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Abstract: The widespread growth of drone technology is generating new security
paradigms, especially with regard to the unauthorized activities of UAVs in restricted
or sensitive areas, as well as illegal and illicit activities or attacks. Among the various
UAV detection technologies, vision systems in different spectra are postulated as out-
standing technologies due to their peculiarities compared to other technologies. How-
ever, drone detection in thermal imaging is a challenging task due to specific factors
such as thermal noise, temperature variability, or cluttered environments. This study ad-
dresses these challenges through a comparative evaluation of contemporary neural network
architectures—specifically, convolutional neural networks (CNNs) and transformer-based
models—for UAV detection in infrared imagery. The research focuses on real-world condi-
tions and examines the performance of YOLOv9, GELAN, DETR, and ViTDet in different
scenarios of the Anti-UAV Challenge 2023 dataset. The results show that YOLOv9 stands
out for its real-time detection speed, while GELAN provides the highest accuracy in varying
conditions and DETR performs reliably in thermally complex environments. The study
contributes to the advancement of state-of-the-art UAV detection techniques and highlights
the need for the further development of specialized models for specific detection scenarios.

Keywords: unmanned aerial vehicles (UAVs); convolutional neural networks (CNNs);
transformers (TNNs); thermal images

1. Introduction
In recent years, the use of unidentified Unmanned Aerial Vehicles (UAVs), commonly

known as drones, has experienced exponential growth, becoming key tools in various
industries such as agriculture [1], filmmaking [2,3], surveillance [4,5], and package deliv-
ery [6,7]. However, this widespread adoption has introduced new challenges, particularly
in the fields of security and privacy. Drones can be great allies to remote populations by
delivering goods [8] or collecting/delivering medical samples [9], but they can also be used
for malicious activities such as trespassing [10], unauthorized data collection [11,12], or
smuggling [13]. These illegal and/or illicit activities can endanger critical infrastructure
such as airports, as well as aviation security as a whole, and ultimately people. These
new security/vulnerability paradigms make the detection and neutralization of UAVs a
priority for the authorities of all countries in charge of border surveillance, aviation security,
or defense.

Detecting these vehicles is a big challenge given the wide variability of these aircraft,
which poses challenges to detection systems based on size, speed, altitude, dynamic be-
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havior, and even environmental conditions [14,15]. To address the number of challenges in
UAV detection, there are four main approaches: radar-based detection [16–18], radio frequency-
based detection [19,20], acoustic detection [21,22], and vision-based detection [23–27]. Each
of these has advantages and disadvantages, which are discussed in reviews such as
Seidaliyeva et al. [14]. Other works such as [28–30] focus on the advantages of sen-
sor fusion to provide robust systems and to compensate for the shortcomings of some
methods with the advantages of others, but each of the mentioned approaches includes
one or more branches that are under continuous research.

The advances in recent years in Artificial Intelligence (AI) are becoming a transversal
field of study for all approaches in detection; however, detection by means of computer
vision strategies is arousing great interest in the scientific community with challenges
such as the Anti-UAV Challenge 2023 [31–33]. This is due to the advantages that vision
systems offer by having a large amount of information for each of the images and the
different bands of the electromagnetic spectrum in which these images can be perceived.
For example, the infrared thermal images provided by the previous challenge allow to
avoid the difficulties of illumination presented by the visible spectrum in low illumination
or adverse environmental conditions, as well as other vulnerabilities presented by the other
approaches, as in the case of radar, in the case of small objects or low-altitude flights.

Within this context, Artificial Intelligence (AI) and the advances in the last decades in
computer vision provide powerful tools for object detection in images. In particular, tech-
niques using convolutional neural networks (CNNs) and/or transformers are continuously
demonstrating their potential in the context of object detection in multiple domains. This
potential is supported by the ability of AI to process and learn from large volumes of data.
Although there are numerous studies in the literature on object detection, segmentation,
and tracking systems based on CNNs [34–36] or transformers [37–41], drone detection
involves certain complexities inherent to this type of target object and the scenarios in
which they are found [39,42,43].

In recent years, particularly in the analysis of complex scenarios, the focus has shifted
towards the use of thermal images to enhance visual detection and object tracking sys-
tems [44–47]. Specifically, the application of AI in the analysis of thermal or infrared images
has become essential for detecting drones under low-visibility conditions, such as at night
or during adverse weather situations [48–50]. The use of thermal imaging provides the
advantage of identifying objects based on their heat signatures, thus facilitating drone
detection regardless of ambient light or unfavorable visual conditions. However, this
approach also presents significant challenges, including variability in drone temperatures
depending on the time of day or the environment, as well as the necessity to differentiate
drones from other hot objects present within the field of view.

This work employs advanced AI techniques for the detection of drones in thermal
or infrared images. Considering that the threat posed by unidentified civilian flying
objects is increasing daily, it is essential to develop surveillance systems capable of accurate
detection and optimal performance under extreme conditions, such as low-visibility or
nighttime scenarios.

The main contribution of this paper is a comprehensive comparative analysis of state-
of-the-art convolutional neural network (CNN) and transformer-based neural network
architectures, adapted for drone detection in thermal infrared images. This study also
evaluates the performance of each of the detectors for each of the nine video types derived
from the specific conditions of the Anti-UAV Challenge 2023 [31–33]. It is important to note
that each of these video types is a challenge as can be seen in Yu Q. et al.’s work [51]. In
addition, while the most prominent papers in this challenge focus on the performance of
Single-Object-Tracking (SOT), this paper focuses on the specific detection problem that is a
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fundamental part of the tracking systems. This will lay the foundation for future research
in this area.

This paper is organized as follows. Section 2 reviews the related work on drone
detection and thermal imaging using neural networks. Section 3 details the methodology
employed in this study, including a description of the dataset and the training process
of the selected models. Section 4 presents the results of the experiments, including the
performance metrics and a detailed analysis of each model’s accuracy and inference speed.
Additionally, Section 4 provides an in-depth discussion of the model performance results
across different video categories. Finally, the conclusions drawn from this study are
presented in Section 5.

2. Related Works
2.1. Cutting-Edge Detection Models

Convolutional neural networks (CNNs) and transformer-based neural networks
(TNNs) are the two most recognized architectures in object detection. The former rep-
resents a type of artificial neural network specifically designed to process data with a
grid-like structure, such as images [52,53]. In contrast to traditional neural networks,
CNNs are optimized to capture spatial and hierarchical patterns in images, which renders
them particularly suitable for computer vision tasks, including image classification, object
detection, and segmentation.

Building upon CNNs, more advanced and complex models have been developed to
enhance accuracy and efficiency in object detection. For this study, the most promising
models from such architectures have been selected:

• You Only Look Once (YOLO) [54,55] is designed to detect and locate objects in images
or videos in real-time. Unlike other methods that perform detection in multiple
stages, YOLO integrates object detection and localization into a single neural network.
This approach enables faster processing by performing object detection in a single
pass through the image via the neural network. Currently, YOLO is considered the
state of the art for single-pass detection methods. Due to its capability to effectively
detect fast-moving objects by performing a single pass, it is well suited for handling
fast-moving drones.

• GELAN (Generative Enhanced Low-light Adversarial Network) uses a multi-layer
architecture capable of extracting both high-level semantic features and fine-grained
details, which is essential for detecting objects in low-light, low-contrast environ-
ments such as thermal imaging. This network uses spatial pyramid clustering and
layer aggregation to improve feature representation, enabling it to recognize objects
at different scales and resist visual interference such as thermal noise or complex
backgrounds. The application of GELAN networks in the context of drone detection in
thermal imaging is particularly interesting because of their advanced ability to handle
difficult visual conditions as demonstrated in their medical imaging applications [56].
In the specific case of drone detection in thermal imaging, the specific attributes of
GELAN can help differentiate drones from other heat-emitting objects, a challenge
often amplified in thermal imaging. In addition, the efficient processing of GELAN of
multiscale and occluded objects is well suited to the context of drone detection, where
drones may vary in size, speed, or visibility.

On the other hand, transformer-based neural networks (TNNs), commonly known as
transformers, represent a class of neural network models that have revolutionized the field
of machine learning, particularly in natural language processing (NLP) and, more recently,
in computer vision [57,58]. In the domain of computer vision, these models have begun to
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rival and even surpass traditional convolutional neural networks (CNNs) in several tasks,
owing to their capacity to capture global relationships within the data and their scalability.
However, their application poses challenges, particularly with respect to the computational
and data requirements.

As with CNNs, the models selected for this study are as follows:

• Detection Transformer (DETR) [59] is designed to perform object detection and in-
stance segmentation in a more efficient and accurate manner. Unlike traditional
CNN-based methods, DETR employs the transformer architecture, which has proven
to be highly effective in natural language processing tasks, to address problems in
computer vision. DETR is particularly useful in environments where conditions are
highly variable (different temperatures, weather, and times of day). Its ability to
capture more abstract and complex patterns in images allows it to enhance drone
detection in scenarios with changing thermal conditions or when drones have thermal
signatures similar to their surroundings.

• Vision Transformer Backbones for Object Detection (ViTDet) [60] is a variant of Vi-
sion Transformers (ViTs) applied to the object detection task. ViTs, in general, have
shown outstanding performance in classification tasks, and their ability to model
long-range relationships within the image also makes them effective for detection.
They can capture long-distance dependencies in the image, which is crucial for cor-
rectly interpreting infrared signals, where objects may not be as clearly defined as in
visible images.

2.2. Infrared Image: Context and Challenge for Detection

Drone detection in infrared images is a research area that has garnered considerable
attention due to increasing concerns regarding security and privacy. This type of imaging
facilitates detection under low-visibility conditions, such as at night or during adverse
weather, during which traditional optical cameras may be ineffective. However, this
approach presents unique challenges that necessitate the application of advanced artificial
intelligence and deep learning techniques.

Drones exhibit a thermal signature that can vary significantly depending on factors
such as altitude, speed, and ambient temperature. In the following sections, some of the
primary challenges are detailed:
• Thermal Noise: In complex environments, other objects, such as animals, vehicles,

or even parts of the terrain, can emit thermal radiation, creating “noise” that can
interfere with the accurate detection of drones. Models must be able to distinguish
between these heat sources and the drone, which is often a small object with low
thermal emissions.

• Temperature Variability: The temperature of drones can change during flight due
to factors such as altitude and speed, which can complicate detection. Furthermore,
ambient temperature, which can vary significantly between day and night or between
different seasons, affects the effectiveness of detection algorithms.

• Resolution and Distance: The quality of infrared images is greatly dependent on the
resolution of the camera and the distance from the target. At greater distances, the
drone’s thermal signature may become indistinguishable from the background, posing
a significant challenge for detection models.

• Cluttered Environments: In scenarios where many objects are present (e.g., in urban
areas), it is crucial for models to accurately identify and track the drone among other
elements that may be emitting heat.

In response to these challenges, the Beijing Institute of Electronic Equipment has
undertaken significant efforts to advance drone detection technologies by organizing
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several workshops during the Conference on Computer Vision and Pattern Recognition
(CVPR) in 2020, 2021, and 2023. These workshops have focused on the development of
advanced models capable of detecting drones within a database of 600 videos, which have
been segmented into frames of infrared images.

Among the most innovative proposals, Xin Yang et al. developed a method for
detecting tiny objects in videos, guided by spatio-temporal motion information [61]. This
approach, tested on the Anti-UAV 2021 dataset, showed a significant improvement in drone
detection in complex scenarios, outperforming other traditional small object detection methods.

On the other hand, Qianjin Yu et al. introduced UTTracker [51], a transformer-based
model designed for tracking drones in thermal infrared videos. This model effectively
addresses challenges such as variations in target appearance, frequent disappearances,
and camera movement, enabling it to achieve competitive performance in the latest 2023
Anti-UAV challenge, where it secured second place overall.

In the same workshop, a model based on YOLOv8 and DINO (Self-Distillation with
No Labels) [62] was presented, achieving a significant breakthrough by attaining a score
of 69.7% on the complete dataset. Due to these results, the model secured first place in
the competition, establishing itself as the state of the art in drone detection using infrared
images and representing the most accurate model to date [63]. Consequently, this model is
selected as the baseline against which other results will be compared.

3. Methodology
This section describes the dataset utilized for the study, as well as the training processes

of the four selected architectures. Finally, the metrics for comparing the various models
are delineated.

3.1. Dataset

The Anti-UAV Database is a compilation of thermal images specifically collected for
the purpose of detecting drones in various environments. This database was assembled
as part of the open challenge proposed by the Beijing Institute of Electronic Equipment
during CVPR 2023 [31]. The objective of the challenge was to create a standardized dataset
that would facilitate the evaluation and comparison of various drone detection models
developed by the participants in the competition.

The database comprises multiple scenarios that simulate real-world situations, consist-
ing of 600 videos corresponding to more than 230,000 thermal images divided into three
sets: 70% for training, 15% for validation, and 15% for testing. The images encompass di-
verse scenarios and lighting conditions, thereby providing a robust foundation for training
and evaluating AI models. These images include variations in the size, speed, and shape of
the drone. The scenarios incorporate both urban and rural settings, featuring daytime and
nighttime conditions, which add complexity to the detection challenge.

The images were captured under various environmental conditions, including dif-
fering temperatures, humidity levels, and visibility conditions. This indicates that the
model must be capable of detecting drones in scenarios ranging from clear skies to low-
visibility conditions. The database comprises eight types of videos, each representing a
specific challenge:

• UAV: Images that are not categorized by any particular condition.
• Out of View (OV/VE): The target moves out of the current field of view.
• Occlusion (OC): The target is partially hidden behind another object.
• Fast Motion (FM): The target moves rapidly.
• Scale Variation (SV): The scale of the bounding box varies significantly.



Appl. Sci. 2025, 15, 109 6 of 22

• Thermal and Infrared Crossover (TC/IC): The target temperature is similar to that of
another object or the surrounding landscape.

• Dynamic Background Clusters (DBCs): Dynamic background surrounding the target,
such as animals or vegetation.

• Low Resolution (LR): The area of the bounding box is very small.
• Target Scale (TS): The target will have a very small or large scale as the frames progress.

Figure 1 illustrates the distribution of data by video type. It can be observed that
the maximum concentration of videos is found in the UAV class, as well as in Thermal
Crossover (TC) and Fast Motion (FM). Conversely, three groups exhibit minimal repre-
sentation; occlusion (OC) comprises a total of 275 images, while low resolution (LR) and
Out of Vision (OV) contain no images at all. The latter two are excluded; however, in the
case of Out of Vision (OV), it does have representation like (VE), and therefore, these cases
are considered.

Figure 1. Data distribution by video type [31].

3.2. Models

This section provides a justification for the models selected for evaluation concerning
the drone detection problem utilizing thermal imaging. The selected models are as follows:

• YOLO: YOLO is chosen because of its ability to perform real-time detection, which
is crucial for applications where speed is essential. Additionally, its architecture
is well documented and optimized to work with low-resolution images, which is
necessary for accurate drone detection in thermal images. It is important to note
that, according to most experts, YOLO is considered one of the best image detectors
available. Starting from the best-performing models at the CVPR 2023 conference [51]
that used YOLOv5 and one of the best-performing models at the same conference [63],
which is based on an ensemble model with YOLO-v8, working with this type of
model can be considered essential in this type of detection problem. However, recent
advances have further improved the performance of YOLO systems with the YOLO-v9
model, which incorporates innovations such as Programmable Gradient Information
(PGI) to solve the problem of losing data during information propagation. Therefore,
studying the new YOLO model in the context of drone thermal imaging helps to extend
the state of the art of drone detection in thermal imaging. This model has different
versions [t, s, m, c, e], which have the same input size but with an increasing number of
parameters, which influences the detection accuracy but affects the processing speed.
For this work, we consider the largest YOLOV9 model corresponding to e, YOLO-v9-e.
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• GELAN: Since it is a model used in YOLOv9, the goal is to compare its performance
with YOLO and evaluate whether its simpler architecture provides improvements in
drone detection.

• DETR: Although it has not yet been implemented for infrared images, it is considered
relevant to include a transformer architecture in a detection comparison, given its
ability to achieve more precise detection in situations where spatial and contextual
relationships are complex, such as thermal images with multiple heat sources. It is
part of the Detectron2 group [64], which is also considered one of the best sets of object
detection models.

• ViTDet: We are interested in determining whether there is a difference between the
transformer-based models applied to this task. Like DETR, it is part of Detectron2,
making it a good model for comparison.

3.3. Models Training

To enhance efficiency and reduce training time, transfer learning is employed by
utilizing pre-trained models in object detection and adapting them for drone detection.
To analyze the performance of the models in the context of the problem, the dataset is
divided between testing and validation. These subsets include 40,000 images for training
and 5000 images for validation. Initial testing is performed locally, and various batch sizes
(2, 4, 8, 16) are evaluated for all models until the size that shows the best final performance
is identified. In addition, the effect of using up to eight workers to measure the processing
speed is evaluated to avoid GPU overload, which in some cases requires a reduction in the
number of workers.

Regarding the optimizer, the two most common options are evaluated: Adam (Adap-
tive Moment Estimation) and SGD (Stochastic Gradient Descent). Although SGD is more
stable than Adam [65] and tends to generalize faster, some work like [66] suggests that
hyperparameters may be the reason that adaptive algorithms such as Adam fail to general-
ize. In our case, Adam yields superior results in terms of accuracy; therefore, it is selected,
despite requiring a longer training period.

Once these configurations are determined, server training commences, during which
the initial hyperparameters are configured, including the learning rate and batch size, based
on the insights obtained from the preliminary tests. This training is conducted using the
complete database, which comprises a distribution of 70% images for “train” (162,090), 15%
for “validation” (34,733), and the remaining 15% for “test” (34,734).

During training, after each epoch, the results are validated to monitor the model’s
progress. If overfitting is detected, the hyperparameters are adjusted to mitigate this issue.
In instances where performance begins to decline, reverting to previous configurations is
considered to prevent losses in training efficiency and prediction accuracy.

3.4. Metrics

For the evaluation of the performance of the trained neural models, this study is based
on a set of standards for image segmentation, which is described as follows:

• Intersection over Union (IoU). The IoU is a metric that measures the degree of overlap
between the predicted bounding box of the model and the actual bounding box of the
object, and is calculated by dividing the overlap area between the two boxes by the
overlap area of their union (see Figure 2):

IoU =
Intersection area

Union area
(1)
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A higher IoU value indicates a better prediction, as the predicted box aligns more
closely with the actual box. In video detection problems, where objects can move and
change shape, a high IoU is critical to ensure that models not only detect the presence
of an object but also accurately localize it in each frame of the video.

• F1-Score and F1-Confidence. The F1-Score is the harmonic mean between precision
and recall. This metric is particularly useful when there is an imbalance between the
classes of true positives and false negatives:

F1 = 2 × Precision × Recall
Precision + Recall

(2)

– Precision is the proportion of true positives (correctly detected objects) over the
sum of true positives and false positives (incorrect detections).

– Recall measures the proportion of true positives relative to the sum of true
positives and false negatives (undetected objects).

Figure 2. IoU description.

In video object detection, the F1-Score is important, as it balances precision and recall,
providing an overall assessment of the model’s performance regarding correct detections
versus missed detections.

The F1-Confidence is an extension of the F1-Score that incorporates the confidence of
the model’s predictions. This metric adjusts the F1-Score based on the average confidence of
correct detections, allowing for the consideration of both the quantity of correct predictions
and the certainty with which the model makes those predictions. It is particularly useful in
applications where confidence in the model’s decisions is critical, such as aerial surveillance
or automated detection systems, where an incorrect prediction made with high confidence
can have significant consequences. This metric provides a more detailed evaluation of the
performance of the model, particularly in scenarios where the quantity of correct detections
is important, and the certainty with which those detections are made is equally crucial.
AP measures how precision varies at different levels of recall and is derived from the
precision–recall curve.

AP is typically calculated for a single Intersection over Union (IoU) threshold, usually
set at 0.5, which is referred to as AP@0.5 or AP@50. Consequently, the AP value varies
depending on the IoU threshold that is considered acceptable.

However, for more complex problems and more rigorous evaluations, the mean
Average Precision (mAP) is utilized. mAP averages the AP across several IoU thresholds,
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typically ranging from 0.5 to 0.95 in increments of 0.05, referred to as mAP@0.5:0.95 or
mAP@50:95. This can be calculated as shown in Equation (3):

mAP@50 : 95 =
AP@50 + AP@55 + · · ·+ AP@90 + AP@95

10
=

∑0.95
x=0.5 AP@x

10
(3)

This metric is particularly relevant in video detection tasks, as it evaluates the ability
of a model to detect objects with varying degrees of overlap between the predictions and
the ground truth annotations.

• True Negative Rate. The True Negative Rate (TNR) or specificity quantifies the
proportion of true negatives (TNs) that are accurately identified out of the total number
of cases where the target is absent (i.e., the sum of true negatives and false positives):

TNR =
TN

TN + FP
(4)

– True Negatives (TNs): These are cases where there is no drone in the scene, and
the model correctly does not detect any target.

– False Positives (FPs): These are cases where there is no drone in the scene, but
the model incorrectly detects something (false positive).

This metric is essential for evaluating the performance of a model in the absence of a
target to detect, which is particularly important in scenarios where false positives are
costly or disruptive.

• Inference Time and FPS. Inference time refers to the time that a model requires to
process a single image from a video and generate a prediction. This metric is vital for
real-time applications, such as drone detection, where every millisecond is significant.
Related to this is Frames Per Second (FPS), which indicates the number of images
a model can process per second. A higher FPS denotes that the model can operate
at increased speeds, which is essential in scenarios where immediate detection and
reaction are critical, such as in aerial surveillance.
Both metrics, inference time and FPS, are utilized to assess the efficiency of the model
and its suitability for real-time scenarios.

4. Results
This section presents the results obtained from the trained models. During the training

process and the evaluation of the models, an environment composed of an NVIDIA RTX
4090 graphics card, an AMD Ryzen 9 7950K processor with 16 cores, and 128 GB of DDR4
RAM is utilized. Table 1 demonstrates the parameters employed during the training phase.
Figure 3 illustrates the training and convergence of the four models.

Regarding the YOLO model (Figure 3a), it is trained for a total of 100 epochs, achieving
convergence at a loss value of 0.4. The batch size is set to 10, and 8 workers are utilized.
This configuration proves to be the most efficient in terms of speed and performance,
based on preliminary tests conducted with fewer epochs. Throughout the training process,
an iterative optimization procedure is employed, determining that the most appropriate
optimizer for this model is Adam. This optimizer adjusts the model’s parameter weights to
minimize the loss function, thereby facilitating the model’s ability to learn more rapidly
and efficiently.
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(a) YOLO (b) GELAN

(c) DETR (d) VitDet

Figure 3. Convergence of the models during training.

Table 1. Parameters used during the training phase.

Model Epochs Batch Size Workers Optimizer

YOLO 50 + 25 + 25 10 8 Adam

GELAN 75 10 8 Adam

DETR 30 + 25 2 2 AdamW

ViTDet 55 2 2 AdamW

Since YOLO requires 100 epochs to achieve a reasonable point of convergence, GELAN
is trained directly for 75 epochs. Beginning from epoch 68, it is observed that the model
starts to converge, exhibiting minimal learning loss. In the final 7 epochs, the validation
set loss fluctuates by only 0.01, while the training set loss continues to decrease, except in
the last epoch, where it is increased by 0.02. This behavior suggests that the model may be
beginning to overfit (see Figure 3b). The batch size is set to 10, and 8 workers are utilized,
resulting in the optimal combination of speed and efficiency based on the tests conducted
during the initial epochs.

The DETR model achieves convergence around Epoch 50, demonstrating signs of
overfitting around Epoch 54 (Figure 3c). A batch size of 2 with 2 workers appears to attain the
optimal speed–efficiency balance based on tests conducted with fewer epochs. For this model,
the optimizer is changed to AdamW, which is more effective for transformer architectures.

Considering that the DETR model requires 55 epochs to achieve convergence, ViTDet
is trained for a similar number of epochs. ViTDet exhibits a tendency to converge slightly
earlier, suggesting comparable or potentially superior learning efficiency. However, in
the final 1-2 epochs, a marginal increase is observed in both the validation loss (0.1) and
the training loss (0.01), which may indicate the onset of overfitting during training (see
Figure 3d). Regarding hardware configuration, a batch size of 2 and 2 workers provide the
optimal balance between speed and efficiency, based on preliminary tests conducted with
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fewer epochs. For optimization, the AdamW optimizer is employed, as it is particularly
well suited for transformer-based architectures, such as ViTDet.

4.1. Model comparison

Table 2 presents a comparison of the models in terms of speed and inference time,
while Table 3 compares them based on accuracy. The YOLO model is distinguished as
the most efficient in terms of speed, achieving a performance of 134 FPS and an inference
time of 7.5 ms, rendering it the preferred option for real-time applications. It is 3.5 times
faster than the transformers and 1.4 times faster than GELAN. In contrast, GELAN, while
slower, demonstrates acceptable performance, being 2.5 times faster than DETR and ViTDet.
The latter two transformer-based models are considerably slower, which may restrict their
applicability in scenarios where speed is critical.

Table 2. Performance of the models in terms of time.

Model Epochs FPS Inference Time Training Time

YOLO 100 134 7.5 ms 48 h y 5 min

GELAN 75 95 10.5 ms 50 h y 32 min

DETR 55 38 26 ms 93 h y 6 min

ViTDet 55 36 28 ms 97 h y 48 min

Table 3. Accuracy of the models.

Model AP@50 mAP@50:95 F1-Confidence

YOLO 74.7% 72% 75% at 0.102

GELAN 81% 77% 77% at 0.255

DETR 78.3% 75.7% 81% at 0.063

ViTDet 65% 62% 75% at 0.137

UTTracker 68.8% — —

Baseline 69.7% — —

Regarding accuracy, GELAN excels with a mAP of 50:95, achieving a score of 77%,
closely followed by DETR at 75.7%. Both methods significantly outperform YOLO, which,
while exhibiting good accuracy, is more oriented toward applications where speed is a
determining factor. Although ViTDet demonstrates lower accuracy, it may be beneficial in
contexts where detection under complex conditions is paramount. However, its low speed
and accuracy render it less suitable for real-time scenarios.

4.2. Performance Analysis by Video Type

This section analyzes the performance of drone detection models based on various
types of videos present in the database. Each video type provides a practical example,
showcasing its corresponding “bounding box” along with the detections made by the
models in that image. Furthermore, the overall results of the models for that category
are presented.

To conduct this analysis, the Average Precision (AP) metric is selected as the primary
evaluation tool. AP is chosen for its relevance to the task, its simplicity, and its ability
to capture the critical aspects of model performance in drone detection. This selection
facilitates a coherent and comparative analysis in accordance with the standards of the
computer vision community.
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By concentrating on a key metric such as AP, a more comprehensive and detailed
analysis of the results can be conducted, thereby avoiding the dispersion that may arise
from the inclusion of multiple metrics. This approach facilitates the maintenance of a clear
and precise focus on the model’s performance regarding accuracy, which is the most critical
aspect of this study.

It should be noted that, in the group of videos without targets (VE), where no drones
are present, the model’s performance is evaluated in terms of its ability to avoid false
detections. This performance is measured using the True Negative Rate (TNR) metric,
which quantifies the frequency with which the model accurately does not detect a drone in
the absence of one. This evaluation is crucial to ensure that the model does not generate
false alarms in scenarios in which no drones are present.

4.2.1. UAV

This group encompasses all images that do not belong to a specific category, repre-
senting 60% of the database. As illustrated in Table 4, DETR demonstrates higher accuracy
in this category, reflecting its capability to effectively manage standard scenarios. The
F1-Confidence of DETR is also significantly high, indicating an effective balance between
precision and recall in these scenarios. YOLO, although less accurate, maintains high
efficiency, rendering it suitable for applications where speed is critical. The detection results
for this category of images are presented in Figure 4.

Table 4. Results for video type ‘UAV’.

Model IoU AP F1-Confidence

YOLO 84.4% 84.2% 87% at 0.102

GELAN 81.63% 87.2% 91% at 0.323

DETR 95.30% 90% 92% at 0.411

ViTDet 78.6% 70.4% 76% at 0.137

(a) Real Bounding-Box (ID 40791) (b) Detection (ID 40791)

Figure 4. Detection results for “UAV”.

4.2.2. Target Scale (TS)

This group comprises images in which the target scale varies from small to large
throughout the video, representing 10% of the dataset.

GELAN and DETR exhibit superior performance in this category, with GELAN demon-
strating a slight advantage in terms of overall accuracy (see Table 5). The capacity of these
models to manage significant variations in target scale indicates that they are more ro-
bust in scenarios with diverse target sizes. While YOLO is efficient, it displays slightly
lower performance, which may limit its applicability in situations where the target scale
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varies considerably. Figure 5 illustrates the results of this category for both small and
larger objects.

(a) Real Bounding-Box (ID = 43,428 ) (b) Detection (ID = 43,428)

(c) Real Bounding-Box (ID = 48,222) (d) Detection (ID = 48,222)

Figure 5. Detection results for target scale (TS).

Table 5. Results for video type target scale (TS).

Model IoU Small IoU Large AP F1-Confidence

YOLO 73.33% 79.5% 73.5% 77% at 0.093

GELAN 76.74% 80.4% 82.5% 84% at 0.426

DETR 80.66% 81% 80.3% 82% at 0.321

ViTDet 62.41% 70.6% 64% 66% at 0.122

4.2.3. Dynamic Background Clusters (DBC)

This type of video features a dynamic background that complicates the detection of
drones; in this instance, the wind interacts with the trees. This group contains a total of
14,400 images, thus rendering it the fourth smallest group.

GELAN clearly stands out in this category, exhibiting significantly higher accuracy,
which suggests that its architecture is better suited to handling dynamic backgrounds.
DETR also demonstrates acceptable performance; however, it is inferior to GELAN (see
Table 6). YOLO, due to its emphasis on speed, encounters difficulties in these scenarios as
evidenced by its lower accuracy. Figure 6 presents examples of the results in this category.
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(a) Real Bounding-Box (ID = 49,064) (b) Detection (ID = 49,064)

Figure 6. Detection results for Dynamic Background Clusters (DBC).

Table 6. Results for video type Dynamic Background Clusters (DBC).

Model IoU AP F1-Confidence

YOLO 34.33% 38.5% 47% at 0.039

GELAN 52.34% 58% 63% at 0.298

DETR 52.34% 51.2% 58% at 0.175

ViTDet 30.23% 32.1% 43% at 0.038

4.2.4. Thermal and Infrared Crossover (TC)

This group is the second largest, consisting of images in which the background tem-
perature is similar to that of the target, with approximately 53,000 images.

DETR and GELAN demonstrate high effectiveness in this category, as they can dif-
ferentiate the target despite thermal similarities with the background. This observation
reinforces the capability of these models to manage challenging thermal conditions, in
which other models, such as YOLO and ViTDet, exhibit increased confusion (see Table 7).
Figure 7 presents an example of the results in this category.

(a) Real Bounding-Box (ID = 42,390) (b) Detection (ID = 42,390)

Figure 7. Detection results for Thermal and Infrared Crossover (TC).
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Table 7. Results for video type Thermal and Infrared Crossover (TC).

Model IoU AP F1-Confidence

YOLO 64% 70.6% 74% at 0.046

GELAN 80% 80.7% 81% at 0.107

DETR 81.3% 81% 84% at 0.137

ViTDet 70.4% 68.6% 76% at 0.062

4.2.5. Scale Variation (SV)

This group is among the least represented, comprising only 1214 images, in which the
area of the “bounding boxes” varies considerably in size, without a systematic progression
from small to large.

Although all models demonstrate solid performance in this category, DETR and
GELAN again stand out, with GELAN exhibiting superior detection consistency despite
variability in size (Table 8). The small sample size in this group suggests that additional
data would be required to fully validate these findings. Figure 8 presents an example of
this category.

Table 8. Results for video type Scale Variation (SV).

Model IoU AP F1-Confidence

YOLO 58.44% 83.6% 81% at 0.063

GELAN 68.18% 84.30% 80% at 0.477

DETR 69.3% 80.7% 82% at 0.221

ViTDet 63.6% 68.5% 70% at 0.092

(a) Real Bounding-Box (ID = 98,156) (b) Detection (ID = 98,156)

Figure 8. Detection results for Scale Variation (SV).

4.2.6. Fast Motion (FM)

This collection of 30,000 images features high-velocity drones.
GELAN demonstrates strong performance in fast-motion scenarios, indicating its

robustness in detecting drones under dynamic conditions (Table 9). YOLO also exhibits
acceptable performance; however, it is inferior to GELAN, suggesting that its speed may
not be sufficient to compensate for the complexity of these scenarios. Refer to Figure 9 for
an example of this category.
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(a) Real Bounding-Box (ID = 105221) (b) Detection (ID = 105221)

Figure 9. Detection results for Fast Motion (FM).

Table 9. Results for video type Fast Motion (FM).

Model IoU AP F1-Confidence

YOLO 78.82% 60.2% 64% at 0.049

GELAN 79% 66.7% 72% at 0.137

DETR 75.6% 59.3% 63% at 0.090

ViTDet 66.9% 50.6% 53% at 0.050

4.2.7. Oclussion (OC)

This is the smallest group, consisting of only 275 images, and it features drones that
are partially occluded.

Although it does not achieve correct detection in the sample image (see Figure 10),
GELAN demonstrates significantly higher accuracy in this category, suggesting that its
architecture is better suited to handle occlusion conditions (Table 10). However, the low
representation of this group limits the ability to generalize these results.

Table 10. Results for video type Occlusion (OC).

Model IoU AP F1-Confidence

YOLO 66.55% 3.5% 5% at 0.0001

GELAN 0% 25.6% 32% at 0.107

DETR 0% 10.2% 12% at 0.112

ViTDet 58.33% 8.5% 10% at 0.026

(a) Real Bounding-Box (ID = 97,226) (b) Detection (ID = 97,226)

Figure 10. Detection results for Occlusion (OC).
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4.2.8. Out of View (VE)

This group comprises images in which the drone is not visible within the scene,
presenting a particular challenge for detection models. If a model indicates the presence
of a drone in these images, it incurs an error known as a false positive. In this case, the
model’s efficiency is assessed using the True Negative Rate (TNR), as the emphasis is on
the models’ ability to refrain from detecting non-existent drones. This group contains a
total of 2022 images.

ViTDet is the best-performing model in this group, demonstrating a superior ability
to avoid false detections when no target is present (Table 11). This characteristic enhances
its reliability in scenarios where minimizing false positives is crucial. In this case, the
example illustrates a 0% match if a prediction is made, as the model attempts to compare
the predicted bounding box with one that does not exist. Figure 11 presents an example of
a result in this category.

Table 11. Results for video type Out Of View (VE).

Model IoU TNR F1-Confidence

YOLO 0% 0.6% 1% at 0.027

GELAN 0% 0.5% 2% at 0.010

DETR 0% 3% 5% at 0.009

ViTDet 100% 10% 12% at 0.415

(a) Real Bounding-Box (ID = 39,472) (b) Detection (ID = 39,472)

Figure 11. Detection results for Out Of View (VE).

4.3. Discussion

The results obtained in this study reveal a range of behaviors across the evaluated
models (YOLO, GELAN, DETR, and ViTDet), highlighting their respective strengths and
weaknesses in the detection of drones in thermal images. The main findings are interpreted
as follows:

• YOLO: This model excels in terms of speed and inference time, being the fastest
of the four with 134 FPS and an inference time of 7.5 ms. However, its precision
(mAP 50:95 of 72%) is slightly lower than that of GELAN and DETR, indicating that
although YOLO is suitable for real-time applications, it may not be the best choice
when precision is critical.

• GELAN: GELAN stands out for its precision, achieving the highest mAP 50:95 (77%)
and an AP 50 of 81%. Its performance is particularly notable in scenarios with dynamic
background noise (DBC) and Fast Motion (FM), where other models struggle. Despite
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its superior precision, its speed is moderate (95 FPS), making it a viable option in
applications where precision is prioritized over speed.

• DETR: DETR demonstrates balanced performance with a mAP 50:95 of 75.7% and an
AP 50 of 77.3%, positioning itself between YOLO and GELAN in terms of precision.
However, its inference time is significantly longer (26 ms), making it less suitable
for real-time applications. DETR proves to be particularly effective in detecting
drones in complex situations such as Scale Variations (SVs) and thermal-infrared
crossovers (TCs).

• ViTDet: Despite its promising results in similar tasks in other contexts, ViTDet has the
lowest performance in this study, with a mAP 50:95 of 62% and an AP 50 of 65%. Its
inference time is also the slowest (28 ms), which, combined with its lower precision,
suggests that this model may not be the most suitable option for drone detection in
thermal images under the evaluated conditions. In particular, it is the best model to
recognize when not to detect a drone in an image, with an accuracy of approximately
9% in such cases (VE), compared to around 1% for the other models.

Taking into account the various scenarios, one may conclude the following:

• UAV Category: All models perform well in this category, and DETR achieves the
highest precision (90%). This reflects the models’ ability to handle standard scenarios
without additional complicating factors.

• Target Scale (TS) and Scale Variation (SV): Despite having lower precision across
all examples, GELAN stands out slightly in these groups, highlighting its ability to
manage significant variations in the target size. In particular, all models have similar
precision in both groups, except for YOLO, which does not benefit when the Scale
Variation is small to large (TS).

• Dynamic Background Clusters (DBCs): Although the GELAN performance in the
example is lower, it shows consistent performance for this type of video. However,
the difference between models in this category is not as pronounced as in others.

• Thermal and Infrared Crossover (TC): DETR and GELAN are the most effective
models, suggesting that they are better at handling images with multiple objects of
similar temperature, which tends to confuse YOLO and ViTDet. This is the category
in which the difference between the models is the least noticeable.

• Fast Motion (FM) and occlusion (OC): GELAN also performs well in tracking drones
in fast-motion scenarios and under occlusion, making it a robust option for more
challenging environments.

• Out of View (VE): In this case, ViTDet is clearly the best model, being the only one
with a significant percentage, reaching 10%. DETR achieves 3%, ranking second,
indicating that transformers seem to better detect the absence of a target.

5. Conclusions
In this study, different neural network architectures were trained and evaluated for

drone detection in infrared thermal imagery, focusing on challenging scenarios where
detection accuracy is critical. YOLO v9 proved ideal for real-time applications where speed
is a priority, while GELAN excelled in accuracy in most categories, with competitive speed.
DETR performed well in standard conditions with similar temperatures, but is less suitable
for real-time use, and ViTDet showed utility in minimizing false positives.

The study achieved higher average accuracy than state-of-the-art models from the 2023
Anti-UAV Challenge, advancing the field of drone detection using infrared images. Future
work could focus on creating models specialized for specific scenarios (e.g., occlusion, high-
speed motion, and Thermal Crossover) to improve detection accuracy and efficiency. In
addition, improving the efficiency of transformer-based models such as DETR and ViTDet
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could make them viable for real-time applications, expanding their utility in complex
detection environments.

Finally, this work advances drone detection capabilities with neural networks and
outlines a path for the further improvement of detection systems.
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