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Abstract: Multi-object tracking aims to track multiple objects across consecutive frames
in a video, assigning a unique classifier to each object. However, issues such as occlu-
sions, directional changes, or shape alterations can cause appearance variations, leading
to detection and matching problems that in turn result in frequent ID switches. To solve
these issues, this paper proposes a two-stage multi-object tracking framework based on a
spatial and temporal fusion algorithm. First, the video frames are processed by a detector
to identify objects and form rectangular detection areas. Meanwhile, an estimator predicts
the target rectangular areas in the next frame. Then, we extract the optical flow of the target
pixels within the detection and prediction areas, and then a temporal information model
is established by calculating the average of the target pixels’ optical flow. Afterward, we
present a spatial information model using the R-IoU (Reverse of Intersection over Union)
between the detection and prediction areas. This spatial and temporal information is com-
bined with weighted matrix fusion, which achieves the feature matching and association
task. Finally, we implement a two-stage association multi-object tracking model using the
mentioned fusion algorithm. Experiments on the MOTChallenge dataset using the official
detector show that our two-stage multi-object tracking method based on the spatial and
temporal fusion algorithm is robust in handling occlusions and ID switch issues. As of the
submission of this paper, the proposed method has achieved the top ranking in the MOT17
benchmark when evaluated with the official detector.

Keywords: multi-object tracking; ID switches; fusion algorithm; spatial and temporal
information

1. Introduction
Multi-Object Tracking (MOT) is an important task in the fields of computer vision

and artificial intelligence, aiming to continuously track the trajectories of multiple moving
objects in video sequences. This task not only requires accurately detecting targets in each
frame but also maintaining the consistency of target identities, handling complex situations
such as occlusion between targets, interaction, and environmental changes. However,
today’s multi-object tracking tasks also face several challenges: (1) Identity switch problem.
Due to the interference of complex factors (such as obstacles, pedestrian interactions and
fast movement), it is difficult to accurately match targets in the process of tracking. These
mismatches easily lead to the same target being recognized as another target, resulting in
confusion and tracking errors. (2) Missed detections. This occurs when a target is detected
in the current frame but not in subsequent frames. This issue prevents the prediction
region from finding a corresponding detection region, leading to tracking failure. (3) False
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positives. The system incorrectly detects false targets. In such cases, the system may
erroneously associate real targets with false ones, or it may associate multiple real targets
with the same false target, resulting in tracking failure. (4) Target association problem.
Due to insufficient utilization of various features of the target by the tracker, the system
has difficulty maintaining continuous association and matching of the same target during
the association phase, leading to identity confusion or tracking loss. These issues make it
difficult for most tracking algorithms to achieve high tracking performance.

Many researchers currently address the challenges in multi-object tracking tasks within
the framework of detection-based tracking. Larsen employed the BASE [1] minimalist
probabilistic visual tracking method, which achieved significant results in enhancing
tracking performance. However, in complex scenarios, such as handling highly irregular
movements in the DanceTrack dataset, BASE’s motion model assumption of continuous
and slow-changing motion may lead to a decline in tracking performance. Liu proposed
the SparseTrack [2] multi-object tracking method, which addresses occlusion issues through
pseudo-depth-based scene decomposition and has achieved certain successes in improving
tracking performance. However, in scenes with fast-moving and deformable targets,
the pseudo-depth method struggles to accurately capture the relative depth relationships
of targets, affecting tracking performance. Zhang introduced the ByteTrack [3] multi-object
tracking algorithm framework, which solves tracking issues caused by target occlusion and
the discarding of detection boxes with low confidence by using a high-performance detector.
However, since it only utilizes one feature, either IoU or ReID, the method’s insufficient
use of target features negatively impacts tracking performance. Aharon proposed the BoT-
SORT [4] multi-object tracking method, which significantly improves tracking performance
by enhancing the Kalman filter in ByteTrack, introducing camera motion compensation,
and optimizing the IoU-ReID fusion strategy. Although this method leverages appearance
information to some extent, changes in pedestrian posture under different viewpoints affect
the shape of detection boxes, leading to inaccurate IoU calculations and increased difficulty
in extracting target appearance features. This can result in inaccurate matching during
the target association process. With the advancement and optimization of object detection
technologies, many researchers have opted to integrate high-performance detectors [5] with
trackers to obtain high-precision detection results for optimizing tracking performance.
However, this approach not only increases the cost of tracking tasks but also provides only
marginal improvements. This method still generates a significant number of IDs. In recent
years, some researchers have adopted neural network-based feature learning models to
enhance the robustness of multi-object tracking under occlusion. However, since these
methods rely solely on spatial features such as target appearance [6], the reliability of these
features is low in complex environments with mutual occlusion, leading to inaccurate
multi-object tracking. Song et al. [7] argue that temporal features (such as motion direction,
speed, and acceleration) are also crucial tracking information that can effectively enhance
multi-object tracking performance.

To address the aforementioned issues, we propose the IOF-Tracker multi-object track-
ing method, which is a two-stage model that combines spatial (R-IoU, Reverse of Inter-
section over Union) and temporal (Optical Flow) fusion algorithms. This method enables
the tracker to fully utilize the optical flow motion features of the targets and combine the
reverse intersection over union (R-IoU) between the detection and prediction regions for
template matching. This reduces the frequent ID switching during tracking and allows the
tracker to achieve long-term continuous tracking. The method enhances the accuracy and
robustness of the tracker in handling multi-object tracking tasks, leading to more stable and
precise multi-object tracking. Both the optical flow method [8,9] and the IoU method [10]
are classical techniques. In this paper, we have chosen these two classic features as the base-
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lines, and the R-IoU and mean optical flow are designed to make the features more suitable
for multi-object tracking. Although some existing multi-object tracking methods [11] in the
literature also involve the IoU and optical flow features, their performance still needs to be
improved. In contrast, our method leverages the mean optical flow of targets to handle
more complex scenes and combines R-IoU features to achieve multi-feature association,
resulting in better tracking performance.

During the tracking process, we first use an existing detector to identify target regions
in each frame. We then apply a Kalman filter to predict the positions of each target
in future frames. The Kalman filter predicts the current position based on the target’s
motion model and the previous state. It corrects this prediction using the detected position
information. By calculating the Kalman gain, which balances the weight between prediction
and observation, the target state is updated to more accurately estimate the possible
positions of the target in future frames, i.e., the predicted regions. Next, we extract optical
flow information from both the detection regions and predicted regions of each target.
During extraction, we average the optical flow information of all pixels within the region
to obtain an average optical flow vector, reducing the noise interference in the optical flow.
Subsequently, we calculate the R-IoU between the detection regions and predicted regions
to obtain spatial information, which measures their spatial overlap. The feature fusion is
achieved by weighting the addition of these two pieces of information in matrix dimensions.
Finally, we integrate this fusion model into each stage of the two-stage cascaded matching.
This allows the tracker to fully utilize both the temporal and spatial features of targets
during the association and matching phase, thereby our approach can enhance the tracking
performance of the tracker. The main contributions of this paper are as follows:

• To obtain the overall motion trend of the target and to suppress noise interference,
we calculate the average optical flow vectors of each pixel within the detection
and prediction regions. The average optical flow can improve the robustness of
motion estimation.

• To address the issue that most trackers underutilize target motion features during
multi-object tracking, we introduce the temporal feature represented by optical flow
and the spatial feature indicated by R-IoU (Reverse of Intersection over Union). By fus-
ing these temporal and spatial features, we develop a model that enhances the tracking
performance of the tracker.

• We integrate the R-IoU and optical flow feature fusion model into a two-stage associa-
tion tracking framework. Experimental results show that our IOF-Tracker multi-object
tracking method significantly improves the tracking performance. On the MOT17
dataset, our method’s HOTA score reaches 64.9. At the time of submission, our method
ranks first on the MOT17 dataset.

2. Methods
In this section, we introduce the main implementation principles of the IOF-Tracker

multi-object tracking method and demonstrate a two-stage multi-object tracking framework
based on the fusion of temporal and spatial features (R-IoU and optical flow feature fusion
model). The implementation principles of this tracking method are illustrated in Figure 1.

The input video frames are first processed by a detector to divide the detected multiple
object bounding boxes into high-scoring detections and low-scoring detections. The in-
formation within the high-scoring detections is input into a deep appearance extractor
(SBS-S50) [12] to extract appearance features, obtaining the deep features of the target
images (ReID) [13]. We then use a Kalman filter with camera motion compensation to
estimate the predicted bounding boxes and extract the average optical flow vectors of the
pixels within the detection and prediction boxes. By matching the optical flow vectors in
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these two boxes, we generate an optical flow feature similarity matrix. Next, we calculate
the non-overlapping degree of the detection and prediction boxes to obtain the R-IoU
feature similarity matrix. We combine these two features with weighted fusion to create a
fused R-IoU and optical flow feature similarity matrix, which is then used in the two-stage
association tracking process.

Video frames

Detector

Estimate

camera 

motion

First association

based fused

R-IoU , optical-flow And 

appearance feature

Second association

based R-IoU and 

optical-flow 

High score detections

Low score detections

Spatio-temporal feature 

fusion model

Predicted 

BB

based on 

KF

Warp matrix(A) 

from t-1 to t

Tracklets t-1

Tracklets management:

  -Update kalman filter

-Update  appearance

 -Create new tracklets

   -Kill inactive tracklets

Unmatched tracklets

M
a
tc

h
ed

 t
ra

ck
le

ts

Tracks t

Deep appearance 

extractor

(SBS-S50)

Tracklets t

Figure 1. IOF-Tracker multi-object tracking method.

When the tracking enters the association phase, during the first association, we match
the target information between the high-scoring detections and predicted boxes using
the fused R-IoU and optical flow features, combined with ReID. The first association
produces three results: matched tracklets, unmatched detections and remaining tracklets.
The matched tracklets proceed to the tracklets updating, unmatched detections build new
tracklets, and the remaining tracklets are associated with low-scoring detections for a second
association based on the fused R-IoU and optical flow features. The second association
generates two results: matched tracklets and re-remaining tracklets. The matched tracklets
proceed to the tracklets updating, while the remaining tracklets undergo a similar process.
If they remain unmatched for 30 consecutive frames, the re-remaining tracklets are placed
in the lost tracklets. We will provide detailed introductions to the two-stage tracking
framework and the fused R-IoU and optical flow feature model in subsequent sections.
Specifically, our approach is shown step by step in the pseudocodes (Algorithm 1).
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Algorithm 1: IOF-Tracker: A Two-Stage Multiple Targets Tracking Method Using Spatial-Temporal Fusion
Algorithm.

Data: Video frame set F, initial tracking state set Tt−1

Result: Updated tracking state set T∗t , lost target set L
Input : Dt, Pt

Output : T∗t , L
1 Ft // Current frame
2 Dt ← Detect Objects(Ft) // detection boxes
3 Dh, Dl ← Detect Objects(Ft) // High scoring detection boxes Dh, low scoring detection boxes Dl

4 Pt ← Predict Tracks(Tt−1) // Predict the target bounding boxes in the next frame
5 OF ← Calculate OF Vectors(Dt, Pt) // Calculate the average optical flow vectors to represent

the temporal information of the target
6 OFd ← ∥((Dt, Dt + 1) and (Pt, Pt + 1))∥ // Calculate the Euclidean distance of the optical flow

vector for consecutive frames
7 IoU ← Calculate IoU(Dt, Pt) // Calculate the Intersection over Union (IoU)
8 IoUd ← 1− IoU // IoUd is an element in the IoU distance matrix
9 IoUdm, OFdm← Calculate Feature Matrix(IoUd, OFd) // Calculate the feature similarity matrices

of IoUd and OFd separately
10 S f ← α× IoUdm + (1− α)×OFdm // S f is the similarity matrix obtained by fusing IoU and OF

features
11 S // S is the feature similarity matrix obtained by fusing S f and ReID

12 MTh, UDh, RTh ← Match(Dh, Pt, S)⊗ θ1 // The relationship between first stage matching judgment
and θ1

13 T∗t ← Update Tracks(MTh, Tt−1) // Update tracking states
14 MTl , UDl , RRT ← Match(Dl ∪ RTh, Pt, S f )⊗ θ2 // The relationship between second stage matching

judgment and θ2

15 T∗t ← Update Tracks(MTl , T∗t ) // Update tracking states
16 foreach track ∈ RRT do
17 i← 0
18 while i < 30 and track /∈ L do
19 Dt+i ← Detect Objects(Ft+i)

20 MT, UD, remainingRRT ← Match(Dt+i, Pt+i, S f )

21 if track ∈ remainingRRT then
22 T∗t ← Update Tracks(MT, T∗t )
23 i← 30

// If the track is matched within 30 frames, update i and break the loop

24 end
25 else
26 i← i + 1

// If the track is not matched within the next 30 frames, add it to the lost track
set L

27 end
28 if i = 30 then
29 L← L ∪ {track}
30 end
31 end
32 end
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2.1. Fusion Model of R-IoU and Optical Flow Features
2.1.1. Optical Flow Features

Optical flow [14] is caused by the movement of foreground objects, camera motion,
or both. The optical flow feature is represented by assigning a velocity vector to each pixel in
the image. These velocity vectors form the optical flow field. In the absence of moving objects,
the optical flow field usually appears continuous and uniform. However, when moving
objects are present in the image, their optical flow features will differ from the stationary
background, resulting in discontinuous and uneven characteristics in the optical flow field.

In this section, we optimize the optical flow field calculation based on Gunnar
Farneback’s optical flow algorithm [15]. Farneback’s algorithm estimates optical flow
by polynomial fitting for each pixel and its neighboring pixels. However, due to the large
number and complexity of pixels in the target area, the optical flow vectors obtained for
each pixel are significantly affected by noise, making optical flow feature matching difficult.
Therefore, we optimize this by averaging the optical flow vectors obtained for each pixel,
generating a mean optical flow vector with less noise.

Since the Farneback optical flow method is already integrated into the current OpenCV,
we only provide the basic steps for calculating the optical flow vector of a moving target
as follows:

Assume that the image sequence is denoted as I(x, y, t), where X = [x, y]. An image
sequence is represented by each consecutive frame extracted from the video. Assuming
constant image brightness, i.e., there is no change in image brightness, the derivative is 0.
The formula is as follows:

dI(X, t)
dt

=
∂I
∂X

∂X
∂t

+
∂I
∂t

= 0 (1)

where, ∂X
∂t represents velocity in a small time interval, which can be denoted as ∂X

∂t =[
∂x
∂t , ∂y

∂t

]
= [u⃗, v⃗]. Then, the following equations can be derived:

Ixu + Iyv + It = 0 (2)

[
Ix Iy

][ u⃗
v⃗

]
= −It (3)

By following the basic steps for solving optical flow as described above and combining
them with the Farneback optical flow method, we can obtain the horizontal component
and vertical component of the optical flow for each pixel.

For a certain pixel (k, l), its optical flow vector can be expressed as (u⃗k,l , v⃗k,l), where u⃗
and v⃗ represent the motion components of the pixel in the horizontal and vertical directions,
respectively.

Since the magnitude of the resultant vector can be directly used to detect the intensity
of motion, such as determining whether there is noticeable motion in a certain area. Direc-
tion information helps analyze the movement trend of objects: For example, whether the
object is moving left, right, up, or down. The direction information better describes and
matches different motion patterns. Therefore, we process the (u⃗k,l , v⃗k,l) components of each
pixel point as follows.

First, we perform the average optical flow vector as shown in Equation (4).

u⃗avg =
1

P×Q

P

∑
k=1

Q

∑
l=1

u⃗k,l , v⃗avg =
1

P×Q

P

∑
k=1

Q

∑
l=1

v⃗k,l (4)

where P×Q is the number of pixel points in the target area.
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Then, the average sum vector M⃗avg is expressed as depicted in Equation (5).

M⃗avg =
(
u⃗avg, v⃗avg

)
(5)

The final achieved effect is shown in Figure 2.
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Figure 2. Principle of average optical flow of pixel points.

2.1.2. Optical Flow Feature Matching

In optical flow vector similarity matching, we use the Euclidean distance between
optical flow vectors to compare the similarity of the average optical flow vectors of targets
in consecutive frames. If the Euclidean distance between two average optical flow vectors
falls within a certain set threshold, the targets within the detection and prediction regions
are considered likely to be the same target. This is shown in Equation (6).

d =
∥∥∥M⃗1 − M⃗2

∥∥∥ (6)

where M⃗1 and M⃗2 are the average optical flow vectors of two target boxes in consecutive
frames. By setting a threshold τ, if d > τ, it indicates that the optical flow information of the
targets does not match. Conversely, if d < τ, it indicates that the optical flow information
of the targets matches.

2.2. Spatial Position Matching

In target tracking and detection tasks, IoU (Intersection over Union) [16] is a commonly
used metric to evaluate the positional matching degree between two rectangular boxes
(usually the target detection box and the tracking box). IoU value measures the ratio of the
overlapping area of the two rectangular boxes to their union area and is typically used to
measure the matching degree between the predicted bounding box and the ground truth
bounding box.

Spatial position matching calculation steps:
For two consecutive frames of images, suppose that in frame t there is a set of detection

boxes A = {A1, A2, . . . , Am}, and based on frame t− 1, the predicted box set for frame t
is B = {B1, B2, . . . , Bn}. All elements within set A are the (x, y, w, h) of each detection box,
while all elements within set B are the (x, y, w, h) of each predicted box.
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Calculate the IoU values for each pair of detection boxes and predicted boxes, as shown
in Equation (7).

IoU(A, B) =
Ap ∩ Bq

Ap ∪ Bq
, p = (1, 2, 3, .., m.), q = (1, 2, 3, . . . , n) (7)

Distance representation of IoU values:
IoU values range between 0 and 1, where values closer to 1 indicate greater similarity

between the two bounding boxes. To convert the IoU value into a “distance” form, we can
use the following transformation Formula (8).

R-IoU = 1− IoU (8)

This transformation method leverages the complement set portion of the IoU. If two
boxes are perfectly aligned, IoU = 1, the complement set portion is 0. If two boxes do not
overlap at all, IoU = 0, and the complement set portion is 1. Similarly to the optical flow
method, a threshold is set. When the complementary set exceeds this threshold, the two
boxes are considered non-overlapping. Smaller values of the complementary set indicate
higher overlap. This process generates an R-IoU similarity matrix, similar to the optical
flow method.

2.3. Feature Fusion

This section includes two fusion modules. The R-IoU, optical flow, and appearance
feature fusion model is used in the first stage of the tracking framework, while the R-IoU
and optical flow feature fusion model is used in the second stage.

2.3.1. R-IoU and Optical Flow Feature Fusion Model

Assume that dR-I o U
i,j is the value based on R-IoU, and dOptFlow

i,j is the combined distance
value based on optical flow. The final feature similarity distance can then be represented as
dSFusion

i,j . The formula is shown in (9).

dSFusion
i,j = α · dR-I o U

i,j + (1− α) · dOptFlow
i,j (9)

where α is a weighting factor used to balance the contributions of R-IoU and optical flow in
the tracking task. The final feature similarity matrix is composed of dSFusion

i,j . Through this
process, the R-IoU and optical flow information fusion model is obtained, which will be
applied to the second association stage of the tracking framework.

The R-IoU and optical flow feature fusion model is shown in Figure 3. In branch 1,
the video frame image is input, and the detector detects the target boxes in the current frame.
Meanwhile, the optical flow algorithm obtains the overall optical flow of the image and
extracts the average optical flow vector of the target area. In branch 2, the estimator uses
information from the previous frame to predict the bounding boxes for the current frame
and then extracts the average optical flow vector within the predicted boxes. Subsequently,
the R-IoU method is used to compute the complementary set between detection boxes
and predicted boxes, and this value is compared with threshold δ1. Values greater than δ1

indicate that the detection box and prediction box do not match using the R-IoU method,
while values less than δ1 indicate a match. Similarly, the average optical flow vectors
within the detection and prediction boxes are combined and measured using a certain
method, and this value is compared with threshold δ2. Values greater than δ2 indicate that
the boxes do not match using the optical flow feature method, while values less than δ2

indicate a match. Then, the R-IoU feature similarity matrix and the optical flow feature
similarity matrix are fused using a matrix weighting method to obtain the fused feature
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similarity matrix. The Hungarian algorithm (HA) is applied to this fused matrix to perform
one-to-one matching between detection boxes and prediction boxes, ultimately obtaining
the optimal tracking boxes.
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Figure 3. Feature fusion model.

2.3.2. R-IoU, Optical Flow and Appearance Feature Fusion Model

The model fuses three features: the R-IoU feature, the optical flow feature and the
appearance feature obtained from ReID. As shown in Formula (10), When both the ap-
pearance cosine distance dcos

i,j and the fusion model distance dSFusion
i,j are less than the given

thresholds, we use the appearance cosine distance as the new fused distance d̂cos
i,j ; Other-

wise, we set the new fused distance d̂cos
i,j to 1. Then, we use the minimum value between

the spatiotemporal fusion model d̂cos
i,j and the new distance d̂cos

i,j as the final value for the
elements in the cost matrix C. Our formula for the R-IoU and optical flow feature fusion
combined with ReID can be expressed as follows:

d̂cos
i,j =

{
dcos

i,j ,
(

dcos
i,j < θemb

)
∩
(

dSFusion
i,j < θfusion

)
1, otherwise

, Ci,j = min
{

dSFusion
i,j , d̂cos

i,j

}
(10)

where Ci,j represents the (i, j) element of the cost matrix C, dcos
i,j represents the appearance

cosine distance of the target within the prediction box and the detection box, d̂cos
i,j is the new

distance score after fusion, dSFusion
i,j is the distance score after fusion of R-IoU and optical

flow motion features. θemb and θ f usion are both set thresholds, where we set both θemb and
θ f usion to 0.5. Through this process, we can obtain a fusion model that simultaneously
integrates R-IoU, optical flow features, and appearance features. For the cost matrix C,
the Hungarian algorithm can be used to find the optimal one-to-one matching results
between detection boxes and prediction boxes. This model will be applied to the first
association stage of the tracking framework. The R-IoU, optical flow and appearance
feature fusion model is shown in Figure 3.

Based on the aforementioned content, we can obtain our spatiotemporal feature
information model (i.e., the R-IoU, optical flow and appearance feature fusion model for
the first association stage, and the R-IoU and optical flow feature fusion model for the
second association stage). This model will be used in the matching and association module



Appl. Sci. 2025, 15, 107 10 of 17

of the tracking framework in Section 2.4 to associate spatiotemporal features of targets
across consecutive frames.

2.4. Two-Stage Tracking Framework

The primary function of the two-stage tracking framework is to process high and low-
scoring detection boxes through different association methods in separate stages, followed
by a comparative loop to filter out high-quality target detection boxes. First, for high-
scoring detection boxes, they participate in the first-stage association, which results in three
outcomes: matched tracklets (MT), unmatched detections (UD), and remaining tracklets
(RT). Matched tracklets enter tracklets update (MTU), unmatched detections enter new
tracklets (UDN), and remaining tracklets (RT) are those that are neither new nor matching
with previous trajectories and require further correction. Then, UDN continues with the
first association in subsequent frames, while RT associates with low-scoring detection boxes
in the second round. This results in matched tracklets (MT) and re-remaining tracklets
(RRT). Matched tracklets enter tracklets updation (MTU), and re-remaining tracklets (RRT)
undergo similar operations as before. If the loop repeats for 30 frames without a match,
the RRT is discarded. The principle is illustrated in Figure 4.
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Figure 4. The two-stage tracking framework

3. Experimental Results and Analysis
3.1. Dataset Section

This experiment was conducted on the two most popular datasets in the field of multi-
target tracking under unconstrained environments for pedestrian detection and tracking:
MOT17 [17] and MOT20 [18]. MOT17 contains video sequences captured by both static
and moving cameras. In contrast, MOT20 includes crowded scenes and has added new
video sequences and more complex scenarios, significantly enhancing the test for target
tracking algorithms. Both datasets contain training and test sets but no validation set.

3.2. Experimental Environment

In this paper, we conducted all experiments and training using the PyTorch framework
on a desktop computer equipped with the operating system Ubuntu 20.04, a processor
of 12 vCPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz, and a GeForce RTX 3080ti
GPU. For a fairer comparison, we directly used a publicly available detector, which was
trained on MOT17 and MOT20 through ablation studies. For optical flow feature extraction,
we used the trained detector to detect targets and extract optical flow within the target
boxes. In all experiments, we used a two-stage tracking algorithm with a default detection
score threshold of 0.6. In the linear assignment step, if the similarity distance between the
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detection box and the tracking box exceeds 0.5, the match is rejected. For lost tracks, we
keep them for 30 frames in case they reappear.

3.3. Benchmark Evaluation Metrics for Multi-Object Tracking

This paper uses six evaluation metrics [19] to assess the performance of the tracking
algorithm.

(1) FP (False Positive): False alarms indicating that a tracking trajectory was generated
when there was no real object.

(2) FN (False Negative): Missed detections indicating that a real object was present but
no tracking trajectory was generated.

(3) IDF1 (IDF1 Score): This combines the precision and recall of identifying objects across
frames and measures the tracker’s ability to maintain consistent object identities
throughout the video sequence.

(4) IDs (ID Switches): The number of times the target ID changes, primarily measuring
the consistency of the target tracking trajectory.

(5) MOTA (Multiple Object Tracking Accuracy): Tracking accuracy, measuring the perfor-
mance of the tracking algorithm in detecting objects and maintaining tracking trajectories.

(6) HOTA (Higher-Order Tracking Accuracy): This is a metric used to evaluate the
performance of multi-object tracking. Unlike traditional metrics such as MOTA and
IDF1, HOTA aims to comprehensively reflect the tracking algorithm’s capabilities
in localization and identification. It considers several higher-order factors, such as
the accuracy of objects, the consistency of relative positions, and the complexity of
maintaining target identities.

3.4. Weight Selection Experiment

To determine the weight coefficients in our R-IoU and optical flow fusion model,
we conducted tests to select these weight coefficients. Due to the limited number of
submissions allowed by MOTChallenge for official user results, we used the latter half of
the MOT17 training set as the standard for weight selection tests, based on the SDP detector
provided by the official.

We selected weights with high MOTA and IDF1 scores and a low number of ID
switches as the optimal weight coefficients. Here, α represents the weight coefficient for the
IoU feature similarity matrix, and in the table, we use β to denote (1− α), which represents
the weight coefficient for the optical flow feature similarity matrix. From the experiments in
Table 1, which tested each training set of MOT17-SDP, it was found that to achieve both the
highest MOTA and IDF1 scores and the fewest ID switches, the weight α should be selected
as 0.8 and β as 0.2. This combination of weights proved to be relatively optimal. Through
the weight selection experiment, when α is set to 0.8 and β to 0.2, the three evaluation
metrics of the MOT17-SDP training set all reached the ideal values we desired.

Table 1. Weight selection test based on the latter half of the MOT17 training set (↑: The higher
the parameter, the better. ↓: The lower the parameter, the better. ✓: indicates selection. Bold font:
indicates the best value in that column).

α β 0 0.1 0.2 0.3 0.4 0.5 MOTA ↑ IDF1 ↑ IDs ↓
1.0 ✓ 91.374 84.823 339
0.9 ✓ 91.364 84.838 342
0.8 ✓ 91.404 85.744 320
0.7 ✓ 90.822 83.809 399
0.6 ✓ 86.489 74.332 1050
0.5 ✓ 80.950 69.320 1550
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3.5. Ablation Study

Our ablation study primarily aims to verify whether our R-IoU and optical flow feature
fusion model can improve the benchmark metrics for multi-object tracking. Due to the
official restrictions imposed by MOTChallenge on the number of attempts, researchers can
submit results to the test server, we continued to use part of the MOT17-SDP training set
for testing.

As shown in Table 2, adding optical flow features alone to the baseline significantly
reduces the benchmark tracking metrics. This issue arises because the MOT17 dataset is
a multi-object tracking dataset with a high pedestrian density. The interactions between
pedestrians during overlapping have a large impact on the optical flow field. Therefore,
the tracking methods that rely solely on optical flow perform poorly. On the other hand,
only using R-IoU features considers the spatial position information of bounding boxes,
but unable to effectively handle partial occlusion scenarios. When a target is partially
occluded, the R-IoU value may drop significantly, leading to incorrect matches or tracking
loss. However, combining R-IoU and optical flow features can address or mitigate some of
the above issues to some extent. Optical flow provides rich information about the target’s
motion, and even in the case of partial occlusion. Because optical flow can still be inferred
effectively based on the motion patterns in the unoccluded regions. It handles situations
where the target is partially occluded, thereby reducing incorrect matches or tracking loss.
By fusing these two features, the robustness and accuracy of tracking can be improved.
Additionally, the data in Table 2 also shows that the baseline with the fusion of R-IoU and
optical flow features can achieve excellent scores in IDF1 and IDs.

Table 2. Impact of the addition of the R-IoU and optical flow feature fusion model on the overall
tracking algorithm performance (↑: The higher the parameter, the better. ↓: The lower the parameter,
the better. ✓: indicates selection. Bold font: indicates the best value in that column).

Method R-IoU Opt-Flow MOTA ↑ IDF1 ↑ IDs ↓

Baseline
✓ 91.147 84.693 339

✓ 68.384 63.784 3446
✓ ✓ 91.404 85.744 320

The ablation experiment in Table 3, which involves adding the R-IoU and optical flow
feature fusion model in stages, shows that solely integrating our module into either the
first or second stage of the two-stage tracker does not achieve the most ideal results. Only
by using the R-IoU spatial features and optical flow temporal features in both stages can
the test benchmark metrics reach relatively better results.

Table 3. The impact of applying the R-IoU and optical flow feature fusion model at different stages of
the tracking framework on the overall tracking algorithm performance (↑: The higher the parameter,
the better. ↓: The lower the parameter, the better. ✓: indicates selection. Bold font: indicates the best
value in that column).

Method Stage 1 Stage 2 MOTA ↑ IDF1 ↑ IDs ↓

Baseline + Fusion model
✓ 91.425 85.557 329

✓ 91.368 84.513 360
✓ ✓ 91.404 85.744 320
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3.6. Qualitative Analysis of Multi-Object Tracking Performance
3.6.1. Performance Analysis of Handling Specific Target Occlusion Problems

To more intuitively validate the performance of our multi-object tracking method in
handling occlusion issues during target tracking, we have applied this method to videos
from the MOT15 and MOT17 datasets.

In Figure 5 we used the popular BYTEtrack method as well as our IOF-Tracker method
to test the tracking performance on two videos from the MOT15 and MOT17 datasets
where occlusion is more pronounced. The figure shows that when using the BYTEtrack
method, the pedestrian with ID 19 in the MOT15 dataset and the pedestrian with ID 3 in
the MOT17 dataset are assigned new IDs of 39 and 34, respectively, after being occluded.
However, when using our IOF-Tracker method, the pedestrian with ID 19 in the MOT15
dataset and the pedestrian with ID 3 in the MOT17 dataset retain their original IDs of
19 and 3, respectively, even after being occluded. Therefore, our method demonstrates
superior performance in handling occlusion issues during multi-object tracking.
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Figure 5. Performance analysis of handling occlusion problems (Different colored target boxes
represent different ID information).

3.6.2. Performance Analysis of Multi-Object Tracking

To visually validate the performance of our multi-object tracking method in handling
real-world tracking tasks, we present the test tracking results in MOT17 datasets, as shown
in Figure 6.

Figure 6 presents a qualitative comparison of the performance between our IOF-
Tracker method and the two best-performing multi-object tracking methods currently
available. As seen in the figure, BYTEtrack assigns the pedestrian labeled as 25 in frame
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88 an ID of 88 after prolonged occlusion. In contrast, both our IOF-Tracker method and
BoTSORT correctly identify the pedestrian as number 20 in frame 88 and maintain this ID
after the long occlusion. This indicates that BYTEtrack undergoes multiple ID switches
before frame 88 video information arrives and performs poorly in handling occlusions,
while our IOF-tracker method and BoTSORT handle occlusion issues better in the tracking
process. Upon comparing the newly appearing pedestrian target in frame 382, we find that
BYTEtrack and BoTSORT assign pedestrian IDs of 139 and 98, respectively, whereas our
IOF-Tracker method assigns the ID of 91. This suggests that while BoTSORT maintains
longer continuous tracking than BYTEtrack, it still generates a significant number of IDs
during the tracking process. In contrast, our IOF-Tracker method clearly addresses the
issue of frequent ID switching during long continuous tracking. Therefore, our tracking
method demonstrates significant effectiveness in handling occlusion during multi-object
tracking in real-time scenarios and managing issues related to frequent ID switching.
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Figure 6. Qualitative analysis of multi-object tracking performance (Different colored target boxes
represent different ID information).

3.7. Benchmark Evaluation

We conducted tests on our IOF-Tracker algorithm using the MOT17 and MOT20 test
sets, comparing the performance of our feature fusion combined tracker in Tables 4 and 5.
Our tests all used publicly available detectors, and all results were directly obtained from
the official MOTChallenge evaluation server. Since the speed of each method depends
on the device they are implemented on, and tracking based on detection usually does
not calculate the time spent on detection, we do not compare the FPS performance here.

Through the benchmark scores in Table 4, on MOT17, our feature fusion model
combined tracker performs excellently in the main evaluation metrics, namely MOTA,
IDF1, IDs, and HOTA, outperforming all other advanced trackers. This indicates that the
multi-object tracker with our feature fusion module can exhibit a certain degree of stability
in tracking some difficulties. In Table 5, on the MOT20 dataset, the only metrics that reached
the optimal performance were MOTA and HOTA. We analyzed the reasons for this: firstly,
the population density in the MOT20 dataset is much larger than that in MOT17, resulting
in more frequent crowd interactions and a greater impact on the optical flow field, causing
frequent interactions between pedestrians and leading to chaos in the optical flow field.
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Secondly, some scenes in MOT20 are in dimly lit night conditions with large variations
in lighting intensity. Changes in lighting intensity (such as shadows, reflections, etc.) can
cause variations in surface brightness, which poses a challenge for optical flow calculation.
Therefore, using our module for multi-object tracking in extremely crowded scenarios like
MOT20 presents certain challenges.

Table 4. Results on MOT17 challenge test set (↑: The higher the parameter, the better. ↓: The lower
the parameter, the better. Bold font: indicates the best value in that column).

Tracker MOTA ↑ IDF1 ↑ HOTA ↑ FP ↓ FN ↓ IDs ↓
UTM [20] 63.5 65.1 52.5 33,683 170,352 1686

CenterTrack [21] 67.8 64.7 52.2 18,498 160,332 3039
SOTMOT [22] 71.0 71.9 - 39,537 118,983 5184

TransCenter [23] 73.2 62.2 54.5 23,112 123,738 4614
FairMOT [24] 73.7 72.3 59.3 27,507 117,477 3303
SiamMOT [25] 76.3 72.3 - - - -
TransMOT [26] 76.7 75.1 61.7 36,231 93,150 2346
OCSORT [27] 78.0 77.5 63.2 15,129 107,055 1950

StrongSORT [28] 78.3 78.5 63.5 27,876 86,205 1446
ByteTrack [3] 78.9 77.2 62.8 25,491 83,721 2196

FeatureSORT [29] 79.6 77.2 63.0 29,588 83,132 2269
Ours 80.5 79.9 64.9 27,245 81,653 1370

Table 5. Results on MOT20 challenge test set (↑: The higher the parameter, the better. ↓: The lower
the parameter, the better. Bold font: indicates the best value in that column).

Tracker MOTA ↑ IDF1 ↑ HOTA ↑ FP ↓ FN ↓ IDs ↓
MLT [30] 48.9 54.6 43.2 45,660 216,803 2187

FairMOT [24] 61.8 67.3 54.6 103,440 88,901 5243
TransCenter [23] 61.9 50.4 - 45,895 146,347 4653
SiamMOT [25] 67.1 69.1 - - - -
SOTMOT [22] 68.6 71.4 - 57,064 101,154 4209
OCSORT [27] 75.7 76.3 62.4 19,067 105,894 942
ByteTrack [3] 75.7 74.9 60.9 26,249 87,594 1223

StrongSORT [28] 72.2 75.9 61.5 16,632 117,920 770
FeatureSORT [29] 76.6 75.1 61.3 25,083 95,027 1081

Ours 77.7 75.0 62.0 25,019 88,959 1530

4. Conclusions
In this paper, we propose the IOF-Tracker, a two-stage multi-object tracking method

that integrates spatial and temporal feature fusion, aiming to enhance tracking accuracy
and robustness by combining static spatial positions with dynamic temporal motion. To re-
duce the impact of noise on optical flow information, we estimate the temporal features of
the target using the average optical flow of each pixel. We represent the spatial information
using the R-IoU value between the target detection box and the predicted box. By fusing
temporal and spatial features and applying them to a two-stage association tracking algo-
rithm, the tracker can fully utilize the spatiotemporal features of the target for association
matching during the tracking process, thereby reducing the occurrence of ID switches due
to target occlusion and interaction in multi-object tracking. The robustness of optical flow
vectors in estimating subtle movements across consecutive frames also contributes to high
scores in the tracking benchmark IDF1. In practical applications, such as autonomous
driving or intelligent security scenarios, it is only necessary to replace the corresponding
dataset and train the detector so that it can be used for the detection stage of the tracking
targets. This allows the IOF-Tracker multi-object tracking method to perform real-time
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multi-object tracking in different application scenarios. Although this method can address
tracking issues due to occlusion to some extent, especially in sparsely populated scenes
where it performs exceptionally well, in densely populated scenes, frequent interactions
between targets can affect the stability of the optical flow field, potentially leading to less
than ideal tracking performance. Therefore, in future work, we will continue to improve
the spatiotemporal feature fusion module and introduce an adaptive weight adjustment
mechanism. This will enable the fusion module to dynamically adjust the weights of spatial
and temporal features according to different tracking scenarios. This enhancement aims to
improve the robustness of the feature fusion module in handling dense target scenarios,
thereby further addressing the issue of lower tracking performance in such scenarios.
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