
Citation: Zhai, X.; Gao, Y.; Chen, S.;

Yang, J. Adaptive Scale and

Correlative Attention PointPillars: An

Efficient Real-Time 3D Point Cloud

Object Detection Algorithm. Appl. Sci.

2024, 14, 3877. https://doi.org/

10.3390/app14093877

Academic Editors: Douglas

O’Shaughnessy

Received: 7 March 2024

Revised: 25 April 2024

Accepted: 29 April 2024

Published: 30 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Adaptive Scale and Correlative Attention PointPillars:
An Efficient Real-Time 3D Point Cloud Object
Detection Algorithm
Xinchao Zhai, Yang Gao *, Shiwei Chen and Jingshuai Yang

School of Automobile, Chang’an University, Xi’an 710064, China; achao992@163.com (X.Z.);
jshyang@chd.edu.cn (J.Y.)
* Correspondence: nchygy@126.com

Abstract: Recognizing 3D objects from point clouds is a crucial technology for autonomous vehi-
cles. Nevertheless, LiDAR (Light Detection and Ranging) point clouds are generally sparse, and
they provide limited contextual information, resulting in unsatisfactory recognition performance
for distant or small objects. Consequently, this article proposes an object recognition algorithm
named Adaptive Scale and Correlative Attention PointPillars (ASCA-PointPillars) to address this
problem. Firstly, an innovative adaptive scale pillars (ASP) encoding method is proposed, which
encodes point clouds using pillars of varying sizes. Secondly, ASCA-PointPillars introduces a feature
enhancement mechanism called correlative point attention (CPA) to enhance the feature associations
within each pillar. Additionally, a data augmentation algorithm called random sampling data aug-
mentation (RS-Aug) is proposed to solve the class imbalance problem. The experimental results
on the KITTI 3D object dataset demonstrate that the proposed ASCA-PointPillars algorithm signifi-
cantly boosts the recognition performance and RS-Aug effectively enhances the training effects on an
imbalanced dataset.

Keywords: autonomous vehicle; adaptive scale pillars (ASP); correlative point attention (CPA); object
detection; LiDAR point cloud; random sampling data augmentation algorithm (RS-Aug)

1. Introduction

LiDAR (Light Detection and Ranging) has gained widespread acceptance owing to
its capability to capture three-dimensional information on objects regardless of lighting
conditions. Consequently, recognizing 3D objects from LiDAR point clouds has attracted
significant attention in the field of autonomous driving. Nevertheless, LiDAR point clouds
possess unique challenges such as sparsity, disorderliness, and unstructured data, with the
sparsity issue posing an even greater hurdle for distant and small objects. This has resulted
in the recognition of distant and small objects becoming a noteworthy challenge. Currently,
point-based methods [1–7] and grid-based methods [8–22] are two popular categories of
recognition algorithms for point clouds.

Point-based methods generally take original point clouds as an input and directly
recognize objects from the point cloud. This category maximizes the retention of the original
information from the point clouds. However, when dealing with large-scale point cloud
data, such methods can potentially consume significant computational resources. The
voxelization of point clouds serves as an effective solution to address this challenge.

Grid-based methods typically encode point clouds into voxels or pillars and then
process them separately using different approaches. Voxel-based methods [8–14] usually
convert the input point cloud data into a voxel space and then use 3D convolution or
sparse convolution [9] to extract features from voxels and complete the recognition task.
Pillars are a specialized type of voxel that do not take height information into account.
Pillar-based methods [15–22] usually encode point clouds into 2D pillars before projecting

Appl. Sci. 2024, 14, 3877. https://doi.org/10.3390/app14093877 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093877
https://doi.org/10.3390/app14093877
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14093877
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093877?type=check_update&version=3

Appl. Sci. 2024, 14, 3877 2 of 18

the point clouds as a 2D pseudo image. Then, a 2D CNN can be employed to recognize it.
However, encoding point clouds into voxels/pillars inevitably results in spatial information
loss. Moreover, as point clouds’ locations become more distant and objects get smaller,
the number of points within an individual voxel decreases, leading to even more severe
information loss and recognition accuracy being affected as a consequence.

Currently, the prevalent methods typically adopt a single-scale voxel/pillar to encode
point clouds, rendering them powerless in addressing the exacerbated issue of spatial
information loss at long distances. But using multiple multi-scale pillars can help solve this
difficulty. Consequently, this article introduces Adaptive Scale and Correlative Attention
PointPillars (ASCA-PointPillars). The cornerstone of ASCA-PointPillars lies in the adaptive
scale pillars (ASP) module and the correlative point attention (CPA) module. The ASP
module employs various sizes of pillar to encode the point clouds based on the sparsity of
the point clouds. The smaller the size of the pillar, the stronger the feature representation
ability of each point, resulting in less spatial loss. Sparser point clouds in the distance
are then encoded using smaller pillars to mitigate the spatial information loss of distant
objects and enable the network to capture richer feature information for these objects. After
encoding the point clouds into multi-scale pillars, the CPA module is utilized to enhance
the feature association within the pillars, providing richer contextual features. The CPA
module incorporates a self-attention mechanism that effectively establishes connections
between pieces of contextual information [23]. Consequently, the CPA module not only
strengthens the feature association within small pillars representing distant objects, but also
enhances the feature correlation among point clouds representing small objects, ultimately
improving the recognition performance for both distant and small objects.

Moreover, imbalanced amounts of training samples belonging to different categories
generally lead to imbalanced recognition performance, and categories with significantly
fewer training samples tend to have lower recognition accuracy. Data augmentation, which
can overcome this imbalance problem, is therefore critical for the training process. In
most algorithms [1–7,10–16,18–22], ground truths (bounding boxes and the points inside
them) may randomly be inserted into existing samples to augment the training dataset [9].
However, this method may insert ground truths into inappropriate areas. This may create
incorrect contextual information for the training of the model [24]. But semantic information
of the current scene could help to resolve this problem. So, a random sampling data
augmentation algorithm (RS-Aug), based on scene semantic information, is proposed.

RS-Aug can identify reasonable areas for placing ground truths. It initially acquires
semantic information regarding obstacles and road surface areas in point cloud scenes.
Based on this semantic information, it then removes the areas on the road surface occupied
by obstacles. The remaining road surface areas are therefore suitable spaces for placement.
By identifying these reasonable areas, RS-Aug can strategically position the ground truths
of less frequently occurring categories in appropriate areas, such as the road surface,
effectively balancing the number of categories within the dataset.

The contributions of this paper are summarized as follows:

1. This study proposes an object recognition algorithm called ASCA-PointPillars. In the
algorithm, we design an ASP module that innovatively utilizes multi-scale pillars to
encode point clouds, effectively reducing the loss of spatial information. Subsequently,
a CPA module is employed to establish contextual associations within a pillar’s point
cloud, thereby enhancing the point cloud’s features.

2. A data augmentation algorithm called RS-Aug is proposed, leveraging semantic
information to identify reasonable areas for placing ground truths, addressing the
issue of imbalanced categories in datasets.

The first section of this paper is an introduction, indicating the contributions of this
article. The second section presents a literature review of related works. The third section
is the methodology, which introduces the algorithm of this paper in detail. The fourth
section presents the experiment, evaluating the algorithm of this paper and analyzing the

Appl. Sci. 2024, 14, 3877 3 of 18

experimental results. The fifth section is the conclusion, summarizing the method of this
paper and looking forward to the future.

2. Related Works

This section will introduce related works on three aspects: point cloud object recogni-
tion, point cloud object recognition for distant or small objects, and data augmentation for
point cloud object recognition.

Point cloud object recognition.
Point cloud object recognition encompasses both point-based and grid-based meth-

ods. Point-based methods [1–7] process points directly to recognize objects. Among these,
PointNet [1] represents a pioneering work that laid the foundation for subsequent research.
It was the first to employ neural networks to directly handle point clouds and extract
features from them. PointNet++ [2] further improved upon PointNet by enabling the
network to extract not only local but also global features. Subsequent studies often utilized
these works [1,2] as the backbone for feature extraction from point clouds. This paper
also employs a simplified version of PointNet for feature extraction from point clouds.
Works [3–5] focused on feature extraction and object proposal generation during the first
stage, followed by proposal refinement for classification and bounding box regression in
the second stage. PointRCNN [3] segments the point clouds into foreground and back-
ground in the first stage, generating a small number of 3D proposals. Subsequently, in
the second stage, it extracts local features and integrates them with the global semantic
features obtained in the first stage, enabling the accurate prediction of bounding boxes.
VoteNet [4] leverages PointNet++ [2] for feature extraction from point clouds, then uses
a voting module to generate votes based on the features of seed points and aggregates
these vote features to form object proposals. STD [5] also uses PointNet++ [2] for feature
extraction in the first stage, but it voxelizes the proposals in the second stage before classifi-
cation, combining the advantages of both point-based and voxel-based methods, thereby
enhancing the recognition speed. Moreover, 3DSSD [6] eliminates the refinement modules
and feature propagation layers used in previous works, proposing a distance-based feature
sampling method (F-FPS) to preserve object points and remove background points, and
introduces an anchor-free regression head, significantly increasing the speed of the method
beyond previous point-based approaches. Point-GNN [7] innovatively applies a graph
neural network to 3D recognition, encoding the point clouds into a graph representation
and utilizing the designed graph neural network for object identification, demonstrating
the potential of using graph neural networks for object recognition. While point-based
methods have garnered considerable research attention, their high computational resource
requirements have led to increased interest in grid-based methods.

Grid-based methods have received extensive research attention and are categorized
into two primary approaches: voxel-based and pillar-based methods. The voxel-based
approach [8–14] typically encodes point clouds into voxels and employs 3D backbones to
extract features, followed by 2D convolution (e.g., RPN [25]) for classification and regres-
sion tasks. VoxelNet [8] represents a seminal work in this domain, utilizing Voxel Feature
Encoding (VFE) to transform point clouds into voxels and leveraging 3D convolution to
extract features. However, 3D convolution is computationally expensive. Thus, Second:
Sparsely Embedded Convolutional Detection [9] adopts 3D sparse convolution (SpConv)
for feature extraction, thereby enhancing computational efficiency. Voxel R-CNN [10] fur-
ther introduces Voxel RoI pooling to directly extract RoI features from voxel features, aiming
to reduce the computational cost. PDV [11] proposes a Density-Aware RoI Grid Pooling
method that captures the density information of local point clouds for better refinement in
the second stage. TED [12] initially employs SpConv to extract transformation-equivariant
voxel features and then aligns and aggregates these features into a lightweight represen-
tation, thereby reducing computational costs. Traditional methods often apply VFE to
single-frame point clouds, while DynStaF [13] incorporates a branch of multi-frame VFE,
capitalizing on the rich semantic information of multi-frame data and the precise positional

Appl. Sci. 2024, 14, 3877 4 of 18

information of single-frame data to enhance the localization accuracy of bounding boxes.
DSVT [14] innovates the backbone network, employing a transformer-based backbone with
Dynamic Sparse Window Attention to process sparse voxels in parallel, and proposing a
learnable 3D pooling operation to effectively encode spatial information, effectively improv-
ing detection performance. Voxel-based methods can achieve high detection accuracy, but
the existence of a large number of empty voxels necessitates the consumption of significant
memory space. Conversely, pillar-based methods significantly reduce the number of empty
voxels, resulting in higher inference speeds.

The pillar-based approach [15–20] generally encodes point clouds into 2D pillars,
which are then further processed by 2D backbones to extract features and recognize ob-
jects. PointPillars [15] and PillarNeXt [16] initially transform point clouds into pillars and
subsequently convert these pillars into pseudo images. After this conversion, PointPillars
utilizes RPN [25] and PillarNeXt employs a ResNet-based [26] backbone to extract 2D
features. The detection paradigm proposed by PointPillars significantly accelerates the
speed of point cloud object recognition, marking a milestone in the field. The creators of
PillarNet [17] designed a simple encoder based on 2D detection prior to the Detection Neck,
enabling the extraction of sparse pillar features and achieving high precision and efficiency
in recognition tasks. Pillar R-CNN [18] translates the pillar representation into a Bird’s Eye
View (BEV) representation and employs RPN [25] to generate object proposals, followed by
refinement to identify objects.

In summary, grid-based methods for point cloud processing have evolved significantly,
with voxel-based approaches offering higher accuracy at the cost of increased computational
resources, and with pillar-based methods providing a faster alternative with slightly lower
precision. The continuous advancements in these techniques contribute to the growing
capabilities in the field of point cloud object recognition.

Point cloud recognition for distant and small objects.
Due to the sparsity of point clouds, it is challenging to accurately recognize distant and

small objects. Many scholars have conducted research to address this issue. TimePillars [19]
introduces a memory unit between the 2D CNN and the Detection Head. This memory
unit is composed of convolutional Gated Recurrent Units (GRUs), which enhances the
recognition accuracy of distant objects. FastPillars [20] utilizes a Maximum-Attention
Pillar Encoding (MAPE) approach. MAPE first encodes points, then utilizes max-pooling
encoding to aggregate features within pillars, then employs attention-pooling encoding to
capture fine-grained features, and finally merges the two. This method effectively improves
recognition capability for small objects. Ref. [21] introduces a Fully Sparse Object Detector
(FSD), proposing Sparse Instance Recognition (SIR) to address the issue of vanishing central
features in sparse feature maps. Additionally, an enhanced version of FSD called FSD++ is
proposed which utilizes temporal information to eliminate data redundancy and combines
information from multiple frames to form a Super-Sparse Input. Experiments demonstrate
that both FSD and FSD++ possess strong distant recognition capabilities. Since the instances
in the FSD method require clustering, which involves manually setting thresholds and is
prone to inductive bias, the improved FSD v2 [22] employs virtual voxels to replace these
instances, then utilizes a Sparse Virtual Voxel Mixer (VVM) to aggregate the features of
virtual voxels belonging to the same object, further enhancing the recognition ability for
distant objects.

Data augmentation for point cloud object recognition.
Data augmentation can effectively enhance the generalization ability of networks, thus

playing a crucial role in point cloud object recognition. Commonly used point cloud data
augmentation techniques include random rotations around coordinate axes, random global
scaling, the application of random rotations and translations to each ground truth and
its corresponding point clouds, etc. These methods are ubiquitous in point cloud object
detectors. Ref. [9] introduced an efficient data augmentation technique known as Sample
Ground Truths from the Database (GT-Aug). This approach initially creates a database
encompassing all ground truths from the training dataset and subsequently selects several

Appl. Sci. 2024, 14, 3877 5 of 18

ground truths randomly to place in current training samples during training. GT-Aug
significantly increases the number of ground truths in the training samples, greatly aiding
network training and boosting generalization ability. GT-Aug has been extensively applied
in subsequent studies, such as [5–7,10–16,18–22]. Some of these methods [14,18,21,22]
discontinued the use of GT-Aug in the final epochs to facilitate training convergence.
However, GT-Aug may occasionally introduce ground truths into unreasonable areas,
leading the network to learn erroneous contextual information and preventing further
performance enhancements. Addressing this issue, Ref. [24] proposed Context-Aware
augmentation (CA-aug), which initially segments training samples into ground points and
obstacle points. These are then projected onto a range view (RV) to identify a “ValidSpace”
(an area suitable for placement). Subsequently, ground truths are randomly selected from
the database and inserted into the training samples after rotating them around the Z-axis
to find an appropriate position. Ref. [12] introduced Distance-Aware Data Augmentation
(DA-aug), which initially applies random offsets to the bounding boxes of ground truths
and their internal points. These points are then voxelized using spherical voxels, and
sampling is conducted based on the distance from the voxel centers, resulting in a series
of sampled points. These sampled points exhibit a similar distribution pattern to LiDAR
scanning points, thus better simulating realistic point clouds.

While these methods have produced positive effects on training, the assistance of se-
mantic information from the scene in finding suitable placement areas has been overlooked.
Therefore, this paper proposes a point cloud data augmentation method that considers
scene semantic information.

3. Method
3.1. Overall Architecture of ASCA-PointPillars

Fixed-size pillars are adopted in most pillar-based methods [15–20]. However, fixed-
size pillar sampling inevitably results in spatial information loss, which is exacerbated for
distant objects. Therefore, this section proposes ASCA-PointPillars.

The overall architecture of ASCA-PointPillars is shown in Figure 1, and consists of
three blocks called Feature Encoding Network (FEN), Detection Neck, and Detection Head.
ASCA-PointPillars uses RPN [25] as its Detection Neck, as in PointPillars [15], and uses
SSD [27] as its Detection Head.

Appl. Sci. 2024, 14, 3877 5 of 18

encompassing all ground truths from the training dataset and subsequently selects several

ground truths randomly to place in current training samples during training. GT-Aug sig-

nificantly increases the number of ground truths in the training samples, greatly aiding

network training and boosting generalization ability. GT-Aug has been extensively ap-

plied in subsequent studies, such as [5–7,10–16,18–22]. Some of these methods

[14,18,21,22] discontinued the use of GT-Aug in the final epochs to facilitate training con-

vergence. However, GT-Aug may occasionally introduce ground truths into unreasonable

areas, leading the network to learn erroneous contextual information and preventing fur-

ther performance enhancements. Addressing this issue, Ref. [24] proposed Context-

Aware augmentation (CA-aug), which initially segments training samples into ground

points and obstacle points. These are then projected onto a range view (RV) to identify a

“ValidSpace” (an area suitable for placement). Subsequently, ground truths are randomly

selected from the database and inserted into the training samples after rotating them

around the Z-axis to find an appropriate position. Ref. [12] introduced Distance-Aware

Data Augmentation (DA-aug), which initially applies random offsets to the bounding

boxes of ground truths and their internal points. These points are then voxelized using

spherical voxels, and sampling is conducted based on the distance from the voxel centers,

resulting in a series of sampled points. These sampled points exhibit a similar distribution

pattern to LiDAR scanning points, thus better simulating realistic point clouds.

While these methods have produced positive effects on training, the assistance of se-

mantic information from the scene in finding suitable placement areas has been over-

looked. Therefore, this paper proposes a point cloud data augmentation method that con-

siders scene semantic information.

3. Method

3.1. Overall Architecture of ASCA-PointPillars

Fixed-size pillars are adopted in most pillar-based methods [15–20]. However, fixed-

size pillar sampling inevitably results in spatial information loss, which is exacerbated for

distant objects. Therefore, this section proposes ASCA-PointPillars.

The overall architecture of ASCA-PointPillars is shown in Figure 1, and consists of

three blocks called Feature Encoding Network (FEN), Detection Neck, and Detection

Head. ASCA-PointPillars uses RPN [25] as its Detection Neck, as in PointPillars [15], and

uses SSD [27] as its Detection Head.

Figure 1. The architecture of ASCA-PointPillars. Within this framework, FEN serves to generate a

pseudo image from point clouds, while the Detection Neck is responsible for extracting and fusing

the features of the pseudo image. Finally, the Detection Head produces classification results and

regresses the bounding boxes, enabling accurate object detection.

3.2. Feature Encoding Network

The role of the FEN is to first encode the point clouds into multi-scale pillars and then

convert them into pseudo images so that they can be extracted by the 2D CNN backbone

of the Detection Neck for feature extraction. Our work is mainly focused on ASP and CPA

in the FEN, as shown in Figure 2.

Point Cloud

FEN
Detection

Neck
Detection

Head
output

Pseudo
Image

Feature
Map

Figure 1. The architecture of ASCA-PointPillars. Within this framework, FEN serves to generate a
pseudo image from point clouds, while the Detection Neck is responsible for extracting and fusing
the features of the pseudo image. Finally, the Detection Head produces classification results and
regresses the bounding boxes, enabling accurate object detection.

3.2. Feature Encoding Network

The role of the FEN is to first encode the point clouds into multi-scale pillars and then
convert them into pseudo images so that they can be extracted by the 2D CNN backbone of
the Detection Neck for feature extraction. Our work is mainly focused on ASP and CPA in
the FEN, as shown in Figure 2.

The closer an object is, the larger the point cluster it will form. Consequently, the closer
the object is, the larger the pillar used to abstract larger-scale features. Conversely, a smaller
pillar is used for distant objects to provide a more focused abstract to reduce the spatial
information loss caused by distant objects. Below are the details of the ASP module.

Appl. Sci. 2024, 14, 3877 6 of 18Appl. Sci. 2024, 14, 3877 6 of 18

Figure 2. Feature Encoding Network of ASCA-PointPillars. This section begins with the utilization
of ASP to encode point clouds into multi-scale pillars, generating tensor data. Subsequently, a sim-
plified version of PointNet is employed to extract high-dimensional features. Then, CPA is applied
to enhance these features. Finally, the enhanced features are projected as a pseudo image, facilitating
accurate object detection.

The closer an object is, the larger the point cluster it will form. Consequently, the
closer the object is, the larger the pillar used to abstract larger-scale features. Conversely,
a smaller pillar is used for distant objects to provide a more focused abstract to reduce the
spatial information loss caused by distant objects. Below are the details of the ASP module.
1. ASP module

In this module, the input point clouds are first divided into pillars, whose sizes are 𝑉௫ × 𝑉௬ on the X-Y plane (the Z-axis is ignored). Here, 𝑉௫ and 𝑉௬ are the sizes of the pil-
lars along the X and Y-axis, respectively, and the value of 𝑉௬ is 0.16 m. The 𝑉௫ value for
the pillars nearest to the LiDAR along the X-axis is 0.32 m, which is the biggest among all
pillars, and 𝑉௫ is adaptively decreased with the increasing size of X. Therefore, the ASP
module forms bigger pillars near the LiDAR and smaller pillars in distant areas. Figure 3
shows the schematic diagram of the ASP module.

Figure 3. Schematic diagram of ASP module. The horizontal axis D represents the distance from a
specific row of pillars to the first row of pillars, which is the row closest to the LiDAR, and the
vertical axis 𝑉௫ represents the size of the pillars along the X-axis. It indicates that the size of the
pillars along the X-axis, denoted as 𝑉௫, decreases as the distance D increases.

In Figure 3, 𝑑 is defined as the shortest distance along the X-axis between the
pillars and the LiDAR, while 𝑑௫ is the longest. 𝐷௫ stands for the greatest distance
between any two pillars along the X-axis, as determined by Equation (4). d refers to the
distance from a specific row of pillars to the LiDAR, and D denotes the distance from a

𝑫𝒎𝒂𝒙

pillars

LIDAR

𝑑 𝐷௫
𝑑௫

𝐷
𝑑

𝑽୫ୟ୶
𝑽𝒙/𝒎

𝑫/𝒎

X

Y

Figure 2. Feature Encoding Network of ASCA-PointPillars. This section begins with the utilization of
ASP to encode point clouds into multi-scale pillars, generating tensor data. Subsequently, a simplified
version of PointNet is employed to extract high-dimensional features. Then, CPA is applied to
enhance these features. Finally, the enhanced features are projected as a pseudo image, facilitating
accurate object detection.

1. ASP module

In this module, the input point clouds are first divided into pillars, whose sizes are
Vx × Vy on the X-Y plane (the Z-axis is ignored). Here, Vx and Vy are the sizes of the pillars
along the X and Y-axis, respectively, and the value of Vy is 0.16 m. The Vx value for the
pillars nearest to the LiDAR along the X-axis is 0.32 m, which is the biggest among all
pillars, and Vx is adaptively decreased with the increasing size of X. Therefore, the ASP
module forms bigger pillars near the LiDAR and smaller pillars in distant areas. Figure 3
shows the schematic diagram of the ASP module.

Appl. Sci. 2024, 14, 3877 6 of 18

Figure 2. Feature Encoding Network of ASCA-PointPillars. This section begins with the utilization
of ASP to encode point clouds into multi-scale pillars, generating tensor data. Subsequently, a sim-
plified version of PointNet is employed to extract high-dimensional features. Then, CPA is applied
to enhance these features. Finally, the enhanced features are projected as a pseudo image, facilitating
accurate object detection.

The closer an object is, the larger the point cluster it will form. Consequently, the
closer the object is, the larger the pillar used to abstract larger-scale features. Conversely,
a smaller pillar is used for distant objects to provide a more focused abstract to reduce the
spatial information loss caused by distant objects. Below are the details of the ASP module.
1. ASP module

In this module, the input point clouds are first divided into pillars, whose sizes are 𝑉௫ × 𝑉௬ on the X-Y plane (the Z-axis is ignored). Here, 𝑉௫ and 𝑉௬ are the sizes of the pil-
lars along the X and Y-axis, respectively, and the value of 𝑉௬ is 0.16 m. The 𝑉௫ value for
the pillars nearest to the LiDAR along the X-axis is 0.32 m, which is the biggest among all
pillars, and 𝑉௫ is adaptively decreased with the increasing size of X. Therefore, the ASP
module forms bigger pillars near the LiDAR and smaller pillars in distant areas. Figure 3
shows the schematic diagram of the ASP module.

Figure 3. Schematic diagram of ASP module. The horizontal axis D represents the distance from a
specific row of pillars to the first row of pillars, which is the row closest to the LiDAR, and the
vertical axis 𝑉௫ represents the size of the pillars along the X-axis. It indicates that the size of the
pillars along the X-axis, denoted as 𝑉௫, decreases as the distance D increases.

In Figure 3, 𝑑 is defined as the shortest distance along the X-axis between the
pillars and the LiDAR, while 𝑑௫ is the longest. 𝐷௫ stands for the greatest distance
between any two pillars along the X-axis, as determined by Equation (4). d refers to the
distance from a specific row of pillars to the LiDAR, and D denotes the distance from a

𝑫𝒎𝒂𝒙

pillars

LIDAR

𝑑 𝐷௫
𝑑௫

𝐷
𝑑

𝑽୫ୟ୶
𝑽𝒙/𝒎

𝑫/𝒎

X

Y

Figure 3. Schematic diagram of ASP module. The horizontal axis D represents the distance from a
specific row of pillars to the first row of pillars, which is the row closest to the LiDAR, and the vertical
axis Vx represents the size of the pillars along the X-axis. It indicates that the size of the pillars along
the X-axis, denoted as Vx, decreases as the distance D increases.

In Figure 3, dmin is defined as the shortest distance along the X-axis between the pillars
and the LiDAR, while dmax is the longest. Dmax stands for the greatest distance between
any two pillars along the X-axis, as determined by Equation (4). d refers to the distance
from a specific row of pillars to the LiDAR, and D denotes the distance from a specific row
of pillars to the first row of pillars, which is the row closest to the LiDAR. The relationship
between d and D is depicted in Equation (3).

In the coordinate system, Vx decreases as D increases. Vmax is the value of Vx for the
first row of pillars. The value Vx for the nth size of the pillar can be derived from Equation

Appl. Sci. 2024, 14, 3877 7 of 18

(1). Equation (2) provides the value of n, which is associated with the distance ratio a.
Equation (5) reveals that a is the ratio of D to Dmax. According to Equation (2), there can be
at most K different sizes of pillars.

Vx =
1

2(n−1)
Vmax (1)

n =

1, a ∈

[
0, 1

K

)
2, a ∈

[
1
K , 2

K

)
· · ·

K, a ∈
[

K−1
K , 1

] , K ∈ N+ (2)

D = d − dmin (3)

Dmax = dmax − dmin (4)

a =
D

Dmax
(5)

Upon encoding the point clouds into pillars, the data are converted into tensors of
size (B, P, N). Here, B signifies the data dimension of each point and is set to 9, including
coordinates x, y, z, reflectivity r, distance to the arithmetic mean of all points inside the pillar
xr, xr, xr, and the offset to the center of the pillar’s X-Y plane xp, yp. P denotes the count of
non-empty pillars in each sample, and N represents the number of points within each pillar.
Subsequently, a simplified version of PointNet (a linear layer with 64 output channels
followed by BatchNorm [28] and ReLU [29]) is employed to generate a high-dimension
feature metric (C, P, N), followed by a max pooling in the N dimension, generating a tensor
of size (C, P) [15]. This tensor, referred to as the feature matrix F, will be input into the CPA
module subsequently.

2. CPA module

After converting the point clouds into tensors, the CPA module is employed to en-
hance the feature association among points within the pillar. Since the self-attention
mechanism [23] can effectively establish contextual information association, it is intro-
duced here. Ultimately, the features of points within the pillar are strengthened. Figure 4
illustrates the principle of the CPA module.

Appl. Sci. 2024, 14, 3877 7 of 18

specific row of pillars to the first row of pillars, which is the row closest to the LiDAR. The

relationship between d and D is depicted in Equation (3).

In the coordinate system, 𝑉𝑥 decreases as D increases. 𝑉𝑚𝑎𝑥 is the value of 𝑉𝑥 for the

first row of pillars. The value 𝑉𝑥 for the nth size of the pillar can be derived from Equation

(1). Equation (2) provides the value of n, which is associated with the distance ratio a.

Equation (5) reveals that a is the ratio of D to 𝐷𝑚𝑎𝑥. According to Equation (2), there can

be at most K different sizes of pillars.

𝑉𝑥 =
1

2(𝑛−1)
𝑉𝑚𝑎𝑥 (1)

𝑛 =

{

 1, 𝑎 ∈ [0,

1

𝐾
)

2, 𝑎 ∈ [
1

𝐾
,
2

𝐾
)

⋯

𝐾, 𝑎 ∈ [
𝐾 − 1

𝐾
, 1]

, 𝐾 ∈ 𝑁+ (2)

𝐷 = 𝑑 − 𝑑𝑚𝑖𝑛 (3)

𝐷𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 (4)

𝑎 =
𝐷

𝐷𝑚𝑎𝑥
 (5)

Upon encoding the point clouds into pillars, the data are converted into tensors of

size (B, P, N). Here, B signifies the data dimension of each point and is set to 9, including

coordinates x, y, z, reflectivity r, distance to the arithmetic mean of all points inside the

pillar 𝑥𝑟 , 𝑥𝑟 , 𝑥𝑟, and the offset to the center of the pillar’s X-Y plane 𝑥𝑝, 𝑦𝑝. P denotes the

count of non-empty pillars in each sample, and N represents the number of points within

each pillar. Subsequently, a simplified version of PointNet (a linear layer with 64 output

channels followed by BatchNorm [28] and ReLU [29]) is employed to generate a high-

dimension feature metric (C, P, N), followed by a max pooling in the N dimension, gener-

ating a tensor of size (C, P) [15]. This tensor, referred to as the feature matrix F, will be

input into the CPA module subsequently.

2 CPA module

After converting the point clouds into tensors, the CPA module is employed to en-

hance the feature association among points within the pillar. Since the self-attention mech-

anism [23] can effectively establish contextual information association, it is introduced

here. Ultimately, the features of points within the pillar are strengthened. Figure 4 illus-

trates the principle of the CPA module.

Figure 4. Schematic diagram of CPA module. It consists of a self-attention module and residual

connection, which are used to establish feature associations among points within a pillar.

Feature Matric F

(C, P)

transposition

Attention weight

matrix A

Enhanced point

cloud feature F ″

(C, P)

V

Q

K

Self-attention

Feature F ′

(C, P)

Residual Connection

Figure 4. Schematic diagram of CPA module. It consists of a self-attention module and residual
connection, which are used to establish feature associations among points within a pillar.

As shown in Figure 4, the input for the CPA module is feature metric F. According
to [15], F is sent into a Multilayer Perceptron (MLP) layer to obtain matrices Q (query),
K (Key), and V (value), as shown in Equations (6)–(8). Then, Q, K, and V are input into

Appl. Sci. 2024, 14, 3877 8 of 18

Equation (9) to obtain attention weight matrix A. dq, dk, and dv in the following equation
represent the dimensions of Q, K, and V , respectively.

Q = MLPQ(F), Q ∈ RC×dq (6)

K = MLPK(F), K ∈ RC×dk (7)

V = MLPV(F), V ∈ RC×dv (8)

A = so f tmax
(

QKT
√

dk

)
V, A ∈ RC×C (9)

Then, MLP is used to restore A to the original dimension P and obtain the self-attention
feature F′, as shown in Equation (10).

F′ = MLP(A), F′ ∈ RC×P (10)

Because the self-attention might increase the complexity of the model, it might not
outperform Convolutional Neural Networks (CNNs) on small-scale datasets. To circumvent
this issue, residual connection is employed. This connection adds the original feature F to
the self-attention feature F′, as shown in Equation (11). As a result, the correlation between
points within local spaces is enhanced to improve the network’s recognition capability.

F′′ = F′ + F, F′′ ∈ RC×P (11)

Because the improved self-attention can enhance the feature correlation within each
pillar, it can thus enhance robustness against sparse points.

As shown in Figure 2, the enhanced features obtained from the CPA module are
redistributed to their original positions based on the pillar index, resulting in a 2D pseudo
image [15]. As shown in Figure 1, the pseudo image is then input into the Detection Neck
to further extract features, after which the Detection Head obtains the detection result.

3.3. Detection Neck

The Detection Neck adopts the classic RPN [25] structure. As shown in Figure 5, it
includes three consecutive convolutional blocks (Block1, Block2, and Block3) to obtain
feature maps with three different resolutions. Then, these three feature maps are up-
sampled using three transposed convolutional blocks (DeBlock1, DeBlock2, and DeBlock3)
to obtain three feature maps with the same resolution, and finally, these three feature maps
are concatenated together to obtain the final feature map. The details of the blocks and
deblocks are shown in Table 1. In Table 1, Conv2d represents a 2D convolutional layer,
while DeConv2d represents a 2D transposed convolutional layer. The numbers enclosed in
parentheses indicate the number of input channels, the number of output channels, and the
size of the convolution kernels, stride, and padding, respectively. Furthermore, the output
of the Detection Neck is fed into the Detection Head to produce the final recognition results.

Table 1. Details of blocks and deblocks.

Module Details Module Details

Block1 Conv2d (64, 64, 3, 2, 0) × 1
Conv2d (64, 64, 3, 1, 1) × 3 DeBlock1 DeConv2d (64, 128, 1, 1, 0) × 1

Block2 Conv2d (64, 128, 3, 2, 0) × 1
Conv2d (128, 128, 3, 1, 1) × 3 DeBlock2 DeConv2d (128, 128, 2, 2, 0) × 1

Block3 Conv2d (128, 256, 3, 2, 1) × 1
Conv2d (256, 256, 3, 1, 1) × 3 DeBlock3 DeConv2d (256, 128, 4, 4, 0) × 1

Appl. Sci. 2024, 14, 3877 9 of 18
Appl. Sci. 2024, 14, 3877 9 of 18

Figure 5. Structure of RPN. Three consecutive convolutional blocks are employed to obtain feature
maps of three different resolutions. Subsequently, these feature maps are up-sampled to match a
common resolution, and then concatenated to obtain the final feature output.

Table 1. Details of blocks and deblocks.

Module Details Module Details

Block1
Conv2d (64, 64, 3, 2, 0) × 1
Conv2d (64, 64, 3, 1, 1) × 3

DeBlock1 DeConv2d (64, 128, 1, 1, 0) × 1

Block2
Conv2d (64, 128, 3, 2, 0) × 1

Conv2d (128, 128, 3, 1, 1) × 3
DeBlock2 DeConv2d (128, 128, 2, 2, 0) × 1

Block3
Conv2d (128, 256, 3, 2, 1) × 1
Conv2d (256, 256, 3, 1, 1) × 3 DeBlock3 DeConv2d (256, 128, 4, 4, 0) × 1

3.4. Loss Function
In this paper, the same loss function as [15] is adopted. Ground truth bounding boxes

(GT boxes) and anchor boxes are represented as (x, y, z, w, l, h, 𝜃), where x, y, and z rep-
resent the coordinates, w, l, and h represent the width, height, and length, respectively,
and 𝜃 indicates the angle offset. Therefore, the offsets of each parameter between the GT
boxes and anchor boxes are calculated accordingly: ∆𝑥 = 𝑥௧ − 𝑥𝑑 , ∆𝑦 = 𝑦௧ − 𝑦𝑑 , ∆𝑧 = 𝑥௧ − 𝑥𝑑

∆𝑤 = 𝑙𝑜𝑔 𝑤௧ − 𝑤𝑑 , ∆𝑙 = 𝑙𝑜𝑔 𝑙௧ − 𝑙𝑑 , ∆ℎ = 𝑙𝑜𝑔 ℎ௧ − ℎ𝑑 (12)

∆𝜃 = sin(𝜃௧ − 𝜃)

In Equation (12), the superscripts “gt” and “a” indicate the GT boxes and anchor
boxes, respectively, and 𝑑 = ඥ(𝑤)ଶ + (𝑙)ଶ. Consequently, the localization loss is 𝐿 = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 (∆𝑏)∈(௫,௬,௭,௪,,,ఏ) (13)

The classification loss adopts focal loss [30]. The classification loss is calculated as
below, where 𝑝 represents the predicted class score for an anchor box. According to [30], 𝛼 = 0.25 and 𝛾 = 2. 𝐿௦ = −𝛼 (1 − 𝑝)ఊ log 𝑝 (14)

Figure 5. Structure of RPN. Three consecutive convolutional blocks are employed to obtain feature
maps of three different resolutions. Subsequently, these feature maps are up-sampled to match a
common resolution, and then concatenated to obtain the final feature output.

3.4. Loss Function

In this paper, the same loss function as [15] is adopted. Ground truth bounding boxes
(GT boxes) and anchor boxes are represented as (x, y, z, w, l, h, θ), where x, y, and z represent
the coordinates, w, l, and h represent the width, height, and length, respectively, and θ
indicates the angle offset. Therefore, the offsets of each parameter between the GT boxes
and anchor boxes are calculated accordingly:

∆x =
xgt − xa

da , ∆y =
ygt − ya

da , ∆z =
xgt − xa

da

∆w = log
wgt − wa

da , ∆l = log
lgt − la

da , ∆h = log
hgt − ha

da (12)

∆θ = sin
(
θgt − θa)

In Equation (12), the superscripts “gt” and “a” indicate the GT boxes and anchor boxes,

respectively, and da =
√

(w a)2
+ (l a)2. Consequently, the localization loss is

Lloc = ∑
b∈(x,y,z,w,l,h,θ)

SmoothL1 (∆b) (13)

The classification loss adopts focal loss [30]. The classification loss is calculated as
below, where pa represents the predicted class score for an anchor box. According to [30],
αa = 0.25 and γ = 2.

Lcls = −αa (1 − pa)γlog pa (14)

Based on [9], a SoftMax function is utilized as the angle classification loss (Lcls) to
enable the learning of object orientations. Consequently, the overall loss is shown in
Equation (15):

Loss =
1

Npos
(β1Lloc + β2Lcls + β3Ldir) (15)

In the equation above, Npos represents the number of positive anchor boxes. β1, β2,
and β3 are the weights for the three types of losses, where β1 = 2, β2 = 1, and β3 = 0.2 [9].

Appl. Sci. 2024, 14, 3877 10 of 18

3.5. RS-Aug Algorithm

The widely used GT-Aug [9] overlooks the semantic information of the scene during
random sampling and augmentation. Consequently, it might introduce ground truths into
unreasonable areas, resulting in unreasonable scenes [24]. These unreasonable augmenta-
tions could mislead networks to learn incorrect information.

Here, we propose RS-Aug, which considers the semantic information of the scene in
augmenting the samples, as depicted in Figure 6a.

Appl. Sci. 2024, 14, 3877 10 of 18

Based on [9], a SoftMax function is utilized as the angle classification loss (𝐿௦) to enable
the learning of object orientations. Consequently, the overall loss is shown in Equation (15): 𝐿𝑜𝑠𝑠 = 1𝑁௦ (𝛽ଵ𝐿 + 𝛽ଶ𝐿௦ + 𝛽ଷ𝐿ௗ) (15)

In the equation above, 𝑁௦ represents the number of positive anchor boxes. 𝛽ଵ, 𝛽ଶ, and 𝛽ଷ are the weights for the three types of losses, where 𝛽ଵ = 2, 𝛽ଶ = 1, and 𝛽ଷ = 0.2 [9].

3.5. RS-Aug Algorithm
The widely used GT-Aug [9] overlooks the semantic information of the scene during

random sampling and augmentation. Consequently, it might introduce ground truths into
unreasonable areas, resulting in unreasonable scenes [24]. These unreasonable augmenta-
tions could mislead networks to learn incorrect information.

Here, we propose RS-Aug, which considers the semantic information of the scene in
augmenting the samples, as depicted in Figure 6a.

(a) (b)

Figure 6. Flow charts of RS-Aug (a) and GT-Aug (b). The bold boxes indicate the differences be-
tween the two algorithms, including “Points segmentation”, “Points clustering”, and “Determine
the placement area” versus “Randomly select the placement area”.

As shown in Figure 6a, RS-Aug includes 6 steps.
1. Establish the database. Establish a database that includes all the ground truths

(bounding boxes and the points inside them). For instance, in our following experi-
ment, three categories of ground truths are included. They are vehicles, cyclists, and
pedestrians.

2. Segment the ground and non-ground points. Input a training sample, then apply the
RANSAC algorithm to segment the non-ground points and ground points and obtain
ground fitting parameters.

3. Points clustering. Utilize the DBSCAN algorithm to cluster non-ground points,
thereby obtaining clusters of non-ground points.

4. Determine the placement area. Obtain the semantic information of the current scene
through Steps 2 and 3, classifying the point cloud into ground and non-ground
points. Subsequently, apply the Minimum Bounding Rectangle algorithm to fit the
bounding boxes of the non-ground point clusters, acquiring the position and size of
the bounding boxes. Using the size and position information, exclude the regions

Figure 6. Flow charts of RS-Aug (a) and GT-Aug (b). The bold boxes indicate the differences
between the two algorithms, including “Points segmentation”, “Points clustering”, and “Determine
the placement area” versus “Randomly select the placement area”.

As shown in Figure 6a, RS-Aug includes 6 steps.

1. Establish the database. Establish a database that includes all the ground truths (bound-
ing boxes and the points inside them). For instance, in our following experiment, three
categories of ground truths are included. They are vehicles, cyclists, and pedestrians.

2. Segment the ground and non-ground points. Input a training sample, then apply the
RANSAC algorithm to segment the non-ground points and ground points and obtain
ground fitting parameters.

3. Points clustering. Utilize the DBSCAN algorithm to cluster non-ground points,
thereby obtaining clusters of non-ground points.

4. Determine the placement area. Obtain the semantic information of the current scene
through Steps 2 and 3, classifying the point cloud into ground and non-ground
points. Subsequently, apply the Minimum Bounding Rectangle algorithm to fit the
bounding boxes of the non-ground point clusters, acquiring the position and size of
the bounding boxes. Using the size and position information, exclude the regions
occupied by the bounding boxes from the ground area identified in Step 2, leaving
the remaining space as the designated area for placement.

5. Construct a new sample. Randomly select the ground truths from the database based
on the proportions of different categories appearing in the training dataset. Then,
randomly insert ground truths into the designated placement area.

6. Collision checking. Check whether the newly placed point cluster collides with the
existing point clusters. If a collision is detected, repeat step (5) and then perform the

Appl. Sci. 2024, 14, 3877 11 of 18

collision check again. If no collision is detected, the enhanced data will be fed into the
network for training, and this process ends.

By following the steps above, in a road environment, RS-Aug places ground truths
on paved surfaces while avoiding existing objects. Conversely, in non-road environments,
ground truths are placed on flat terrain while avoiding the occlusion of existing objects. Ben-
efiting from these measures, RS-Aug ensures that the augmented samples are reasonable.

There are differences between RS-Aug and GT-Aug. As shown in Figure 6a,b, GT-Aug
lacks the operations of “Points segmentation”, “Points clustering”, and “Determine the
placement area”, which correspond to Steps 2, 3, and 4 mentioned previously. Therefore,
RS-Aug can selectively place ground truths into a scene based on the semantic information
of the point cloud scene, whereas GT-Aug can only randomly place ground truths into a
scene without being able to judge the reasonableness of the placement.

To demonstrate the effects of RS-Aug and the shortcomings of GT-Aug, a comparison is
presented based on PointPillars. This comparison is conducted on a single sample from the
KITTI 3D object dataset [31]. In this instance, six cyclists and pedestrians are added to the
current scene. Figure 7a,b show the image and point cloud of the original scene, respectively.
Figure 7c,d illustrate the augmented results. It can be seen that some pedestrians and
cyclists (green and blue boxes) have been inserted into the scene. However, as shown
in Figure 7c, GT-Aug places some pedestrians and cyclists outside the road (highlighted
with black boxes), failing to accurately reflect actual driving scenarios. Consequently,
this could lead to incorrect information being utilized during the training. In contrast,
RS-Aug can strategically place ground truths onto the drivable road area of the scene while
avoiding occlusion among objects. Thus, a reasonable augmentation to the training dataset
is achieved.

Appl. Sci. 2024, 14, 3877 11 of 18

occupied by the bounding boxes from the ground area identified in Step 2, leaving
the remaining space as the designated area for placement.

5. Construct a new sample. Randomly select the ground truths from the database based
on the proportions of different categories appearing in the training dataset. Then,
randomly insert ground truths into the designated placement area.

6. Collision checking. Check whether the newly placed point cluster collides with the
existing point clusters. If a collision is detected, repeat step (5) and then perform the
collision check again. If no collision is detected, the enhanced data will be fed into
the network for training, and this process ends.
By following the steps above, in a road environment, RS-Aug places ground truths on

paved surfaces while avoiding existing objects. Conversely, in non-road environments,
ground truths are placed on flat terrain while avoiding the occlusion of existing objects. Bene-
fiting from these measures, RS-Aug ensures that the augmented samples are reasonable.

There are differences between RS-Aug and GT-Aug. As shown in Figure 6a,b, GT-
Aug lacks the operations of “Points segmentation”, “Points clustering”, and “Determine
the placement area”, which correspond to Steps 2, 3, and 4 mentioned previously. There-
fore, RS-Aug can selectively place ground truths into a scene based on the semantic infor-
mation of the point cloud scene, whereas GT-Aug can only randomly place ground truths
into a scene without being able to judge the reasonableness of the placement.

To demonstrate the effects of RS-Aug and the shortcomings of GT-Aug, a comparison
is presented based on PointPillars. This comparison is conducted on a single sample from
the KITTI 3D object dataset [31]. In this instance, six cyclists and pedestrians are added to
the current scene. Figure 7a,b show the image and point cloud of the original scene, re-
spectively. Figure 7c,d illustrate the augmented results. It can be seen that some pedestri-
ans and cyclists (green and blue boxes) have been inserted into the scene. However, as
shown in Figure 7c, GT-Aug places some pedestrians and cyclists outside the road (high-
lighted with black boxes), failing to accurately reflect actual driving scenarios. Conse-
quently, this could lead to incorrect information being utilized during the training. In con-
trast, RS-Aug can strategically place ground truths onto the drivable road area of the scene
while avoiding occlusion among objects. Thus, a reasonable augmentation to the training
dataset is achieved.

(a)

(b)

Figure 7. Cont.

Appl. Sci. 2024, 14, 3877 12 of 18Appl. Sci. 2024, 14, 3877 12 of 18

(c)

(d)

Figure 7. Comparison of visualization results of GT-Aug and RS-Aug: (a) point cloud collection
scenarios; (b) ground truth; (c) visualization result of GT-Aug; (d) visualization result of RS-Aug.
Cars are represented by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by
green bounding boxes.

4. Experiment and Result Analysis
4.1. Experimental Setup

The experiment was initially conducted on the KITTI 3D object dataset: 7481 training
samples were divided into a training set containing 3712 samples and a validation set con-
taining 3769 samples. A deep learning server was set up for the experiment, the configu-
ration of which is shown in Table 2.

Table 2. Deep learning server.

Category Model
CPU Inter i9 11,900 k

Memory 32 G
Hard disk 512 G + 1 T

GPU NVIDIA GeForce RTX 3080Ti 12 GB
OS Ubuntu 18.04 LTS 64 bit

Programming language Python

Dependency library CUDA 11.1, CUDNN8.0.5, PyTorch 1.8.1, Open3d 0.13.0,
etc.

The training epoch was set to 160 with a batch size of 6. The deep learning optimizer
utilizes Adam (Adaptive Moment Estimation) with an initial learning rate of 2 × 10−4. The
learning rate decays by 0.8 times every 15 epochs. Pass-through filtering is used to inter-
cept regions of interest, with a specific range as shown in Equation (12). 0 𝑥 69.12−39.68 𝑦 39.68−3 𝑧 1 (16)

Figure 7. Comparison of visualization results of GT-Aug and RS-Aug: (a) point cloud collection
scenarios; (b) ground truth; (c) visualization result of GT-Aug; (d) visualization result of RS-Aug.
Cars are represented by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by
green bounding boxes.

4. Experiment and Result Analysis
4.1. Experimental Setup

The experiment was initially conducted on the KITTI 3D object dataset: 7481 training
samples were divided into a training set containing 3712 samples and a validation set
containing 3769 samples. A deep learning server was set up for the experiment, the
configuration of which is shown in Table 2.

Table 2. Deep learning server.

Category Model

CPU Inter i9 11,900 k
Memory 32 G

Hard disk 512 G + 1 T
GPU NVIDIA GeForce RTX 3080Ti 12 GB
OS Ubuntu 18.04 LTS 64 bit

Programming language Python
Dependency library CUDA 11.1, CUDNN8.0.5, PyTorch 1.8.1, Open3d 0.13.0, etc.

The training epoch was set to 160 with a batch size of 6. The deep learning optimizer
utilizes Adam (Adaptive Moment Estimation) with an initial learning rate of 2 × 10−4.
The learning rate decays by 0.8 times every 15 epochs. Pass-through filtering is used to
intercept regions of interest, with a specific range as shown in Equation (12).

Appl. Sci. 2024, 14, 3877 13 of 18

0 ≤ x ≤ 69.12
−39.68 ≤ y ≤ 39.68

−3 ≤ z ≤ 1
(16)

In this approach, the maximum number of pillars (denoted as P) in each sample
is set to 12,000, with each pillar containing a maximum of 64 points. If the number of
pillars in each sample and the number of points in each pillar exceed the preset threshold,
random sampling will be adopted. Conversely, if the number is too small to form a
tensor, zero padding will be utilized instead. When calculating the 2D Intersection over
Union (IoU) metric, positive matches usually choose the highest values or those marked
values that surpass the positive match threshold. Conversely, negative matches consider
marked values below the negative threshold. Redundant anchor points are excluded during
loss calculation. Following the methodology of VoxelNet [8], our study defines overlap
thresholds for the car category at 0.7 IoU across easy, moderate, and hard recognition
scenarios. For cyclists and pedestrians, the overlap thresholds are uniformly set at 0.5 IoU
across easy, moderate, and hard recognition scenarios.

4.2. Experimental Results

Average Precision (AP) was adopted as the evaluation metric for this study. As
demonstrated in Table 3, ASCA-PointPillars outperforms other algorithms in terms of
pedestrian recognition accuracy. This highlights the effectiveness of the ASP module and RS-
Aug in improving the recognition performance of small objects. Although the recognition
accuracy for cars and cyclists may not exceed that of other algorithms, ASCA-PointPillars
achieves a higher Frames Per Second (FPS) than all other algorithms (except PointPillars),
ensuring real-time recognition. Moreover, ASCA-PointPillars exhibits superior recognition
accuracy across all three categories compared to PointPillars, demonstrating its ability to
maintain high accuracy in real-time scenarios.

Table 3. Results on the KITTI 3D object dataset (%). NaN indicates that there are no relevant data in
the KITTI test benchmark.

Method FPS
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

ASCA-PointPilars 31 86.51 75.77 69.24 55.24 46.04 43.58 75.63 59.91 55.34
PointPillars 62.5 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

3DSSD 25 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90
Point-GNN 1.7 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08

Voxel R-CNN 25 90.90 81.62 77.06 NaN NaN NaN NaN NaN NaN
PV-RCNN 12.5 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65

PDV 10 90.43 81.86 77.36 47.80 40.56 38.46 83.04 67.81 60.46

ASCA-PointPillars was also implemented on NVIDIA Xavier AGX, an edge computing
device, and achieved a frame rate of 21.82 FPS. This demonstrates that the proposed
algorithm can provide real-time recognition capabilities in vehicle terminals.

Table 4 shows the recognition results of PointPillars and the proposed ASCA-
PointPillars on objects at two distance ranges in the KITTI dataset, using mean Aver-
age Precision (mAP) as the evaluation metric. As can be seen from the table, the recognition
accuracy of both algorithms inevitably decreases as the distance increases. However,
compared to PointPillars, the proposed ASCA-PointPillars exhibits a higher recognition
accuracy for objects at longer distances. Specifically, it achieves accuracy improvements of
2.94% and 3.02% in the ranges of 0–40 m and 40–80 m, respectively. This demonstrates that
the proposed ASP module can effectively enhance the recognition accuracy of objects at
long distances.

Appl. Sci. 2024, 14, 3877 14 of 18

Table 4. Distance-wise recognition results on the KITTI 3D object validation dataset (%).

Method 0–40 m 40–80 m

PointPillars 71.48 51.33
ASCA-PointPillars 74.42 54.35

Figure 8 offers a qualitative analysis of the recognition results, with cars represented by
red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green bounding
boxes. As shown in Figure 8c,d, the recognition results clearly show that while PointPillars
may fail to detect distant objects, ASCA-PointPillars can accurately recognize certain
severely occluded or sparse objects at a distance. Only a few distant objects and those with
excessively sparse point clouds remain undetected.

Appl. Sci. 2024, 14, 3877 14 of 18

Figure 8 offers a qualitative analysis of the recognition results, with cars represented
by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green bound-
ing boxes. As shown in Figure 8c,d, the recognition results clearly show that while
PointPillars may fail to detect distant objects, ASCA-PointPillars can accurately recognize
certain severely occluded or sparse objects at a distance. Only a few distant objects and
those with excessively sparse point clouds remain undetected.

(a)

(b)

(c)

(d)

Figure 8. Visualization of recognition results for PointPillars and ASCA-PointPillars: (a) scene; (b)
ground truth; (c) prediction of PointPillars; (d) prediction of ASCA-Pointpillars. Cars are represented by
red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green bounding boxes.

As shown in Figure 9, in order to demonstrate the effectiveness of RS-Aug, this article
compares the PointPillars of GT-Aug and RS-Aug, respectively. Red bounding boxes rep-
resent cars, blue bounding boxes represent cyclists, and green bounding boxes represent

Figure 8. Visualization of recognition results for PointPillars and ASCA-PointPillars: (a) scene;
(b) ground truth; (c) prediction of PointPillars; (d) prediction of ASCA-Pointpillars. Cars are
represented by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green
bounding boxes.

Appl. Sci. 2024, 14, 3877 15 of 18

As shown in Figure 9, in order to demonstrate the effectiveness of RS-Aug, this article
compares the PointPillars of GT-Aug and RS-Aug, respectively. Red bounding boxes
represent cars, blue bounding boxes represent cyclists, and green bounding boxes represent
pedestrians. From Figure 9c, it is evident that the PointPillars using GT-Aug exhibit some
misdetections (in the red boxes) and missed detections in certain scenarios. Conversely, as
shown in Figure 9d, the PointPillars based on RS-Aug demonstrate superior performance
in detecting pedestrians and cyclists with sparse and fewer surface point clouds, effectively
reducing the instances of missed detections.

Appl. Sci. 2024, 14, 3877 15 of 18

pedestrians. From Figure 9c, it is evident that the PointPillars using GT-Aug exhibit some
misdetections (in the red boxes) and missed detections in certain scenarios. Conversely,
as shown in Figure 9d, the PointPillars based on RS-Aug demonstrate superior perfor-
mance in detecting pedestrians and cyclists with sparse and fewer surface point clouds,
effectively reducing the instances of missed detections.

(a)

(b)

(c)

(d)

Figure 9. Recognition results of PointPillars using different data augmentation algorithms: (a) scene;
(b) ground truth; (c) prediction of GT-Aug-PointPillars; (d) prediction of RS-Aug-PointPillars. Cars
are represented by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green
bounding boxes.

Figure 9. Recognition results of PointPillars using different data augmentation algorithms: (a) scene;
(b) ground truth; (c) prediction of GT-Aug-PointPillars; (d) prediction of RS-Aug-PointPillars. Cars
are represented by red bounding boxes, cyclists by blue bounding boxes, and pedestrians by green
bounding boxes.

Appl. Sci. 2024, 14, 3877 16 of 18

4.3. Ablation Experiment

This section analyzes the impact of each component on recognition accuracy in the
KITTI 3D object validation dataset. The replication results of PointPillars on the validation
dataset are taken as the baseline. As shown in Table 5, the average recognition accuracy
under three levels of difficulty for cars, pedestrians, and cyclists improved by 1.14%, 0.96%,
and 1.2%, respectively, after implementing the ASP module. This suggests that multi-scale
pillar sampling is effective for recognizing small and distant objects. After implementing
the CPA module, the average recognition accuracy for the three categories increased by
3.03%, 2.09%, and 2.74%, respectively. This indicates that the CPA module can effectively
strengthen the feature correlation of point clouds in each pillar, enabling the network
to learn richer contextual features, and thereby improving recognition accuracy. When
combining these two modules, ASCA-PointPillars achieved an average improvement of
4.23%, 3.1%, and 3.58% in the three categories, respectively, achieving the highest average
recognition accuracy for the car category. This demonstrates the effectiveness of the ASP
and CPA modules. Using the RS-Aug algorithm alone increased the average recognition
accuracy of the three categories by 2.59%, 2.49%, and 2.96%. When ASCA-PointPillars
was combined with RS-Aug, it achieved the highest average recognition accuracy for
pedestrians and cyclists, with improvements of 4.09%, 5.08%, and 5.07% in the three
categories, respectively. This shows that RS-Aug can effectively improve the recognition
performance of categories that have fewer instances in a dataset.

Table 5. The effect of each component on accuracy (%). “
√

” indicates that the component is used.

ASP CPA RS-Aug GT-Aug
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

81.85 72.28 67.27 50.82 41.48 38.47 76.33 56.23 50.97√
83.17 73.59 69.12 51.79 42.13 39.24 77.28 58.43 52.07√
83.83 74.3 69.65 53.57 43.64 40.12 79.07 58.43 53.5√
83.32 73.33 68.18 52.14 42.35 39.17 77.84 57.86 51.43√
85.67 75.58 69.24 53.22 43.55 40.26 79.66 58.87 53.22√ √
86.85 76.89 70.34 54.07 44.61 41.38 80.45 60.02 53.79√ √ √
86.46 76.63 70.58 56.76 46.56 42.69 82.21 61.28 55.25

5. Conclusions

This study introduces ASCA-PointPillars, a novel object recognition algorithm. The
algorithm leverages an ASP module sampling point clouds with multi-scale pillars to
mitigate the spatial information loss typically associated with single-scale pillar sampling.
Furthermore, a CPA module is proposed to establish interconnections among points within
the same pillars. To address the issue of the imbalanced distribution of various categories
in a dataset, an RS-Aug algorithm is also proposed. The experimental results show that
the proposed ASCA-PointPillars can effectively improve the recognition performance of
distant and smaller objects, and the proposed RS-Aug algorithm can effectively improve
the recognition performance of categories that have fewer instances in a dataset. The
recognition accuracy of ASCA-PointPillars for pedestrians exceeds that of other compari-
son algorithms, demonstrating its advantage in identifying small objects. However, the
recognition accuracy of the algorithm for cars and cyclists does not reach the highest level.
This may be because encoding point clouds of larger objects such as cars and cyclists into
pillars leads to greater information loss. Therefore, future efforts will continue to focus
on implementing measures to reduce information loss during the encoding process for
large objects.

Author Contributions: Methodology, X.Z. and S.C.; validation, X.Z. and S.C.; formal analysis, Y.G.
and J.Y.; resources, Y.G.; writing—original draft preparation, X.Z.; writing—review and editing, Y.G.
and J.Y.; project administration, J.Y.; funding acquisition, Y.G and J.Y. All authors have read and
agreed to the published version of the manuscript.

Appl. Sci. 2024, 14, 3877 17 of 18

Funding: This research was funded by Xi’an Scientific and Technological Projects (grant numbers:
23ZDCYJSGG0024-2022, 23ZDCYJSGG0011-2022, and 21RGZN0005) and by Key Research and Devel-
opment Program of Shaanxi Province (grant number: 2024GX-YBXM-530).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.
2. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.

Process. Syst. 2017, 30, 5105–5114.
3. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.
4. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep Hough voting for 3d object detection in point clouds. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.
5. Yang, Z.; Sun, Y.; Liu, S.; Shen, X.; Jia, J. Std: Sparse-to-dense 3d object detector for point cloud. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.
6. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020.
7. Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 14–19 June 2020.
8. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.
9. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
10. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel r-cnn: Towards high performance voxel-based 3d object detection. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35.
11. Hu, J.S.; Kuai, T.; Waslander, S.L. Point density-aware voxels for lidar 3d object detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022.
12. Wu, H.; Wen, C.; Li, W.; Li, X.; Yang, R.; Wang, C. Transformation-equivariant 3d object detection for autonomous driving. In

Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 13–14 February 2023; Volume 37.
13. Rong, Y.; Wei, X.; Lin, T.; Wang, Y.; Kasneci, E. DynStatF: An Efficient Feature Fusion Strategy for LiDAR 3D Object Detection.

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada, 18–22 June 2023.
14. Wang, H.; Shi, C.; Shi, S.; Lei, M.; Wang, S.; He, D.; Schiele, B.; Wang, L. Dsvt: Dynamic sparse voxel transformer with rotated

sets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22
June 2023.

15. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point
clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20
June 2019.

16. Li, J.; Luo, C.; Yang, X. PillarNeXt: Rethinking network designs for 3D object detection in LiDAR point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023.

17. Shi, G.; Li, R.; Ma, C. Pillarnet: Real-time and high-performance pillar-based 3d object detection. In Proceedings of the European
Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022.

18. Shi, G.; Li, R.; Ma, C. Pillar R-CNN for point cloud 3D object detection. arXiv 2023, arXiv:2302.13301.
19. Lozano Calvo, E.; Taveira, B. TimePillars: Temporally-recurrent 3D LiDAR Object Detection. arXiv 2023, arXiv:2312.17260.
20. Zhou, S.; Tian, Z.; Chu, X.; Zhang, X.; Zhang, B.; Lu, X.; Feng, C.; Jie, Z.; Chiang, P.Y.; Ma, L. FastPillars: A deployment-friendly

pillar-based 3D detector. arXiv 2023, arXiv:2302.02367.
21. Fan, L.; Yang, Y.; Wang, F.; Wang, N.; Zhang, Z. Super sparse 3d object detection. arXiv 2023, arXiv:2302.02367. [CrossRef]
22. Fan, L.; Wang, F.; Wang, N.; Zhang, Z. Fsd v2: Improving fully sparse 3d object detection with virtual voxels. arXiv 2023,

arXiv:2308.03755.
23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30. [CrossRef]
24. Hu, X.; Duan, Z.; Huang, X.; Xu, Z.; Ming, D.; Ma, J. Context-aware data augmentation for lidar 3d object detection. In

Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023;
IEEE: Piscataway, NJ, USA, 2023.

https://doi.org/10.3390/s18103337
https://www.ncbi.nlm.nih.gov/pubmed/30301196
https://doi.org/10.1109/TPAMI.2023.3286409
https://doi.org/10.48550/arXiv.1706.03762

Appl. Sci. 2024, 14, 3877 18 of 18

25. Ross, G. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015.

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

27. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Computer Vision,
Proceedings of the ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings, Part I 14;
Springer: Berlin/Heidelberg, Germany, 2016.

28. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015.

29. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

30. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017.

31. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The kitti dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1177/0278364913491297

	Introduction
	Related Works
	Method
	Overall Architecture of ASCA-PointPillars
	Feature Encoding Network
	Detection Neck
	Loss Function
	RS-Aug Algorithm

	Experiment and Result Analysis
	Experimental Setup
	Experimental Results
	Ablation Experiment

	Conclusions
	References

