The Efficiency of YOLOv5 Models in the Detection of Similar Construction Details
Abstract
:1. Introduction
- (1)
- The newly collected dataset has been prepared, is publicly available, and can be used in various computer vision tasks.
- (2)
- The five YOLOv5 models of different sizes have been experimentally investigated using the newly collected construction details. A total of 185 experiments have been performed, in which various combinations of the training and algorithm parameters have been analysed.
- (3)
- The results of the experimental investigation have shown the efficiency of different models, which allows us to see which nondefault parameters help to achieve higher object detection results. This could be useful for other researchers when analysing similar featured data.
- (4)
- The models could be used in the recommendation systems that allow the recommendation of a possible construction by detecting several dozen construction details in one image.
2. Related Works
3. Experimental Investigation
3.1. Results of the Primary Research
3.2. Results of the Main Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jucevičius, J.; Treigys, P.; Bernatavičienė, J.; Briedienė, R.; Naruševičiūtė, I.; Trakymas, M. Investigation of MRI prostate localization using different MRI modality scans. In Proceedings of the 2020 IEEE 8th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Vilnius, Lithuania, 22–24 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Wang, X.; Chen, H.; Gan, C.; Lin, H.; Dou, Q.; Tsougenis, E.; Heng, P.A. Weakly supervised deep learning for whole slide lung cancer image analysis. IEEE Trans. Cybern. 2019, 50, 3950–3962. [Google Scholar] [CrossRef]
- Shabbir, A.; Rasheed, A.; Shehraz, H.; Saleem, A.; Zafar, B.; Sajid, M.; Shehryar, T. Detection of glaucoma using retinal fundus images: A comprehensive review. Math. Biosci. Eng. 2021, 18, 2033–2076. [Google Scholar] [CrossRef] [PubMed]
- Elangovan, P.; Nath, M.K. Glaucoma assessment from color fundus images using convolutional neural network. Int. J. Imaging Syst. Technol. 2021, 31, 955–971. [Google Scholar] [CrossRef]
- Amyar, A.; Modzelewski, R.; Li, H.; Ruan, S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: Classification and segmentation. Comput. Biol. Med. 2020, 126, 104037. [Google Scholar] [CrossRef]
- Toğaçar, M.; Ergen, B.; Cömert, Z.; Özyurt, F. A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. IRBM 2020, 41, 212–222. [Google Scholar] [CrossRef]
- Stefanovič, P.; Ramanauskaitė, S. Travel Direction Recommendation Model Based on Photos of User Social Network Profile. IEEE Access 2023, 11, 28252–28262. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Wei, X. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Zhou, X.; Xu, X.; Liang, W.; Zeng, Z.; Shimizu, S.; Yang, L.T.; Jin, Q. Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems. IEEE Trans. Ind. Inform. 2022, 18, 1377–1386. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.; Li, J.; Fei, L. Face detection based on YOLOv3. In Recent Trends in Intelligent Computing, Communication and Devices: Proceedings of ICCD 2018; Springer: Singapore, 2020; pp. 277–284. [Google Scholar]
- Chen, W.; Huang, H.; Peng, S.; Zhou, C.; Zhang, C. YOLO-face: A real-time face detector. Vis. Comput. 2021, 37, 805–813. [Google Scholar] [CrossRef]
- Ye, X.; Liu, Y.; Zhang, D.; Hu, X.; He, Z.; Chen, Y. Rapid and Accurate Crayfish Sorting by Size and Maturity Based on Improved YOLOv5. Appl. Sci. 2023, 13, 8619. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, W.; Zhu, S.; Li, L.; Zhang, J. CA-YOLOv5: Detection model for healthy and diseased silkworms in mixed conditions based on improved YOLOv5. Int. J. Agric. Biol. Eng. 2024, 16, 236–245. [Google Scholar] [CrossRef]
- Hui, Y.; You, S.; Hu, X.; Yang, P.; Zhao, J. SEB-YOLO: An Improved YOLOv5 Model for Remote Sensing Small Target Detection. Sensors 2024, 24, 2193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, J.; Zhang, F.; Gao, J.; Yang, C.; Song, C.; Rao, W.; Zhang, Y. Greenhouse tomato detection and pose classification algorithm based on improved YOLOv5. Comput. Electron. Agric. 2024, 216, 108519. [Google Scholar] [CrossRef]
- Feng, S.; Qian, H.; Wang, H.; Wang, W. Real-time object detection method based on YOLOv5 and efficient mobile network. J. Real-Time Image Process. 2024, 21, 56. [Google Scholar] [CrossRef]
- Reddy, B.K.; Bano, S.; Reddy, G.G.; Kommineni, R.; Reddy, P.Y. Convolutional network based animal recognition using YOLO and Darknet. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1198–1203. [Google Scholar]
- Dewi, C.; Chen, R.C.; Jiang, X.; Yu, H. Deep convolutional neural network for enhancing traffic sign recognition developed on Yolo V4. Multimed. Tools Appl. 2022, 81, 37821–37845. [Google Scholar] [CrossRef]
- Hameed, K.; Chai, D.; Rassau, A. A sample weight and adaboost cnn-based coarse to fine classification of fruit and vegetables at a supermarket self-checkout. Appl. Sci. 2020, 10, 8667. [Google Scholar] [CrossRef]
- Construction Details Dataset. Available online: https://app.box.com/s/j420ld0wo89hvh6np1rc3z9t1e65yg2k (accessed on 13 January 2024).
- Kwon, H.J.; Kim, H.G.; Lee, S.H. Pill detection model for medicine inspection based on deep learning. Chemosensors 2021, 10, 4. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Tan, L.; Huangfu, T.; Wu, L.; Chen, W. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification. BMC Med. Inform. Decis. Mak. 2021, 21, 324. [Google Scholar] [CrossRef]
- Ou, Y.Y.; Tsai, A.C.; Wang, J.F.; Lin, J. Automatic drug pills detection based on convolution neural network. In Proceedings of the 2018 International Conference on Orange Technologies (ICOT), Nusa Dua, Indonesia, 23–26 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1251–1258. [Google Scholar]
- Ou, Y.Y.; Tsai, A.C.; Zhou, X.P.; Wang, J.F. Automatic drug pills detection based on enhanced feature pyramid network and convolution neural networks. IET Comput. Vis. 2020, 14, 9–17. [Google Scholar] [CrossRef]
- Saeed, F.; Ahmed, M.J.; Gul, M.J.; Hong, K.J.; Paul, A.; Kavitha, M.S. A robust approach for industrial small-object detection using an improved faster regional convolutional neural network. Sci. Rep. 2021, 11, 23390. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, E.; Wörgötter, F. DCNN-based screw detection for automated disassembly processes. In Proceedings of the 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Sorrento, Italy, 26–29 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 187–192. [Google Scholar]
- Mangold, S.; Steiner, C.; Friedmann, M.; Fleischer, J. Vision-based screw head detection for automated disassembly for remanufacturing. Procedia CIRP 2022, 105, 1–6. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimed. Tools Appl. 2020, 79, 23729–23791. [Google Scholar] [CrossRef]
- Zou, X. A review of object detection techniques. In Proceedings of the 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), Xiangtan, China, 10–11 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 251–254. [Google Scholar]
- Li, K.; Cao, L. A review of object detection techniques. In Proceedings of the 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang, China, 15–17 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 385–390. [Google Scholar]
- Terven, J.; Cordova-Esparza, D. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond. arXiv 2023, arXiv:2304.00501. [Google Scholar]
- Zhao, Y.; Shi, Y.; Wang, Z. The improved YOLOV5 algorithm and its application in small target detection. In Proceedings of the International Conference on Intelligent Robotics and Applications, Kuala Lumpur, Malaysia, 5–7 November 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 679–688. [Google Scholar]
- Dlužnevskij, D.; Stefanovič, P.; Ramanauskaite, S. Investigation of YOLOv5 Efficiency in iPhone Supported Systems. Balt. J. Mod. Comput. 2021, 9, 333–344. [Google Scholar] [CrossRef]
- Kvietkauskas, T.; Stefanovič, P. Influence of Training Parameters on Real-Time Similar Object Detection Using YOLOv5s. Appl. Sci. 2023, 13, 3761. [Google Scholar] [CrossRef]
- Isa, I.S.; Rosli, M.S.A.; Yusof, U.K.; Maruzuki, M.I.F.; Sulaiman, S.N. Optimizing the hyperparameter tuning of YOLOv5 for underwater detection. IEEE Access 2022, 10, 52818–52831. [Google Scholar] [CrossRef]
- Mantau, A.J.; Widayat, I.W.; Adhitya, Y.; Prakosa, S.W.; Leu, J.S.; Köppen, M. A GA-Based Learning Strategy Applied to YOLOv5 for Human Object Detection in UAV Surveillance System. In Proceedings of the 2022 IEEE 17th International Conference on Control & Automation (ICCA), Naples, Italy, 27–30 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 9–14. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; NanoCode012; Kwon, Y.; Michael, K.; Xie, T.; Fang, J.; imyhxy; et al. ultralytics/yolov5: V7.0—YOLOv5 SOTA Realtime Instance Segmentation; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Huang, Q.; Zhou, Y.; Yang, T.; Yang, K.; Cao, L.; Xia, Y. A Lightweight Transfer Learning Model with Pruned and Distilled YOLOv5s to Identify Arc Magnet Surface Defects. Appl. Sci. 2023, 13, 2078. [Google Scholar] [CrossRef]
- Ultralytics. Hyperparameter Tuning. Ultralytics YOLOv8 Docs. 3 March 2024. Available online: https://docs.ultralytics.com/guides/hyperparameter-tuning (accessed on 13 January 2024).
- Ultralytics. “Train”. Ultralytics YOLOv8 Docs. 30 March 2024. Available online: https://docs.ultralytics.com/modes/train/#train-settings (accessed on 24 January 2024).
- Ruman. YOLO Data Augmentation Explained–Ruman–Medium. Medium. 4 June 2023. Available online: https://rumn.medium.com/yolo-data-augmentation-explained-turbocharge-your-object-detection-model-94c33278303a (accessed on 24 January 2024).
Model | Image Size (pixels) | mAPval (50–95) | mAPval (50) | Speed (ms) CPU bl | Speed (ms) V100 bl | Speed (ms) V100 b32 | Params (M) | FLOPs @640 (B) |
---|---|---|---|---|---|---|---|---|
YOLOv5n | 640 | 28.0 | 45.7 | 45 | 6.3 | 0.6 | 1.9 | 4.5 |
YOLOv5s | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
YOLOv5m | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
YOLOv5l | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
YOLOv5x | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
Name of the Parameter | Value of the Parameters | Comment |
---|---|---|
Epoch number | 300, 600 | The results of our previous research [37] have shown that these parameter options allow for the highest object detection results. |
Image size | 320, 640 (pixels) | |
Batch size | 16, 32 | |
Layers freeze option | 10 | The layer freeze option [41] is a feature in which the backbone and head layers can be unused in training mode. Primary research has shown that after 10 backbone layers were frozen, training times were reduced by approximately 2 times and construction detail recognition accuracy improved by approximately 1.5 times. |
Augmentation | 13 options | The different options for data augmentation have been experimentally chosen and analysed [42,43,44]: hsv_h—HSV-Hue augmentation of the image. hsv_s—HSV-Saturation augmentation of the image. hsv_v—HSV-Value augmentation of the image. degrees—rotation (+/− degrees) of the image. translate—shifting or moving the objects within the image. scale—resizing the input images to different scales. shear—geometric deformations by tilting or skewing the images along the x or y axes. perspective—simulates perspective changes. flipud—flips the image vertically, the top becomes the bottom, and vice versa. fliplr—flips the image horizontally, the left side becomes the right side, and vice versa. mosaic—combines several images to create a single training sample with a mosaic-like appearance. mixup—combines pairs of images and their corresponding object labels to create new training examples. copy_paste—involves randomly selecting a portion of one image and pasting it onto another image while maintaining the corresponding object labels. |
Parameter | Value of the Parameter |
---|---|
Image size | 320 |
Batch size | 32 |
Epoch number | 300 |
The layers freeze option | 10 |
Augmentation | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0.9; perspective—0; flipud –0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. |
The Name of the Model | Augmentation Options | Correct Detection on Different Background | Overall Ratio of the Correct Detection | ||
---|---|---|---|---|---|
M | N | W | |||
Yolov5s_320_16_300_NoAugm | Data augmentations have not been used. | 122 | 133 | 203 | 0.14 |
Yolov5s_320_32_300_NoAugm | 118 | 141 | 196 | 0.14 | |
Yolov5s_320_16_600_NoAugm | 100 | 108 | 199 | 0.12 | |
Yolov5s_640_16_300_NoAugm | 39 | 12 | 158 | 0.06 | |
Yolov5m_320_16_300_NoAugm | 126 | 186 | 255 | 0.17 | |
Yolov5m_320_32_300_NoAugm | 156 | 187 | 226 | 0.17 | |
Yolov5m_320_16_600_NoAugm | 153 | 139 | 241 | 0.16 | |
Yolov5m_640_16_300_NoAugm | 28 | 149 | 207 | 0.12 | |
Yolov5s_320_16_300_DefAugm | hsv_h—0.015; hsv_s—0.7; hsv_v—0.4; degrees—0; translate—0.1; scale—0.5; shear—0; perspective—0; flipud—0; fliplr—0.5; mosaic—1; mixup—0; copy_paste—0. | 136 | 140 | 307 | 0.18 |
Yolov5s_320_32_300_DefAugm | 173 | 215 | 287 | 0.20 | |
Yolov5s_320_16_600_DefAugm | 115 | 143 | 359 | 0.19 | |
Yolov5s_640_16_300_DefAugm | 21 | 70 | 305 | 0.12 | |
Yolov5m_320_16_300_DefAugm | 82 | 257 | 327 | 0.20 | |
Yolov5m_320_32_300_DefAugm | 111 | 253 | 305 | 0.20 | |
Yolov5m_320_16_600_DefAugm | 128 | 166 | 326 | 0.19 | |
Yolov5m_640_16_300_DefAugm | 51 | 171 | 321 | 0.16 | |
Yolov5m_320_32_600_DefAugm | 116 | 162 | 353 | 0.19 | |
Yolov5m_640_32_300_DefAugm | 81 | 145 | 379 | 0.18 | |
Yolov5m_640_32_600_DefAugm | 94 | 119 | 342 | 0.17 | |
Yolov5s_320_16_300_Frz_CusAugm | hsv_h—0.5; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—1; mixup—0; copy_paste—0. | 158 | 244 | 309 | 0.22 |
Yolov5s_320_32_300_Frz_CusAugm | 211 | 250 | 329 | 0.24 | |
Yolov5s_320_32_600_Frz_CusAugm | 163 | 215 | 325 | 0.21 | |
Yolov5s_320_16_600_Frz_CusAugm | 148 | 231 | 313 | 0.21 | |
Yolov5s_640_32_600_Frz_CusAugm | 77 | 142 | 278 | 0.15 | |
Yolov5s_640_32_300_Frz_CusAugm | 80 | 168 | 306 | 0.17 | |
Yolov5s_640_16_600_Frz_CusAugm | 76 | 161 | 280 | 0.16 | |
Yolov5m_320_16_300_Frz_CusAugm | 243 | 355 | 347 | 0.29 | |
Yolov5m_320_32_300_Frz_CusAugm | 274 | 341 | 361 | 0.30 | |
Yolov5m_320_16_600_Frz_CusAugm | 259 | 372 | 362 | 0.30 | |
Yolov5m_640_32_600_Frz_CusAugm | 93 | 242 | 321 | 0.20 | |
Yolov5m_320_32_600_Frz_CusAugm | 257 | 338 | 374 | 0.29 | |
Yolov5m_640_32_300_Frz_CusAugm | 69 | 260 | 347 | 0.20 | |
Yolov5s_320_16_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—1; mixup—0; copy_paste—0. | 160 | 215 | 316 | 0.21 |
Yolov5s_320_32_300_Frz_CusAugm | 152 | 255 | 312 | 0.22 | |
Yolov5m_320_16_300_Frz_CusAugm | 271 | 355 | 352 | 0.30 | |
Yolov5m_320_32_300_Frz_CusAugm | 225 | 332 | 330 | 0.27 | |
Yolov5m_320_16_600_Frz_CusAugm | hsv_h—0.015; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—1; mixup—0; copy_paste—0. | 267 | 362 | 362 | 0.30 |
Yolov5m_320_32_600_Frz_CusAugm | 216 | 324 | 323 | 0.26 | |
Yolov5m_320_16_300_Frz_CusAugm | 269 | 347 | 370 | 0.30 | |
Yolov5m_320_32_300_Frz_CusAugm | 243 | 377 | 331 | 0.29 | |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0.5; mixup—0; copy_paste—0. | 264 | 411 | 441 | 0.34 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—1; mixup—0.5; copy_paste—0. | 107 | 355 | 378 | 0.25 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—1; mixup—0; copy_paste—0. | 138 | 253 | 329 | 0.22 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. | 281 | 497 | 439 | 0.37 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0.2; mixup—0; copy_paste—0. | 285 | 453 | 411 | 0.35 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0.4; mixup—0; copy_paste—0. | 268 | 400 | 360 | 0.31 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0.5; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. | 279 | 503 | 471 | 0.38 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0.7; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. | 230 | 472 | 456 | 0.35 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—0.9; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. | 322 | 509 | 485 | 0.40 |
Yolov5m_320_32_300_Frz_CusAugm | hsv_h—0.09; hsv_s—0.7; hsv_v—0.4; degrees—0.125; translate—0; scale—0.5; shear—1; perspective—0; flipud—0.5; fliplr—0.5; mosaic—0; mixup—0; copy_paste—0. | 233 | 492 | 459 | 0.36 |
Name of the Parameter | Value of the Parameters |
---|---|
Learning rate (lr0) | 0.01, 0.001, 0.0001 |
Momentum (m) | 0.9, 0.937, 0.95 |
Weight decay (wd) | 0.0001, 0.0005, 0.0007 |
Other options | The other values of the parameters have been left as default: lrf—0.01; warmup_epochs—3; warmup_momentum—0.8; warmup_bias_lr—0.05; box—0.05; cls—0.5; cls_pw—1; obj—1; obj_pw—1; iou_t—0.2; anchor_t—4; anchors—3; fl_gamma—0. |
Parameters | YOLOv5n | YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
lr0 | m | wd | Correct Detection on Different Background | Overall Ratio of the Correct Detection | Correct Detection on Different Background | Overall Ratio of the Correct Detection | Correct Detection on Different Background | Overall Ratio of the Correct Detection | Correct Detection on Different Background | Overall Ratio of the Correct Detection | Correct Detection on Different Background | Overall Ratio of the Correct Detection | ||||||||||
M | N | W | M | N | W | M | N | W | M | N | W | M | N | W | ||||||||
0.01 | 0.937 | 0.0007 | 111 | 136 | 393 | 0.1939 | 252 | 357 | 497 | 0.3352 | 215 | 494 | 458 | 0.3536 | 410 | 547 | 525 | 0.4491 | 432 | 457 | 458 | 0.4082 |
0.01 | 0.937 | 0.0005 | 142 | 107 | 414 | 0.2009 | 216 | 318 | 469 | 0.3039 | 325 | 509 | 486 | 0.4000 | 405 | 529 | 513 | 0.4385 | 433 | 510 | 451 | 0.4224 |
0.01 | 0.937 | 0.0001 | 139 | 165 | 416 | 0.2182 | 215 | 364 | 508 | 0.3294 | 280 | 491 | 481 | 0.3794 | 392 | 515 | 492 | 0.4239 | 420 | 497 | 474 | 0.4215 |
0.01 | 0.95 | 0.0007 | 158 | 163 | 378 | 0.2118 | 233 | 366 | 503 | 0.3339 | 314 | 504 | 449 | 0.3839 | 339 | 497 | 507 | 0.4070 | 436 | 488 | 468 | 0.4218 |
0.01 | 0.95 | 0.0005 | 149 | 137 | 384 | 0.2030 | 194 | 329 | 455 | 0.2964 | 239 | 513 | 438 | 0.3606 | 392 | 483 | 525 | 0.4242 | 437 | 507 | 522 | 0.4442 |
0.01 | 0.95 | 0.0001 | 124 | 123 | 386 | 0.1918 | 225 | 357 | 482 | 0.3224 | 268 | 475 | 462 | 0.3652 | 367 | 510 | 500 | 0.4173 | 438 | 480 | 466 | 0.4194 |
0.01 | 0.9 | 0.0007 | 129 | 109 | 396 | 0.1921 | 197 | 336 | 496 | 0.3118 | 296 | 470 | 463 | 0.3724 | 356 | 527 | 492 | 0.4167 | 469 | 487 | 466 | 0.4309 |
0.01 | 0.9 | 0.0005 | 142 | 127 | 376 | 0.1955 | 197 | 352 | 502 | 0.3185 | 299 | 502 | 509 | 0.3970 | 395 | 535 | 541 | 0.4458 | 450 | 486 | 476 | 0.4279 |
0.01 | 0.9 | 0.0001 | 108 | 127 | 364 | 0.1815 | 181 | 344 | 492 | 0.3082 | 245 | 457 | 482 | 0.3588 | 420 | 533 | 535 | 0.4509 | 458 | 516 | 460 | 0.4345 |
0.001 | 0.937 | 0.0007 | 64 | 28 | 218 | 0.0939 | 117 | 205 | 336 | 0.1994 | 303 | 449 | 509 | 0.3821 | 490 | 542 | 576 | 0.4873 | 453 | 569 | 544 | 0.4745 |
0.001 | 0.937 | 0.0005 | 65 | 35 | 213 | 0.0948 | 115 | 197 | 337 | 0.1967 | 290 | 443 | 506 | 0.3755 | 494 | 543 | 571 | 0.4873 | 466 | 565 | 536 | 0.4748 |
0.001 | 0.937 | 0.0001 | 61 | 36 | 217 | 0.0952 | 110 | 194 | 333 | 0.1930 | 294 | 435 | 494 | 0.3706 | 494 | 541 | 571 | 0.4867 | 462 | 554 | 538 | 0.4709 |
0.001 | 0.95 | 0.0007 | 76 | 35 | 261 | 0.1127 | 132 | 217 | 360 | 0.2148 | 307 | 460 | 523 | 0.3909 | 497 | 562 | 595 | 0.5012 | 467 | 571 | 537 | 0.4773 |
0.001 | 0.95 | 0.0005 | 85 | 38 | 264 | 0.1173 | 135 | 214 | 350 | 0.2118 | 312 | 452 | 527 | 0.3912 | 498 | 557 | 584 | 0.4967 | 475 | 572 | 532 | 0.4785 |
0.001 | 0.95 | 0.0001 | 75 | 36 | 268 | 0.1148 | 140 | 216 | 365 | 0.2185 | 323 | 451 | 533 | 0.3961 | 492 | 560 | 587 | 0.4967 | 464 | 565 | 531 | 0.4727 |
0.001 | 0.9 | 0.0007 | 23 | 12 | 151 | 0.0564 | 73 | 121 | 248 | 0.1339 | 245 | 392 | 417 | 0.3194 | 422 | 503 | 526 | 0.4397 | 442 | 535 | 525 | 0.4552 |
0.001 | 0.9 | 0.0005 | 23 | 12 | 154 | 0.0573 | 69 | 120 | 244 | 0.1312 | 248 | 390 | 410 | 0.3176 | 421 | 499 | 516 | 0.4352 | 467 | 533 | 547 | 0.4688 |
0.001 | 0.9 | 0.0001 | 20 | 13 | 152 | 0.0561 | 68 | 117 | 248 | 0.1312 | 236 | 390 | 418 | 0.3164 | 420 | 495 | 523 | 0.4358 | 452 | 545 | 534 | 0.4639 |
0.0001 | 0.937 | 0.0007 | 0 | 0 | 0 | 0.0000 | 0 | 4 | 16 | 0.0061 | 8 | 32 | 51 | 0.0276 | 47 | 33 | 35 | 0.0348 | 39 | 100 | 82 | 0.0670 |
0.0001 | 0.937 | 0.0005 | 0 | 0 | 0 | 0.0000 | 0 | 4 | 16 | 0.0061 | 8 | 33 | 49 | 0.0273 | 46 | 33 | 35 | 0.0345 | 34 | 101 | 82 | 0.0658 |
0.0001 | 0.937 | 0.0001 | 0 | 0 | 0 | 0.0000 | 1 | 5 | 19 | 0.0076 | 8 | 32 | 50 | 0.0273 | 47 | 34 | 39 | 0.0364 | 37 | 103 | 83 | 0.0676 |
0.0001 | 0.95 | 0.0007 | 0 | 0 | 0 | 0.0000 | 1 | 5 | 27 | 0.0100 | 14 | 53 | 73 | 0.0424 | 66 | 104 | 92 | 0.0794 | 82 | 193 | 126 | 0.1215 |
0.0001 | 0.95 | 0.0005 | 0 | 0 | 0 | 0.0000 | 1 | 5 | 28 | 0.0103 | 12 | 55 | 73 | 0.0424 | 67 | 105 | 93 | 0.0803 | 82 | 188 | 127 | 0.1203 |
0.0001 | 0.95 | 0.0001 | 0 | 0 | 0 | 0.0000 | 0 | 4 | 21 | 0.0076 | 14 | 54 | 72 | 0.0424 | 66 | 105 | 93 | 0.0800 | 82 | 193 | 125 | 0.1212 |
0.0001 | 0.9 | 0.0007 | 0 | 0 | 0 | 0.0000 | 0 | 2 | 4 | 0.0018 | 1 | 6 | 20 | 0.0082 | 14 | 3 | 1 | 0.0055 | 10 | 34 | 26 | 0.0212 |
0.0001 | 0.9 | 0.0005 | 0 | 0 | 0 | 0.0000 | 0 | 2 | 4 | 0.0018 | 1 | 5 | 22 | 0.0085 | 13 | 3 | 1 | 0.0052 | 11 | 32 | 24 | 0.0203 |
0.0001 | 0.9 | 0.0001 | 0 | 0 | 0 | 0.0000 | 1 | 3 | 4 | 0.0024 | 1 | 6 | 22 | 0.0088 | 13 | 3 | 1 | 0.0052 | 11 | 32 | 25 | 0.0206 |
Name of the Construction Detail | YOLOv5n | YOLOv5s | YOLOv5m | YOLOv5l | YOLOv5x | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | N | W | M | N | W | M | N | W | M | N | W | M | N | W | |
2x2_h2 | 0.00 | 0.00 | 0.13 | 0.00 | 0.04 | 0.00 | 0.07 | 0.14 | 0.19 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
1x2_h2 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.05 | 0.01 | 0.01 | 0.04 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 |
2x3_h1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2x4_h1 | 0.02 | 0.02 | 0.14 | 0.00 | 0.02 | 0.09 | 0.05 | 0.16 | 0.23 | 0.00 | 0.02 | 0.18 | 0.00 | 0.09 | 0.07 |
2x4_h2 | 0.03 | 0.04 | 0.70 | 0.03 | 0.11 | 0.59 | 0.11 | 0.21 | 0.62 | 0.22 | 0.38 | 0.53 | 0.01 | 0.07 | 0.41 |
2x2_h2_trap | 0.00 | 0.00 | 0.18 | 0.04 | 0.05 | 0.44 | 0.08 | 0.33 | 0.38 | 0.01 | 0.08 | 0.37 | 0.03 | 0.11 | 0.55 |
2x3_h2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 0.11 | 0.00 | 0.00 | 0.08 |
1x2_h2_trap | 0.00 | 0.00 | 0.21 | 0.00 | 0.00 | 0.11 | 0.00 | 0.16 | 0.21 | 0.00 | 0.16 | 0.00 | 0.11 | 0.05 | 0.05 |
2x2_h1 | 0.00 | 0.00 | 0.10 | 0.00 | 0.30 | 0.40 | 0.00 | 0.20 | 0.30 | 0.10 | 0.00 | 0.10 | 0.00 | 0.00 | 0.20 |
1x2_h3 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00 | 0.09 |
1x4_h2 | 0.00 | 0.00 | 0.06 | 0.00 | 0.22 | 0.17 | 0.11 | 0.22 | 0.17 | 0.06 | 0.17 | 0.06 | 0.06 | 0.06 | 0.17 |
4x6_h1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1x1_h2 | 0.00 | 0.00 | 0.03 | 0.00 | 0.08 | 0.11 | 0.14 | 0.19 | 0.16 | 0.00 | 0.14 | 0.05 | 0.05 | 0.00 | 0.16 |
2x6_h2 | 0.00 | 0.00 | 0.15 | 0.00 | 0.00 | 0.12 | 0.15 | 0.09 | 0.18 | 0.00 | 0.09 | 0.09 | 0.03 | 0.12 | 0.09 |
2x8_h1 | 0.00 | 0.13 | 0.50 | 0.13 | 0.25 | 0.25 | 0.38 | 1.00 | 0.50 | 0.38 | 0.63 | 0.00 | 0.25 | 0.75 | 0.38 |
1x6_h2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.67 |
2x6_h1 | 0.00 | 0.00 | 0.17 | 0.00 | 0.17 | 0.17 | 0.00 | 0.17 | 0.33 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.17 |
1x1_h2_round | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1x2_h4 | 0.00 | 0.00 | 0.50 | 0.00 | 0.67 | 0.67 | 0.33 | 0.83 | 0.83 | 0.00 | 0.33 | 0.17 | 0.00 | 0.00 | 0.17 |
4x8_h1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.50 | 0.00 | 0.50 | 0.50 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.00 |
1x1_h2_trap | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 | 0.00 | 0.67 | 0.17 | 0.00 | 0.00 | 0.00 | 0.00 | 0.17 |
4x4_h1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.50 | 0.00 | 0.50 | 0.00 | 0.00 | 0.50 |
2x2_h2 | 0.00 | 0.00 | 0.13 | 0.00 | 0.04 | 0.00 | 0.07 | 0.14 | 0.19 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
1x2_h2 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.05 | 0.01 | 0.01 | 0.04 | 0.00 | 0.02 | 0.00 | 0.00 | 0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kvietkauskas, T.; Pavlov, E.; Stefanovič, P.; Pliuskuvienė, B. The Efficiency of YOLOv5 Models in the Detection of Similar Construction Details. Appl. Sci. 2024, 14, 3946. https://doi.org/10.3390/app14093946
Kvietkauskas T, Pavlov E, Stefanovič P, Pliuskuvienė B. The Efficiency of YOLOv5 Models in the Detection of Similar Construction Details. Applied Sciences. 2024; 14(9):3946. https://doi.org/10.3390/app14093946
Chicago/Turabian StyleKvietkauskas, Tautvydas, Ernest Pavlov, Pavel Stefanovič, and Birutė Pliuskuvienė. 2024. "The Efficiency of YOLOv5 Models in the Detection of Similar Construction Details" Applied Sciences 14, no. 9: 3946. https://doi.org/10.3390/app14093946
APA StyleKvietkauskas, T., Pavlov, E., Stefanovič, P., & Pliuskuvienė, B. (2024). The Efficiency of YOLOv5 Models in the Detection of Similar Construction Details. Applied Sciences, 14(9), 3946. https://doi.org/10.3390/app14093946