Enhanced Moving Source Localization with Time and Frequency Difference of Arrival: Motion-Assisted Method for Sub-Dimensional Sensor Networks
Abstract
:1. Introduction
2. Localization Scenario
3. Localization Method
3.1. Gauss–Newton Iteration
3.2. Initial Solution
4. Analysis
4.1. CRLB
4.2. Bias and Covariance
4.3. Complexity
5. Simulation
5.1. 3D Scenario
5.2. 2D Scenario
5.3. Geometric Dilution of Precision
5.4. Convergence and Complexity Comparisons
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Zhao, Y.; Zhao, C. A novel algebraic solution for moving target localization in multi-transmitter multi-receiver passive radar. Signal Process. 2018, 143, 303–310. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Y.; Zou, J.; Zhang, D.; Wan, Q. Closed-Form Localization Method for Moving Target in Passive Multistatic Radar Network. IEEE Sens. J. 2020, 20, 980–990. [Google Scholar] [CrossRef]
- Elgamoudi, A.; Benzerrouk, H.; Elango, G.A.; Landry, R. A Survey for Recent Techniques and Algorithms of Geolocation and Target Tracking in Wireless and Satellite Systems. Appl. Sci. 2021, 11, 6079. [Google Scholar] [CrossRef]
- Zhang, Y.; Ho, K.C. Localization of Transmitters and Scatterers by Single Receiver. IEEE Trans. Signal Process. 2023, 71, 2267–2282. [Google Scholar] [CrossRef]
- Yang, L.; Wu, N.; Li, B.; Yuan, W.; Hanzo, L. Indoor Localization Based on Factor Graphs: A Unified Framework. IEEE Internet Things J. 2023, 10, 4353–4366. [Google Scholar] [CrossRef]
- Sun, Y.; Ho, K.C.; Wan, Q. Solution and Analysis of TDOA Localization of a Near or Distant Source in Closed-Form. IEEE Trans. Signal Process. 2019, 67, 320–335. [Google Scholar] [CrossRef]
- Sun, Y.; Ho, K.C.; Wang, G.; Chen, H.; Yang, Y.; Chen, L.; Wan, Q. Computationally Attractive and Location Robust Estimator for IoT Device Positioning. IEEE Internet Things J. 2022, 9, 10891–10907. [Google Scholar] [CrossRef]
- Sun, Y.; Ho, K.C.; Xing, T.; Yang, Y.; Chen, L. Projection-Based Algorithm and Performance Analysis for TDOA Localization in MPR. IEEE Trans. Signal Process. 2024, 72, 896–911. [Google Scholar] [CrossRef]
- Rosić, M.; Sedak, M.; Simić, M.; Pejović, P. An Improved Chaos Driven Hybrid Differential Evolutionand Butterfly Optimization Algorithm for Passive Target Localization Using TDOA Measurements. Appl. Sci. 2023, 13, 684. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Q.; Wang, J.; Chen, R. A High-Accuracy TOA-Based Localization Method Without Time Synchronization in a Three-Dimensional Space. IEEE Trans. Ind. Inform. 2019, 15, 173–182. [Google Scholar] [CrossRef]
- Gan, Y.; Cong, X.; Sun, Y. Refinement of TOA Localization with Sensor Position Uncertainty in Closed-Form. Sensors 2020, 20, 390. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Wang, W. Efficient Multistatic Radar Localization Algorithms for a Uniformly Accelerated Moving Object With Sensor Parameter Errors. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7559–7574. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Doğançay, K.; Kuruoglu, E.E. An Iteratively Reweighted Instrumental-Variable Estimator for Robust 3D AOA Localization in Impulsive Noise. IEEE Trans. Signal Process. 2019, 67, 4795–4808. [Google Scholar] [CrossRef]
- Wang, G.; Xiang, P.; Ho, K.C. Bias Reduced Semidefinite Relaxation Method for 3-D Moving Object Localization Using AOA. IEEE Trans. Wirel. Commun. 2023, 22, 7377–7392. [Google Scholar] [CrossRef]
- Tomic, S.; Beko, M.; Camarinha-Matos, L.M.; Oliveira, L.B. Distributed Localization with Complemented RSS and AOA Measurements: Theory and Methods. Appl. Sci. 2020, 10, 272. [Google Scholar] [CrossRef]
- Yang, X.; Cong, X.; Xu, Y.; Sun, Y. Closed-Form DRSS Localization Based on Projection for Sensor Networks. IEEE Sens. Lett. 2023, 7, 6004304. [Google Scholar] [CrossRef]
- Torrieri, D.J. Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 183–198. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Ho, K.C.; Xu, W. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 2004, 52, 2453–2463. [Google Scholar] [CrossRef]
- Noroozi, A.; Oveis, A.H.; Hosseini, S.M.; Sebt, M.A. Improved Algebraic Solution for Source Localization From TDOA and FDOA Measurements. IEEE Wirel. Commun. Lett. 2018, 7, 352–355. [Google Scholar] [CrossRef]
- Ho, K.C.; Lu, X.; Kovavisaruch, L. Source Localization Using TDOA and FDOA Measurements in the Presence of Receiver Location Errors: Analysis and Solution. IEEE Trans. Signal Process. 2007, 55, 684–696. [Google Scholar] [CrossRef]
- Wang, D.; Yin, J.; Zhang, T.; Jia, C.; Wei, F. Iterative constrained weighted least squares estimator for TDOA and FDOA positioning of multiple disjoint sources in the presence of sensor position and velocity uncertainties. Digit. Signal Process. 2019, 92, 179–205. [Google Scholar] [CrossRef]
- Mao, Z.; Su, H.; He, B.; Jing, X. Moving Source Localization in Passive Sensor Network with Location Uncertainty. IEEE Signal Process. Lett. 2021, 28, 823–827. [Google Scholar] [CrossRef]
- Sun, M.; Ho, K.C. An Asymptotically Efficient Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources in the Presence of Sensor Location Uncertainties. IEEE Trans. Signal Process. 2011, 59, 3434–3440. [Google Scholar]
- Qu, X.M.; Xie, L.H.; Tan, W.R. Iterative Constrained Weighted Least Squares Source Localization Using TDOA and FDOA Measurements. IEEE Trans. Signal Process. 2017, 65, 3990–4003. [Google Scholar] [CrossRef]
- Wei, H.; Peng, R.; Wan, Q.; Chen, Z.X.; Ye, S.F. Multidimensional Scaling Analysis for Passive Moving Target Localization With TDOA and FDOA Measurements. IEEE Trans. Signal Process. 2010, 58, 1677–1688. [Google Scholar]
- Ma, F.; Guo, F.; Yang, L. Low-complexity TDOA and FDOA localization: A compromise between two-step and DPD methods. Digit. Signal Process. 2020, 96, 102600. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Ansari, N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements. IEEE Trans. Veh. Technol. 2012, 62, 853–862. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements. IEEE Commun. Lett. 2016, 21, 80–83. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, H.; Wan, Q. An iterative method for moving target localization using TDOA and FDOA measurements. IEEE Access 2017, 6, 2746–2754. [Google Scholar] [CrossRef]
- Wang, Y.; Ho, K.C.; Wang, G. A Unified Estimator for Source Positioning and DOA Estimation Using AOA. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 3201–3205. [Google Scholar]
- Wang, Y.; Ho, K.C. TDOA Positioning Irrespective of Source Range. IEEE Trans. Signal Process. 2017, 65, 1447–1460. [Google Scholar] [CrossRef]
- He, S.; Dong, X.; Lu, W.S. Localization algorithms for asynchronous time difference of arrival positioning systems. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Wu, L.; Sahu, N.; Xu, S.; Babu, P.; Ciuonzo, D. Optimization Based Sensor Placement for Multi-Target Localization with Coupling Sensor Clusters. IEEE Trans. Signal Inf. Process. Netw. 2023, 9, 596–611. [Google Scholar] [CrossRef]
- Amiri, R.; Behnia, F.; Noroozi, A. An Efficient Estimator for TDOA-Based Source Localization with Minimum Number of Sensors. IEEE Commun. Lett. 2018, 22, 2499–2502. [Google Scholar] [CrossRef]
- Noroozi, A.; Sebt, M.A.; Hosseini, S.M.; Amiri, R.; Nayebi, M.M. Closed-Form Solution for Elliptic Localization in Distributed MIMO Radar Systems with Minimum Number of Sensors. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 3123–3133. [Google Scholar] [CrossRef]
- Noroozi, A.; Amiri, R.; Nayebi, M.M.; Farina, A. Efficient Closed-Form Solution for Moving Target Localization in MIMO Radars with Minimum Number of Antennas. IEEE Trans. Signal Process. 2020, 68, 2545–2557. [Google Scholar] [CrossRef]
- Sun, T.; Wang, W.; Gao, J.; Chen, P. Multistatic Localization Algorithm for Moving Object with Constant Acceleration Eliminating Extra Variables. Signal Process. 2023, 209, 109049. [Google Scholar] [CrossRef]
- Sun, T.; Wang, W. Joint Moving Target and Antenna Localization for Distributed MIMO Radar with a Calibration Object. IEEE Trans. Veh. Technol. 2023, 72, 13781–13786. [Google Scholar] [CrossRef]
- Ristic, B.; Houssineau, J.; Arulampalam, S. Robust target motion analysis using the possibility particle filter. IET Radar Sonar Navig. 2019, 13, 18–22. [Google Scholar] [CrossRef]
- Dogancay, K. Bias compensation for the bearings-only pseudolinear target track estimator. IEEE Trans. Signal Process. 2006, 54, 59–68. [Google Scholar] [CrossRef]
- Doğançay, K. 3D Pseudolinear Target Motion Analysis from Angle Measurements. IEEE Trans. Signal Process. 2015, 63, 1570–1580. [Google Scholar] [CrossRef]
- Pang, F.; Doğançay, K.; Nguyen, N.H.; Zhang, Q. AOA Pseudolinear Target Motion Analysis in the Presence of Sensor Location Errors. IEEE Trans. Signal Process. 2020, 68, 3385–3399. [Google Scholar] [CrossRef]
- Pang, F.; Doğançay, K.; Wang, H.; Shen, X. Bias Compensation Method for 3D AOA-TMA with Uncertainty in Sensor Positions. IEEE Sens. J. 2024. ahead of print. [Google Scholar] [CrossRef]
- Alexandri, T.; Walter, M.; Diamant, R. A time difference of arrival based target motion analysis for localization of underwater vehicles. IEEE Trans. Veh. Technol. 2021, 71, 326–338. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Ho, K.C.; Wang, G. 3-D Target Localization and Motion Analysis Based on Doppler Shifted Frequencies. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 815–833. [Google Scholar] [CrossRef]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming (Version 2.2); CVX Research, Inc.: Austin, TX, USA, 2020; Available online: http://cvxr.com/cvx (accessed on 1 January 2020).
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Vandenberghe, L.; Boyd, S. Semidefinite programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef]
- Yang, K.; Wang, G.; Luo, Z.Q. Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Trans. Signal Process. 2009, 57, 2775–2784. [Google Scholar] [CrossRef]
- Zou, Y.; Wan, Q. Asynchronous Time-of-Arrival-Based Source Localization with Sensor Position Uncertainties. IEEE Commun. Lett. 2016, 20, 1860–1863. [Google Scholar] [CrossRef]
- Ho, K.C. Bias Reduction for an Explicit Solution of Source Localization Using TDOA. IEEE Trans. Signal Process. 2012, 60, 2101–2114. [Google Scholar] [CrossRef]
- So, H.C.; Chan, Y.T.; Ho, K.C.; Chen, Y. Simple Formulae for Bias and Mean Square Error Computation [DSP Tips and Tricks]. IEEE Signal Process. Mag. 2013, 30, 162–165. [Google Scholar] [CrossRef]
- Wang, G.; Ho, K.C. Convex Relaxation Methods for Unified Near-Field and Far-Field TDOA-Based Localization. IEEE Trans. Wirel. Commun. 2019, 18, 2346–2360. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer: New York, NY, USA, 2006. [Google Scholar]
- Carter, G.C. Coherence and time delay estimation. Proc. IEEE 1987, 75, 236–255. [Google Scholar] [CrossRef]
Acronym | Description |
---|---|
TDOA | Time Difference of Arrival |
TOA | Time of Arrival |
AOA | Angle of Arrival |
RSS | Received Signal Strength |
FDOA | Frequency Difference of Arrival |
MLE | Maximum Likelihood Estimation |
CFS | Closed-form solution |
2SWLS | Two-Step Weighted Least Squares |
WLS | Weighted Least Squares |
CWLS | Constrained Weighted Least Squares |
CRLB | Cramér–Rao Lower Bound |
MSE | Mean-Square Error |
MDS | Multidimensional Scaling |
SDP | Semidefinite programming |
SDR | Semidefinite Relaxation |
MIMO | Multiple-Input Multiple-Output |
TMA | Target Motion Analysis |
BO | Bearing-only |
GN | Gauss–Newton |
QN | Quasi-Newton |
LM | Levenberg–Marquardt |
LMI | Linear Matrix Inequality |
SOC | Second-order cone |
FIM | Fisher Information Matrix |
RMSE | Root mean-squared error |
UAV | Unmanned aerial vehicle |
GDOP | Geometric Dilution of Precision |
Category | Method | Paper |
---|---|---|
TDOA and FDOA | CFS | [18,19,20,21,22,23,24,25,26] |
TDOA and FDOA | Iterative solution | [27] |
TDOA and FDOA | SDP solution | [28,29,30] |
BO-TMA | Particle filter | [40] |
BO-TMA | CFS | [41,42,43,44] |
TMA for TDOA only | Iterative solution | [45] |
TMA for FDOA only | CFS and SDP | [46] |
TMA for TDOA and FDOA | SDP and GN | Proposed |
Sensor No. | ||||||
---|---|---|---|---|---|---|
1 | 300 | 100 | 150 | 30 | −20 | 20 |
2 | 400 | 150 | 100 | −30 | 10 | 20 |
3 | 300 | 500 | 200 | 10 | −20 | 10 |
Sensor No. | ||||
---|---|---|---|---|
1 | 400 | 150 | −50 | −30 |
2 | 150 | −100 | −20 | 20 |
Method | GN | LM | QN |
---|---|---|---|
Time (ms) | 0.615 | 3.3 | 8.926 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X. Enhanced Moving Source Localization with Time and Frequency Difference of Arrival: Motion-Assisted Method for Sub-Dimensional Sensor Networks. Appl. Sci. 2024, 14, 3909. https://doi.org/10.3390/app14093909
Yang X. Enhanced Moving Source Localization with Time and Frequency Difference of Arrival: Motion-Assisted Method for Sub-Dimensional Sensor Networks. Applied Sciences. 2024; 14(9):3909. https://doi.org/10.3390/app14093909
Chicago/Turabian StyleYang, Xu. 2024. "Enhanced Moving Source Localization with Time and Frequency Difference of Arrival: Motion-Assisted Method for Sub-Dimensional Sensor Networks" Applied Sciences 14, no. 9: 3909. https://doi.org/10.3390/app14093909
APA StyleYang, X. (2024). Enhanced Moving Source Localization with Time and Frequency Difference of Arrival: Motion-Assisted Method for Sub-Dimensional Sensor Networks. Applied Sciences, 14(9), 3909. https://doi.org/10.3390/app14093909