misinterpreted versus accurately correct and plots them cumulatively so that the
accuracy of the ROC curve is higher than that of the categorical error matrix for subsequent
model accuracy comparisons.

4. Conclusions

In this study, an attempt was made to use the total area of catchment, average slope
of the catchment, the length of the stream, the average slope of the stream bed, the shape
coefficient, the type of stratum, the distance from the region’s central fault, and the trigger
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factors. The sensitivity analysis of the geotechnical potential zone was conducted by using
eight variables, together with the instability index, Rogers regression, and neural network.
The comparison of the results with those of previous studies revealed that the importance
of the variables overlapped with each other, but nevertheless, the importance of the factors
affecting the geotechnical potential zones would be different in different regions due to the
different characteristics of the environments.

This paper’s evaluations of the instability index method, logit regression analysis, and
neural network analysis as potential means of precisely predicting debris-flow disasters
revealed that each has its benefits and drawbacks. The following conclusions can be drawn
from the results. First, the three methods’ general accuracy rates ranged from 70.9% to
93.3%. When it came to the prediction of debris-flow disasters, however, the spread was
much wider: 83.7% for neural networks, 48.1% for logit regression analysis, and 32.7%
for instability index analysis. In predicting the absence of any debris-flow disaster, logit
regression analysis performed best, at 98.4%; neural network analysis almost as well, at
97.4%; and the instability index method the least well, at 87.1%. According to neural
network analysis, the three most important of the authors’ eight selected debris-flow
triggers (in descending order of importance) were (1) total catchment area, (2) maximum
hourly rainfall, and (3) average slope of the catchment, while the least important was the
distance from a fault. This study’s AUC of the ROC curve results suggest that all three of
the tested models can be used for this purpose but that the neural network has the best
discrimination ability (i.e., excellent) and the instability index method the worst (i.e., fair).

Future researchers are encouraged to verify this paper’s results using data from
weather events in other regions. Also, its list of potential factors that trigger debris flows
should not be regarded as exhaustive. The future identification of other such factors would
only tend to improve the performance of debris-flow prediction models. Additionally, the
present work’s results suggest that when using the instability index method, the initial
factor classification could usefully divide factors into more intervals, thereby improving
the precision of its judgment of areas’ landslide potential. The accuracy of logit regression,
meanwhile, would be improved if more debris flows were included to balance the number
of cases with and without such flows. Lastly, this study did not include preservation objects
such as residences and public infrastructure. Including them would enrich this line of
research as a basis for future novel approaches to slope-disaster risk analysis.
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