
Academic Editors: Jose Machado,

Ran Ji and Zhengyang Fan

Received: 4 November 2024

Revised: 21 December 2024

Accepted: 26 December 2024

Published: 30 December 2024

Citation: Alexopoulos, K.;

Mavrothalassitis, P.; Bakopoulos, E.;

Nikolakis, N.; Mourtzis, D. Deep

Reinforcement Learning for Selection

of Dispatch Rules for Scheduling of

Production Systems. Appl. Sci. 2025,

15, 232. https://doi.org/10.3390/

app15010232

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Deep Reinforcement Learning for Selection of Dispatch Rules
for Scheduling of Production Systems
Kosmas Alexopoulos * , Panagiotis Mavrothalassitis, Emmanouil Bakopoulos , Nikolaos Nikolakis
and Dimitris Mourtzis

Laboratory for Manufacturing Systems & Automation (LMS), Department of Mechanical Engineering &
Aeronautics, University of Patras, Rio, 26504 Patras, Greece; mavrothalassitis@lms.mech.upatras.gr (P.M.);
bakopoulos@lms.mech.upatras.gr (E.B.); nikolakis@lms.mech.upatras.gr (N.N.);
mourtzis@lms.mech.upatras.gr (D.M.)
* Correspondence: alexokos@lms.mech.upatras.gr; Tel.: +30-2610-910160

Abstract: Production scheduling is a critical task in the management of manufacturing
systems. It is difficult to derive an optimal schedule due to the problem complexity.
Computationally expensive and time-consuming solutions have created major issues for
companies trying to respect their customers’ demands. Simple dispatching rules have
typically been applied in manufacturing practice and serve as a good scheduling option,
especially for small and midsize enterprises (SMEs). However, in recent years, the progress
in smart systems enabled by artificial intelligence (AI) and machine learning (ML) solutions
has revolutionized the scheduling approach. Under different production circumstances,
one dispatch rule may perform better than others, and expert knowledge is required to
determine which rule to choose. The objective of this work is to design and implement
a framework for the modeling and deployment of a deep reinforcement learning (DRL)
agent to support short-term production scheduling. The DRL agent selects a dispatching
rule to assign jobs to manufacturing resources. The model is trained, tested and evaluated
using a discrete event simulation (DES) model that simulates a pilot case from the bicycle
production industry. The DRL agent can learn the best dispatching policy, resulting in
schedules with the best possible production makespan.

Keywords: artificial intelligence; deep reinforcement learning; production scheduling; deep
Q-learning; discrete event simulation

1. Introduction
In the era of Industry 4.0, manufacturing technologies are undergoing a revolutionary

transformation, embracing digitalization and intelligent automation for a new era of inter-
connected and smart production [1]. In the new manufacturing revolution, called Industry
4.0, the digitization of all systems that comprise a manufacturing system is a key objective
towards smart manufacturing [2,3]. Information technology is used in various applications,
including data collection, data management, knowledge development and sophisticated
tasks such as the scheduling of complex production systems [4]. Scheduling is crucial
in connecting customer orders to the production capacity, aiming to realize the efficient
production of high-quality products. This involves determining the optimal sequence and
timing for the processing of jobs with the available resources, considering complexities
such as resource constraints, job characteristics and the dynamic nature of manufacturing
environments, utilizing optimization methods and advanced technologies like artificial
intelligence (AI) [5]. Due to its importance, production scheduling has been studied for

Appl. Sci. 2025, 15, 232 https://doi.org/10.3390/app15010232

https://doi.org/10.3390/app15010232
https://doi.org/10.3390/app15010232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3658-6838
https://orcid.org/0009-0000-3652-7910
https://orcid.org/0000-0002-4563-714X
https://orcid.org/0000-0002-7923-7363
https://doi.org/10.3390/app15010232
https://www.mdpi.com/article/10.3390/app15010232?type=check_update&version=1


Appl. Sci. 2025, 15, 232 2 of 26

several decades by many researchers. In particular, a genetic algorithm-based scheduling
approach has been shown to enhance the adaptability in manufacturing job shops through
the iterative optimization of task sequencing [6]. In parallel, a cloud-based cyber-physical
system for adaptive shop-floor scheduling and condition-based maintenance integrates
real-time data, resulting in more responsive and resilient operations [7]. The importance
of synchronizing both domains for holistic optimization was addressed by a systematic
review of integrated production scheduling and process control [8]. Another work reports
a real-time scheduling method tailored to Industry 4.0 conditions, which addresses uncer-
tainties like fluctuating job arrivals and machine breakdowns, ensuring robust performance
in dynamic manufacturing environments [9]. Drawing on data from cyber-physical pro-
duction systems (CPPS) and digital twin (DT) frameworks [10], innovative, data-driven
approaches have emerged to effectively tackle scheduling problems. This study focuses
on optimizing production scheduling using a deep reinforcement learning (DRL) agent
for job shop problems. Trained and tested within a discrete event simulation (DES) model,
and specifically designed to simulate a pilot case from the bicycle production industry, the
DRL agent dynamically selects dispatching rules to achieve the best possible production
makespan. More specifically, the contributions of this work are as follows:

1. We propose Markov decision process (MDP) modeling for a DRL approach to a
scheduling problem;

2. We demonstrate that deep neural networks (DNN) and reinforcement learning (RL)
can be effectively used for the selection of the best dispatching policy (one rule per
resource) given a scheduling problem instance;

3. We present the design, modeling and implementation of a framework for the training
and testing of a DRL scheduling agent;

4. We present the validation of the DRL framework and a performance analysis of the
DRL scheduling agent based on an industrial case from the bicycle industry.

The remainder of this work is organized as follows: Section 2 reviews the develop-
ment and latest research in scheduling with a focus on the applications enabled by RL,
Section 3 presents the proposed approach to designing, modeling and implementing a
scheduling framework, Section 4 presents the implementation of the proposed scheduling
solution, and Section 5 presents the results of the experiments and the comparison of the
proposed DRL scheduling agent with typical dispatch rules using data from the bicycle
production industry. Finally, in Section 6, the conclusions and future directions for research
are discussed.

2. Literature Review
In manufacturing, scheduling refers to the process of arranging, controlling and

optimizing the work and workloads in a production system [11]. The fundamental objective
is to arrange the manufacturing activities in such a way that the production costs and lead
times are minimized, and quality standards are achieved. In industrial practice, dispatch
rules represent one of the approaches used for scheduling, as they are simple to implement
and they can deliver acceptable solutions quickly In the literature, it has been demonstrated
how dynamic modifications to dispatching rules and the incorporation of real-time data
can increase the overall efficiency, decrease lead times and improve responsiveness [12–14].
Although the first two cited studies focus on customizing rule selection for particular
manufacturing contexts, such as general systems or unique production, the latter offers
a comprehensive overview that situates these strategies within the changing Industry 4.0
environment, emphasizing the value of informed, data-driven decision-making. In the past
few years, more sophisticated scheduling methods have been investigated, such as smart
search [15–17] or genetic algorithms [6,18]. A resource planning methodology specifically



Appl. Sci. 2025, 15, 232 3 of 26

tailored to the installation phase of industrial product–service systems has been proposed,
integrating advanced planning and forecasting techniques to ensure the efficient allocation
of personnel and equipment, ultimately reducing delays and improving coordination
among stakeholders [15]. In [16], an integrated, simulation-based approach is introduced
for refinery short-term scheduling that concurrently manages tank farms, inventories
and distillation processes. Through the holistic modeling of interconnected operations, it
achieves optimized production sequencing, minimized downtimes and improved overall
refinery performance. Cai proposed a real-time scheduling and simulation optimization
framework for job shops operating in a production–logistics collaborative environment.
By continuously adjusting the schedules based on live data and accommodating both
production and material flow constraints, it enhances the responsiveness, shortens lead
times and aligns operational execution with the evolving shop floor conditions [17]. A
dynamic scheduling approach was proposed for manufacturing job shops by employing
genetic algorithms. Improved adaptability and efficiency were demonstrated as task
sequencing and resource allocation were optimized in rapidly changing conditions [6]. A
unified multi-objective genetic algorithm was introduced to achieve energy-efficient job
shop scheduling. Reduced energy consumption and shortened production times were
obtained by simultaneously optimizing multiple criteria, thereby enhancing the overall
operational sustainability [18].

In practice, most of the time, there are deviations from the initial schedule due to
unexpected events such as new jobs or machine breakdowns. In such cases, a mechanism
to reschedule is needed. Much research has been carried out around the general concept of
dynamic scheduling. A heuristic was developed for adaptive production scheduling and
control within flow shop environments. Improved responsiveness and reduced lead times
were achieved by continuously adjusting schedules based on the real-time conditions [19].
A two-layer dynamic scheduling method was proposed to minimize earliness and tardi-
ness in re-entrant production lines. Enhanced schedule quality was obtained by layering
decision-making processes to better handle complex production flows [20]. A dynamic
scheduling method was introduced for integrated process planning and scheduling tasks
affected by machine faults. More robust operational performance was ensured by rapidly
adapting schedules to disruptions and maintaining the continuity of production [21]. An
intelligent scheduling approach based on deep reinforcement learning was presented for
discrete automated production lines. Improved scheduling quality and efficiency were
demonstrated through the autonomous learning of optimal actions in complex operational
settings [22]. An integrated scheduling method was developed, incorporating dispatching
strategies and the conflict-free routing of autonomous mobile robots (AMRs) in flexible
job shops. Enhanced coordination and reduced delays were realized by simultaneously
optimizing job assignments and AMR paths [23]. A digital-twin-driven service model
was proposed to optimize the allocation of manufacturing resources within a shared pro-
duction environment. Significant improvements in resource utilization and operational
flexibility were achieved, highlighting the value of virtualization and real-time data in
modern manufacturing systems [24]. Heuristics [25], meta-heuristics [26], swarm opti-
mization [27], immune algorithms [28], knowledge-based systems [29], fuzzy logic, neural
networks [30–32] and hybrid techniques [33] are the predominant strategies that have been
developed over the years to tackle the dynamic scheduling problem [34]. Real-time infor-
mation during production on a shop floor is essential to identify the current situation, the
level of progress until a certain checkpoint and the issues that have been raised, so as to
react and execute a rescheduling task if needed [35].

Apart from the above-mentioned approaches, data-driven methods such as machine
learning (ML) are receiving attention. A toolbox of agents was developed to schedule



Appl. Sci. 2025, 15, 232 4 of 26

tasks within a bicycle industry paint shop. Improved coordination and reduced processing
delays were achieved by dynamically assigning operations to the available resources [36].
A deep reinforcement learning framework was implemented to enhance tool life prior to
failure. Increased efficiency and extended tooling usage were obtained by autonomously
adjusting the cutting parameters based on real-time performance feedback [37]. A deep
reinforcement learning approach was applied in assembly sequence planning while ac-
counting for user preferences. Enhanced flexibility and user satisfaction were realized as
the algorithm adapted assembly orders to specific constraints and requirements [38]. A
comprehensive review of deep reinforcement learning methods was presented for smart
manufacturing in the Industry 4.0 and 5.0 contexts. Emerging trends, potential benefits and
practical implications were identified, offering insights for future research and industrial
implementation [39]. The ascension of Industry 4.0 has positioned ML approaches as an
appealing solution to tackle manufacturing challenges due to the availability of data, high
computing power and large storage capacity. In this context, researchers have tried to de-
velop and apply new technologies and algorithms [40]. An intelligent scheduling approach
using reinforcement learning was developed and evaluated. Enhanced decision-making
capabilities and improved scheduling performance were demonstrated by adapting to
changing conditions in real time [41]. In another approach, to select the best dispatch rule
for a machine at each decision point, a neural network was trained, using shop floor char-
acteristics inherited from a simulation [42]. When there are two or more jobs in the queue,
the model decides which rule a machine should follow in order to choose the next job for
processing. However, despite the large amount of ML applications for scheduling, in recent
years, another popular ML approach has garnered attention: reinforcement learning (RL).

Sutton and Barto [43] define RL as being simultaneously a problem, a class of solution
methods that work well on a class of problems and the field in which these problems and
their solution methods are studied. The key issue that this technique raises is that no prior
knowledge of previously applied schedules is needed. The purpose of RL is for the agent
to learn an optimal, or nearly optimal, policy that maximizes the reward. Hubbs et al. [44]
presented a DRL agent for automatic decision-making for a chemical reactor operation. The
model was successfully implemented in a simulation designed from historical production
data, and, as expected, the testing results outperformed those of human schedulers. Another
solution was proposed by Zhou et al. [45] that considered an AI scheduler with self-
organizing and self-learning capabilities, developed through multiple training sessions and
the formulation of a composite reward function, to enable scheduling for multi-objective
learning. The trained scheduling agent decides the optimal job allocation directly via a
single machine. A proximal policy optimization (PPO) combined with dispatch rules and
a simulation was proposed by Wang and Liao [46] for the training of an agent to decide
the optimal distribution of a job’s tasks when a random job arrives. Tang and Salonitis [47]
proposed a methodology to minimize reconfiguring actions in a production system. In their
work, DRL was implemented to make autonomous decisions with a built-in DES model. As
a result of self-learning, the agent outperformed the conventional First-In-First-Out (FIFO)
dispatching rule by completing assigned order lists while minimizing reconfiguration
actions. Kardos et al. [48] proposed a DRL-based approach to select the best resource for
job processing in a given state. A deep reinforcement learning framework was developed
to manage dynamic scheduling in smart manufacturing environments, leveraging real-
time data for continuous decision-making. Notable improvements in responsiveness and
resource utilization were reported, demonstrating the potential of AI-driven approaches to
adapt schedules under shifting operational conditions [49]. Shi et al. [22] implemented DRL
for the determination of process allocation to resources. The agent was able to handle a



Appl. Sci. 2025, 15, 232 5 of 26

single process at a time. Thus, when iterations of this process occurred, the agent achieved
the allocation of all processes on the machines.

Combining reinforcement learning and dispatch rules, a single machine agent that
employs Q-learning was proposed by Wang and Usher [50]. Through RL, a decision-making
policy is created for the selection of the appropriate dispatching rule for a resource each
time this is required. The scheduling agent proposes the job allocation policy for a single
machine. Improved scheduling performance and reduced processing times were achieved
by dynamically adapting the dispatching decisions based on the current shop conditions.
A variation considering the continuous state features as input in a deep Q-network (DQN)
for the approximation of a state–action value function was proposed. The agent proposes a
dispatching rule each time a new job arrives and needs to be assigned to a machine [51].
Zhang et al. [52] proposed a graph neural network (GNN) to solve job shop scheduling as
the agent can learn dispatch rules from scratch with elementary raw features. The agent
selects the optimal dispatch rule for job allocation at each decision point for the production
resources. Luo [53] proposed a DRL approach implementing a DQN and dispatching
rules for dynamic job scheduling to determine the most suitable dispatching rule at each
rescheduling point. The agent selects one custom composite dispatching rule that will be
applied to all machines. Qin et al. [54] proposed a multi-agent deep reinforcement learning
approach for dynamic job shop scheduling environments. An adaptive multi-objective
multi-task scheduling method was introduced, using hierarchical deep reinforcement
learning to manage complex operational requirements under multiple objectives [55].
Meanwhile, a hybrid intelligence approach combining deep reinforcement learning with
an attention mechanism was proposed to enhance dynamic job shop scheduling, offering
improved responsiveness and decision quality [56]. Both studies underscore the growing
influence of AI-driven techniques in optimizing modern manufacturing processes [56].

Nevertheless, the aforementioned approaches do not implement a large-scale solution.
Most of the approaches consider either a single machine for job allocation or multiple
machines’ job allocation with the use of a single dispatch rule, which has limited perfor-
mance. For scheduling in a more complex and real-world production system, Lin et al. [57]
propose a multiclass DQN (MDQN) to solve the job shop problem with the use of dispatch
rules. Each job has to be dispatched to a single machine when an order arrives. The
input state consists of both static and dynamic parameters, while the action consists of
groups of dispatching rules. More specifically, the output layer of the DQN consists of
groups of nodes, with each group dedicated to a single machine. Thus, contrary to the
classical DQN, the MDQN proposed by the authors selects multiple output nodes, one
for each group. After training, the agent learns to select the best dispatching rule for each
machine. However, this implementation refers to the scheduling of only one order at a
time and its performance for larger-scale problems needs investigation. To address a larger
solution, a multi-agent training approach with the use of deep reinforcement learning was
proposed [58] in order to realize a cooperative multi-agent scheduling system. According to
the authors, each agent is dedicated to one work center and all agents cooperate to provide
the optimal policy.

To find the best dispatch policy, this work uses DRL. The action space consists of all
possible combinations of dispatch rules and the available production resources at a given
decision point. The DRL agent’s mission is to find the best dispatching policy by selecting
the best action, i.e., a set of dispatch rules.

3. Method
As already mentioned, the purpose of this work is to design, develop, implement

and evaluate a scheduling solution based on RL, in order to support scheduling problems.



Appl. Sci. 2025, 15, 232 6 of 26

Before presenting the solution’s architecture design, the main concepts of the RL approach
are highlighted, as well as the problem’s definition and objective. The main component
in the proposed scheduling approach is a scheduling agent capable of learning optimal
scheduling policies to dispatch jobs to machines for various workloads. To develop such
a scheduling algorithm, the modeling of the scheduling problem and the RL method are
addressed below.

3.1. Scheduling Problem Formulation

The production scheduling problem under study refers to job allocation to machines
(Figure 1), in such a sequence that results in an optimal plan regarding a predefined ob-
jective. In this work, the objective of the scheduling algorithm will be the production
makespan’s minimization. For the scheduling problem model, the parameters of a pro-
duction system should be defined. Moreover, the scheduling parameters and variables are
defined below.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 7 of 26 
 

• Constraint 2 (C2): A job’s tasks should be processed by the same set of machines. This 
means that the tasks of a particular job cannot be processed by different workstations. 

• Constraint 3 (C3): The transportation times and setup times are negligible. 

 

Figure 1. Overview of scheduling problem under study. 

3.2. Reinforcement Learning Approach 

In order to apply the RL approach for the scheduling problem, the main concepts 
should be defined from the scheduling perspective. In the following subsections, the 
MDP, learning algorithm, environment, state, action and reward are defined. 

The RL algorithm proposed in this work is rooted in Q-learning, which is imple-
mented using deep learning techniques—specifically, a neural network. This approach is 
commonly referred to as deep reinforcement learning (DRL). The following sections will 
describe the Q-learning method and its variation when incorporating a deep neural net-
work. 

3.2.1. Q-Learning and Deep Q-Network 

Q-learning is a fundamental reinforcement learning algorithm in the field of AI and 
ML, used to solve problems where an agent interacts with an environment to learn an 
optimal policy for sequential decision-making tasks. In reinforcement learning, an agent 
learns to make a sequence of decisions (actions) in an environment to maximize a cumu-
lative reward. Q-learning is typically applied to problems modeled as MPDs, where the 

Figure 1. Overview of scheduling problem under study.

• Product types: A set of product type IDs is denoted as P = {P1, P2, . . . , Pi}, with
i = 1, 2, . . . , maxP, where maxP is the maximum number of product types that the
production system can produce.

• Process plan: Each product type has a sequence of processes that define its pro-
cess plan. Let us denote this set of processes as Hi = {Pr1i, Pr2i, . . . , Prki}, with



Appl. Sci. 2025, 15, 232 7 of 26

k = 1, 2, . . . , maxHPi, where maxHPi is the maximum number of processes in
a product type Pi process plan. For the various product types, let us denote
H = {H1, H2, . . . , Hh}, with h = 1, 2, . . . maxP.

• Resources: Let us denote the list of resources in a production system as
M = {M1, M2, . . . , Mr} with r = 1, 2, . . . , maxM, where maxM is the maximum num-
ber of resources in the production system.

• Suitability and processing times: Let us denote the processing time of a process for
a resource as I(Mr, Prki) ≥ 0. If a process Prki cannot be executed by a resource Mr,j,
then I(Mr, Prki) = 0. In this way, the suitability of tasks for resources is also defined.

• Tasks: Let us denote as a task Tb, with b = 1, 2, . . . , maxT, where maxT is the maximum
number of tasks Tb in a scheduling problem. For this scheduling problem, a product
from a certain product type to be produced is represented as a task Tb.

• Jobs: Let us denote as a job Jc, with c = 1, 2, . . . , maxJ, where maxJ is the maximum
number of jobs Jc in a scheduling problem. For this scheduling problem, a certain
quantity of identical products to be produced is represented as a job Jc.

• Order: Let us denote as an order Og, with g = 1, 2, . . . , maxO, where maxO is the
maximum number of orders Og in a scheduling problem. For this scheduling problem,
a certain quantity of jobs Jc, regarding a specific product, is represented as an order Og.

• Scheduling workload: The scheduling workload consists of all the orders Og, tasks Tb

and jobs Jc that need to be scheduled. The workload follows a hierarchical structure.
The scheduling solution refers to the jobs’ allocation to resources.

The above-mentioned parameters formulate the production system and the scheduling
variables that need to be considered when formulating the scheduling input, as well as the
production environment model. Apart from the above parameters, any other production
constraints should be defined. For this work, the following constraints are defined.

• Constraint 1 (C1): Each machine can perform at most one process at a time.
• Constraint 2 (C2): A job’s tasks should be processed by the same set of machines. This

means that the tasks of a particular job cannot be processed by different workstations.
• Constraint 3 (C3): The transportation times and setup times are negligible.

3.2. Reinforcement Learning Approach

In order to apply the RL approach for the scheduling problem, the main concepts
should be defined from the scheduling perspective. In the following subsections, the MDP,
learning algorithm, environment, state, action and reward are defined.

The RL algorithm proposed in this work is rooted in Q-learning, which is implemented
using deep learning techniques—specifically, a neural network. This approach is commonly
referred to as deep reinforcement learning (DRL). The following sections will describe the
Q-learning method and its variation when incorporating a deep neural network.

3.2.1. Q-Learning and Deep Q-Network

Q-learning is a fundamental reinforcement learning algorithm in the field of AI and ML,
used to solve problems where an agent interacts with an environment to learn an optimal
policy for sequential decision-making tasks. In reinforcement learning, an agent learns
to make a sequence of decisions (actions) in an environment to maximize a cumulative
reward. Q-learning is typically applied to problems modeled as MPDs, where the agent
interacts with an environment composed of states, actions, transition probabilities and
rewards. MDPs have the following components.

• State space (S): A set of all possible states that the agent can be in, where s represents
the current situation in the environment.



Appl. Sci. 2025, 15, 232 8 of 26

• Action space (A): A set of all possible actions that the agent can take, where a denotes
the decision that the agent makes in a given state s.

• Transition function (P): This describes the probability of transitioning from one state
to another after taking a specific action.

• Reward function (R): This defines the immediate reward that the agent receives for
taking an action in a particular state.

• Q-value (action value) function: This represents the expected cumulative reward that an
agent can obtain by taking action a in state s and following an optimal policy thereafter.

The key insight behind Q-learning is the Bellman equation, which expresses the
relationship between the Q-values of the current and future states:

Q(s, a) = R(s, a) + γ ∗ max
[
Q
(
s′, a′

)]
(1)

where Q(s, a) is the Q-value for state–action pair (s, a), R(s, a) is the immediate reward
when taking action a in state s, γ (gamma) is the discount factor that represents the agent’s
preference for immediate rewards over future rewards and max[Q(s′, a′)] represents the
maximum Q-value over all possible actions in the next state, denoted as s′.

The idea of the Q-learning is to use the Bellman equation as an iterative update. The
agent, at each decision point t in a state st ∈ S, selects an action at ∈ A according to a
policy π. After the agent takes the action at, it enters a new state st+1 with the transition
probability p(st+1|st, at) ∈ P(S × A → S) and reward rt ∈ R. The agent’s objective is to
find the optimal policy π∗ that maximizes the expected sum of rewards. A policy is a
rule that an agent follows when selecting an action by considering the given state that the
agent is in. The model consists of an agent, a state space S and a set of actions for each
state A (action space). All the information is stored in a Q-table, which consists of the
Q-values between different states. The goal of the agent is to maximize the sum of reward
rt discounted by γ at each time step t, based on π = P(a|s), after making an observation s
and taking action α.

Qπ(st, at) = maxπE
[
rt+1 + γrt+2 + γ2rt+3 + . . .

∣∣∣st = s, at = a, π
]

(2)

where α is the learning 0 < α ≤ 1 and γ ∈ (0, 1]. In a further analysis, when γ → 0 ,
this means that there are near-term goals, but when γ → 1 , this means that there are
long-term rewards. Based on the Bellman optimality equation, the standard Q-learning
algorithm can be derived. However, Q-learning has some limitations when the environment
becomes more complicated. There are problems with the storage capacity when the state
space is large. To solve this issue, neural networks are used and we implement the Q-
learning method.

In order to overcome the limitations mentioned in the previous section regarding
Q-learning’s inability to deal with unknown states, the concept of the DQN is used. The
DQN is an RL algorithm that combines Q-learning and DNNs to approximate the Q-values
for high-dimensional state spaces. The DQN was proposed by Watkins and Dayan [59].
Mnih et al. [60] combined RL with deep learning techniques, which can be regarded as
a neural network Q-function approximator with weights. The DQN that integrates deep
learning and reinforcement learning is regarded as a powerful method in RL.

The DQN can be regarded as a neural network Q-function approximation with weights
θ. It takes the tuple of features that characterizes a state as an input. The DQN can handle
decision processes with a large state space. In this work, the DQN is used because of the
huge state space that a scheduling problem might have. Let us denote as Q(s, a; θi) the
approximate value using a deep convolutional neural network, where θi are the weights of



Appl. Sci. 2025, 15, 232 9 of 26

the Q-network at iteration i. The experiences et = (st, at, rt, st+1) at each time t are stored
in a data set Dt = {e1, . . . , et}. Choosing uniformly at random an instance from the pool of
stored instances, a Q-learning update is applied for each experience (s, a, r, s′) ∼ U(D).

Li(θi) = E(s,a,r,s′)∼U(D)[
(
r + γmaxa′Q

(
s′, a′; θ−i

)
− Q(s, a; θi)

)2
] (3)

where θi are the weights of the Q-network at iteration i, and θ−i are the network weights
used to compute the target in iteration i. The θ−i weights are only updated for the Q-network
weights θi at every c steps, where c is a constant number.

3.2.2. Environment

In the context of scheduling, the model is trained and evaluated in a simulated
production system representing the environment. Since it is not feasible to use a real
production system for training purposes, the simulation approach is a realistic and viable
solution. The simulation offers a realistic and efficient alternative, enabling faster training
under different scenarios [61]. Thus, apart from its feasibility, the training will be more
efficient, since different situations can be modeled in a cost-effective manner. For this work,
a DES is chosen. The operations in a manufacturing system can be modeled as discrete
processes and thus it fits well with scheduling. A DES models the operation of a system as
a sequence of events in time, where each event occurs at a particular instant in time and
marks a change in status in the system.

A DES is used to model the behavior of a production system and simulate different
production scenarios, which are used for training and testing purposes [62]. In the simu-
lation model, the production elements’ specific characteristics must be defined, such as
input and output rules for the resources and buffers and the quantity of product units
that each resource can handle at a time. Additionally, uncertainties in production, such as
machine breakdowns, can also be modeled in a DES environment. Information regarding
the sequence of each product type, the processing times and the suitability is also defined.
Lastly, a DES gives the ability to easily calculate business key performance indicators (KPIs),
such as the production makespan. The production makespan is the amount of time between
the start and the completion of a production run.

3.2.3. State

The environment where the agent is trained should be adequately explored. Thus, the
modeling of the environment from the agent’s perspective is one of the most important
aspects in such an ML approach. However, the environmental parameters that can be
recognized by the RL agent should not consist of every asset in detail in a production
system. The agent, in order to perform well and with stability and generalize, needs to
identify the production status and the variables that matter. Hence, the overall status of the
production at time t should be mapped in some predefined parameters that formulate the
state s at time t. This state will be given as input to the DRL agent to calculate the output,
which is the next action a in the environment.

State st is a vector of features representing the production status at a time t. The state
consists of information regarding the following features:

• Jobs status—job IDs, types, the remaining quantity to be produced, the remaining
cumulative processing time, the processing times and the suitability;

• Resource status—the available and unavailable resources (e.g., due to breakdown or
performing another process).

In a production environment, the state space is huge, especially when uncertainties
are included. Thus, it is important to ensure sufficient exploration and training to reduce



Appl. Sci. 2025, 15, 232 10 of 26

the state space without missing any important information. The state vector consists of
maxJ sub-vectors, where maxJ is the maximum number of jobs defined in the scheduling
problem requirements. Each sub-vector has the following parameters.

• Job ID: In the workload, there are orders Og with jobs Jc and tasks Tb, following a
hierarchical structure. A job ID is an integer value representing a job Jc.

• Job type ID: A job type ID is an integer value representing the product type Pi of the
job Jc.

• Job remaining workload: An integer value representing the number of remaining tasks
of a job to be executed. Let us denote it as Jrwc.

• Job minimum cumulative processing time: Each resource that can perform the tasks
of a job has its own processing time. The minimum cumulative processing time is a
float value representing the cumulative processing time of the tasks of a job, if this job
is processed by the resource with the minimum processing time. Let us denote this
as Jtminc.

• Job maximum cumulative processing time: Each resource that can perform the tasks
of a job has its own processing time. The maximum cumulative processing time is a
float value representing the cumulative processing time of the tasks of a job, if this job
is processed by the resource with the maximum processing time. Let us denote this
as Jtmaxc.

• Job processing time and suitability: A product type has one processing time per
resource. If the tasks Tb of a job Jc are not suitable for the resource Mr or the resource
Mr is unavailable, the value is 0. Thus, it is a list of values with a length equal to
maxM. Let us denote it as Jpsc = {Jpsc1, Jpsc2, . . . , Jpscr}, with r = 1, 2, . . . , maxM.

Thus, a state sub-vector is the following:

Ssub = {Jc, Pi, Jrwc, Jtminc, Jtmaxc, Jpsc} (4)

The state is the input of the DRL agent’s neural network. The DRL agent is a
DQN. Thus, the state vector’s length should be defined. There are two limitations in this
state approach:

• Maximum number of jobs maxJ;
• Maximum number of resources maxM.

The maximum number of jobs maxJ is the maximum number of sub-vectors that can
be formulated in the state vector. Let us denote the state vector length as

Ls = maxJ ∗ Lsub (5)

where the sub-vector length in this work is Lsub = 5 + len(Jps), with len(Jps) = maxM.
When defining the Ls and Lsub values, the scheduling problem’s specific characteristics
should be taken into account. All the states that an environment can provide formulate the
state space of the reinforcement learning approach. The state vector is the following:

s =
{

Ssub1, Ssub2, . . . SsubmaxJ
}

(6)

3.2.4. Action

The DRL agent explores the environment by visiting the various states. The transition
from a state s to a state s′ is defined as action a. The agent shall perform actions to visit the
states of the environment under exploration, and the set of all possible actions formulates
the action space. Intuitively, the action of the DRL agent in a scheduling problem should be
the next jobs’ or tasks’ allocation at a certain point in time. Indeed, this is the goal when



Appl. Sci. 2025, 15, 232 11 of 26

defining the action vector and the action space. However, in this work, the DRL agent is a
DQN, and the output layer of the neural network has to be strictly defined. Moreover, it
is important to mention that, in each iteration, the DRL agent chooses an output node as
the proposed action. In a production environment with varying workloads, the one-to-one
mapping of job allocations to resources may differ. It is crucial to address this problem, since
the solution that needs to be developed refers to the scheduling of different workloads.

One way to obtain a static output layer in a neural network and, at the same time,
achieve job dispatching to resources is through the use of dispatch rules. Dispatch rules are
independent of the scheduling problem’s volume and work well as a traditional method
when a fast scheduling decision is required. However, a question arises: what is the best
dispatch rule in each situation? This is what the DRL agent learns to determine. In each
production situation, the DRL agent should be able to propose the best dispatch rule for
each resource. Thus, the DRL agent learns the best dispatch policy.

Let us denote the set of dispatch rules as r =
{

r1, r2, . . . , rq
}

, with q = 1, 2, . . . maxR,
where maxR is the maximum number of dispatch rules that will be considered as available
options in selecting the dispatch policy. An action a is the following:

a =
{

rq, rq, . . . , rq
}

, with len(a) = maxM (7)

The action space A is defined as follows:

A =
{

a1, a2, . . . , ay
}

with len(A) = maxMmaxR and y ≤ len(A) (8)

3.2.5. Reward

At each decision point where the agent takes an action to transition from state s to
state s′, the reward function evaluates the quality of the action based on environmental
observation. For this work, the production makespan is chosen as the reward function
variable. The reward is the following:

R(st, at) =
const

makespant
(9)

where makespant is the production time achieved in a simulation production run and const
is a constant value to normalize the reward. Reward normalization should be applied,
since the makespan of a production run depends heavily on the workload. The reward is
higher when the makespan is lower, resulting in objective maximization and makespan
minimization. A training episode is considered a simulation production run. The goal is to
maximize the reward taken by the agent in a training episode.

3.3. Framework for DRL Scheduling Agent Training

Now that the scheduling problem and the reinforcement learning approach have
been described, the last concept to be described is the DRL scheduling agent framework
and workflow. To connect the DRL agent, the scheduling input and the environmental
supporting functionality have to be defined. A custom-made component, namely an
execution controller, is designed with the following functionalities.

• Pre-processing: The DQN input vector has to be created from the output of the DES
model. The output of the DES model consists of the resources and job status. The
execution controller executes the formulation of the DQN input vector. Moreover, it
provides the DRL agent with the episode reward using the makespan obtained from
the simulation.



Appl. Sci. 2025, 15, 232 12 of 26

• Post-processing: The DES model input has to be created from the DQN output. The
output is a vector with the dispatch rules encoded. The execution controller passes
this information to the DES model.

• Simulation control: The execution controller is responsible for performing and coordi-
nating the DQN and DES model’s operation, ensuring the stability of the framework.

• Scheduling input: The scheduling workload is either outsourced or created from
the execution controller’s inner functionality. The execution controller is capable of
performing both processes (in testing mode, it is outsourced, while, in training mode,
the workload is created with the inner functionality).

The DRL scheduling framework’s components and functionalities are illustrated in
Figure 2.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 12 of 26 
 

• Post-processing: The DES model input has to be created from the DQN output. The 
output is a vector with the dispatch rules encoded. The execution controller passes 
this information to the DES model. 

• Simulation control: The execution controller is responsible for performing and coordinat-
ing the DQN and DES model’s operation, ensuring the stability of the framework. 

• Scheduling input: The scheduling workload is either outsourced or created from the 
execution controller’s inner functionality. The execution controller is capable of per-
forming both processes (in testing mode, it is outsourced, while, in training mode, 
the workload is created with the inner functionality). 

The DRL scheduling framework’s components and functionalities are illustrated in 
Figure 2. 

 

Figure 2. Scheduling framework architecture. 

4. Industrial Pilot Case 
4.1. Pilot Case Description 

A real production system from the bicycle industry is employed in order to validate 
and evaluate the performance of the DRL framework. The production environment is a 
wheel assembly shop floor, with a set of operations, product types and resources. The 
shop floor consists of four assembly lines, responsible for wheel assembly. Before the as-
sembly operation, a manual process must be performed. Depending on the product type, 
some types of wheels go through a final tire-fitting process, and then they are sent to the 
warehouse. The department is capable of producing 12 types of wheels. Each type of 
wheel has a specific processing time in the assembly line. The total processing time for a 
complete wheel assembly, as well as the suitability, is presented in Table 1. The shop floor 
of the production system is presented in Figure 3. 

Table 1. Product types, suitability and processing times. 

Product Type 
ID 

Product Type Assembly 
Line 1 (min) 

Assembly 
Line 2 (min) 

Assembly 
Line 3 (min) 

Assembly 
Line 4 (min) 

1 A 10 15 0 10 
2 B 5 0 0 5 
3 C 8 0 6 8 
4 D 12 18 8 0 
5 E 0 6 4 2 
6 F 0 5 0 0 
7 G 0 7 0 10.5 
8 H 6 9 0 0 
9 I 0 0 13 0 

Figure 2. Scheduling framework architecture.

4. Industrial Pilot Case
4.1. Pilot Case Description

A real production system from the bicycle industry is employed in order to validate
and evaluate the performance of the DRL framework. The production environment is a
wheel assembly shop floor, with a set of operations, product types and resources. The
shop floor consists of four assembly lines, responsible for wheel assembly. Before the
assembly operation, a manual process must be performed. Depending on the product type,
some types of wheels go through a final tire-fitting process, and then they are sent to the
warehouse. The department is capable of producing 12 types of wheels. Each type of wheel
has a specific processing time in the assembly line. The total processing time for a complete
wheel assembly, as well as the suitability, is presented in Table 1. The shop floor of the
production system is presented in Figure 3.

For the representation of the production system, a simulation environment is de-
veloped. The production system’s variables and the wheel attributes must be defined.
Additionally, the input rules of the assembly lines have to be defined. These input rules
are the dispatch rules that are used to formulate the action space. Three particular rules
are chosen for this study in order to offer a thorough evaluation. These three rules are
the Most Tasks Remaining per Job (MTRJ), Longest Processing Time (LPT) and Shortest
Processing Time (SPT). These guidelines each provide unique benefits and insights into the
effectiveness and efficiency of resource management systems.

• SPT: The resource selects the job that consists of the tasks that have the shortest
processing times among all suitable tasks. The SPT rule is selected because it focuses
on minimizing the processing time for individual tasks. This method helps to maintain
a constant flow of work and reduces waiting times for subsequent tasks, making it
especially useful in situations where quick task turnaround is essential.



Appl. Sci. 2025, 15, 232 13 of 26

• LPT: The resource selects the job that consists of the tasks that have the longest
processing times among all suitable tasks. The LPT rule, as opposed to the SPT, is
used to investigate the effects of prioritizing jobs with the longest processing times.
This method is particularly effective in settings where finishing long-duration tasks is
crucial for sustaining overall system efficiency and avoiding extended delays.

• MTRJ: The resource selects the job that consists of the most remaining suitable tasks.
The MTRJ rule is chosen to assess how well jobs are prioritized according to the
quantity of tasks that remain. The MTRJ rule is especially helpful in situations where
completing multiple tasks is key to the system’s overall progress.

Table 1. Product types, suitability and processing times.

Product
Type ID

Product
Type

Assembly
Line 1 (min)

Assembly
Line 2 (min)

Assembly
Line 3 (min)

Assembly
Line 4 (min)

1 A 10 15 0 10

2 B 5 0 0 5

3 C 8 0 6 8

4 D 12 18 8 0

5 E 0 6 4 2

6 F 0 5 0 0

7 G 0 7 0 10.5

8 H 6 9 0 0

9 I 0 0 13 0

10 J 0 4 0 0

11 K 0 5 2 3

12 L 14 7 10 0

Appl. Sci. 2025, 15, x FOR PEER REVIEW 13 of 26 
 

10 J 0 4 0 0 
11 K 0 5 2 3 
12 L 14 7 10 0 

 

Figure 3. Wheel assembly department shop floor design. 

For the representation of the production system, a simulation environment is devel-
oped. The production system’s variables and the wheel attributes must be defined. Addi-
tionally, the input rules of the assembly lines have to be defined. These input rules are the 
dispatch rules that are used to formulate the action space. Three particular rules are cho-
sen for this study in order to offer a thorough evaluation. These three rules are the Most 
Tasks Remaining per Job (MTRJ), Longest Processing Time (LPT) and Shortest Processing 
Time (SPT). These guidelines each provide unique benefits and insights into the effective-
ness and efficiency of resource management systems. 

• SPT: The resource selects the job that consists of the tasks that have the shortest pro-
cessing times among all suitable tasks. The SPT rule is selected because it focuses on 
minimizing the processing time for individual tasks. This method helps to maintain 
a constant flow of work and reduces waiting times for subsequent tasks, making it 
especially useful in situations where quick task turnaround is essential. 

• LPT: The resource selects the job that consists of the tasks that have the longest pro-
cessing times among all suitable tasks. The LPT rule, as opposed to the SPT, is used 
to investigate the effects of prioritizing jobs with the longest processing times. This 
method is particularly effective in settings where finishing long-duration tasks is cru-
cial for sustaining overall system efficiency and avoiding extended delays. 

• MTRJ: The resource selects the job that consists of the most remaining suitable tasks. 
The MTRJ rule is chosen to assess how well jobs are prioritized according to the quan-
tity of tasks that remain. The MTRJ rule is especially helpful in situations where com-
pleting multiple tasks is key to the system’s overall progress. 

Each production line consists of parallel machines that can perform the assembly 
process, machines for manual operation and, lastly, machines for the tire-fitting process, 
if this is needed based on the process plan. 

Figure 3. Wheel assembly department shop floor design.



Appl. Sci. 2025, 15, 232 14 of 26

Each production line consists of parallel machines that can perform the assembly
process, machines for manual operation and, lastly, machines for the tire-fitting process, if
this is needed based on the process plan.

4.2. Scheduling Problem Description

The use case specifications and description should be mapped into production vari-
ables, formulating the scheduling problem’s parameters. The scheduling problem is de-
fined below.

• Product types: The set of product types is P = {P1, P2, . . . , Pi}, with i = 1, 2, . . . , maxP,
where maxP = 12.

• Process plan: There are three operation categories in the system, which create
two different process plans based on the product type. The three operations are
Pr1 = manual process, Pr2 = assembly and Pr3 = tire f itting. Thus, there are two
types of process plans: H1 = {Pr1, Pr2, Pr3} and H2 = {Pr1, Pr2}.

• Resources: The assembly lines can be modeled as resources, since each production
job can be allocated to one and only one assembly line during production. Thus,
M = {M1, M2, . . . , Mr} with r = 1, 2, . . . , maxM, where maxM = 4.

• Tasks: As a task is considered, a wheel process plan must be executed. This means
that a product is represented as task Tb, with b = 1, 2, . . . maxT, where maxT = 1500.
The workload consists of a maximum of 1500 wheels to be produced.

• Jobs: As a job is considered, a certain number of units must be produced for a certain
wheel type. A job Jc, with c = 1, 2, . . . , maxJ, where maxJ = 60, consists of 25 tasks
or less.

• Order: An order is considered as a certain amount of jobs to be executed. An order Og

with g = 1, 2, . . . , maxO, where maxO = 30, consists of two jobs or less.
• Suitability and processing times: A processing time for each task Tb is defined for each

resource (assembly line) Mr. If the value is 0, it means that the task is not suitable for
the resource: I(Mr, Prki) ≥ 0. This is presented in Table 1.

• Scheduling workload: For this scheduling problem, the maximum number of orders is
maxO = 30, the maximum number of jobs is maxJ = 60 (each order consists of two
jobs) and the maximum number of tasks is maxT = 1500 (each job has a maximum
number of 25 tasks). The scheduling workload consists of all orders Og, jobs Jc and
tasks Tb that need to be executed. The scheduling solution refers to the job’s allocation
to resources (Jc allocation to Mr).

5. Method Implementation and Evaluation
5.1. DRL Agent Implementation

The neural network used for this work is sequential. A sequential model is a linear
stack of layers, where one layer is added at a time from input to output. There are
four layers.

• INPUT LAYER (1): This is the first layer of the model. It is a flatten layer, which is
used to normalize the input. The shape of the input vector is (1, Ls). This means that
the input is expected to be a one-dimensional array with state elements.

• MIDDLE LAYERS (2): There are two fully connected dense layers with 1024 units and
a ReLU activation function in each. The ReLU activation function helps to introduce
non-linearity into the model.

• OUTPUT LAYER (1): This is the final dense layer. This layer has action units, which
correspond to the number of possible actions that the agent can take. The ’linear’
activation function is used, which means that the output of this layer will be a linear



Appl. Sci. 2025, 15, 232 15 of 26

combination of the inputs. This is used to represent action values (Q-values) directly.
The shape of the output vector is (1, len(A)).

In Table 2, the DRL agent parameters used in implementing the aforementioned DQN
network are presented. The stability and convergence of the network are achieved after mul-
tiple training parameter combinations, with the best ones resulting in the following table.

Table 2. DRL agent model parameters.

POLICY Epsilon-greedy (EpsGreedyQPolicy), eps = 0.1

MEMORY Sequential

DQN Model = Q-network, gamma = 0.99

LEARNING RATE Adam optimizer, a = 0.001

TRAINING 5000 episodes

Regarding the DRL agent’s DQN, it has already been mentioned that the input and
output vector depend on the implementation approach. For this work, there are four
assembly lines and a maximum of 60 jobs; thus,

Ssub =
{

Jc, Pi, Jrwc, Jtminc, Jtmaxc, Jpsc1, Jpsc2, Jpsc3, Jpsc4
}

(10)

For the output vector, which is the action space, the three dispatch rules over the four
resources create an action space of 81 actions. Let us encode the dispatch rules as follows:

• Shortest Processing Time (SPT) = 1;
• Longest Processing Time (LPT) = 2;
• Most Tasks Remaining per Job (MTRJ) = 3.

The action space consists of all combinations of the three dispatch rules over the four
resources, which are the assembly lines.

5.2. DRL Framework Implementation

The environment for implementation is a DES model developed with the use of the
LANNER WITNESS HORIZON software v23.1. Moreover, additional external files, such as
excel and text files, are used. The product type IDs, process plan, suitability and processing
times are loaded to the DES model with the use of external files. These files can be either
Excel files or text files. For this work, Excel files are used. Moreover, the scheduling problem
input and the workload are also loaded through external files, i.e., Excel and text ones.
In addition, to control the training execution, a custom-made Python v3 API, as already
mentioned, is deployed. This API gives the execution controller the ability to control the
workflow. Simulation commands like run, stop and reset are integrated into this API and
provide the ability for the external deployment of a DES model.

5.3. DRL Model Training

For training purposes, random workloads with the above-mentioned requirements
have been developed. The execution controller loads the workload of each episode, which
is a simulated production run. The DRL agent, having the initial state fed from the DES
model through the execution controller, proposes an action. The set of dispatch rules is
then passed through the execution controller, and the simulation run starts. When the
production has finished, the final status of the production system, as well as the reward, is
given as feedback to the DRL agent, through the execution controller. The controller then
resets the DES model environment and creates a new workload, and a new production
run is simulated. After 5000 episodes and one day of training, the agent is adequately



Appl. Sci. 2025, 15, 232 16 of 26

trained and able to perform well in the given production environment. This DRL approach
addresses the aspect of machine breakdowns as unexpected events; thus, retraining is
only mandatory if there is another production setup or additional products. The neural
network parameters are chosen after trials, with the best results being achieved with the
current setup of parameters (Table 2). In Figures 4–7, the training results are presented.
In these figures, the moving averages of the makespans and rewards during the training
session are presented. The training scenarios are randomly generated. From one episode to
another, the workload could differ significantly. Thus, to overcome this issue, the moving
averages of the makespans and the rewards are selected as the measurement method.
In Figures 4 and 5, the moving average of the makespan achieved from the DRL agent’s
actions is presented. The first figure shows the progress of the makespan’s moving average
for 30 measurements and the second one for 100 measurements. Each value is the average
value of 30 or 100 production scenarios. As the figures show, the average makespan tends
to be shorter in the last few steps of the training, starting at 700–750 min and finishing at
550–600. This is a 20–21% makespan reduction observed in the training procedure. The PC
specifications for the training of the DRL model are the following: CPU Intel i7 @2.2 GHz,
RAM 16 GB (Santa Clara, CA, USA).

Appl. Sci. 2025, 15, x FOR PEER REVIEW 16 of 26 
 

the moving averages of the makespans and the rewards are selected as the measurement 

method. In Figures 4 and 5, the moving average of the makespan achieved from the DRL 

agent’s actions is presented. The first figure shows the progress of the makespan’s moving 

average for 30 measurements and the second one for 100 measurements. Each value is the 

average value of 30 or 100 production scenarios. As the figures show, the average 

makespan tends to be shorter in the last few steps of the training, starting at 700–750 min 

and finishing at 550–600. This is a 20–21% makespan reduction observed in the training 

procedure. The PC specifications for the training of the DRL model are the following: CPU 

Intel i7 @2.2 GHz, RAM 16 GB (Santa Clara, CA, USA). 

 

Figure 4. Makespan during training (moving average of 30 values). 

 

Figure 5. Makespan during training (moving average of 100 values). 

 

Figure 6. Rewards during training (moving average of 30 values). 

 

Figure 7. Rewards during training (moving average of 100 values). 

In the next section, the results achieved and a comparative analysis are presented. 

  

Figure 4. Makespan during training (moving average of 30 values).

Appl. Sci. 2025, 15, x FOR PEER REVIEW 16 of 26 
 

the moving averages of the makespans and the rewards are selected as the measurement 

method. In Figures 4 and 5, the moving average of the makespan achieved from the DRL 

agent’s actions is presented. The first figure shows the progress of the makespan’s moving 

average for 30 measurements and the second one for 100 measurements. Each value is the 

average value of 30 or 100 production scenarios. As the figures show, the average 

makespan tends to be shorter in the last few steps of the training, starting at 700–750 min 

and finishing at 550–600. This is a 20–21% makespan reduction observed in the training 

procedure. The PC specifications for the training of the DRL model are the following: CPU 

Intel i7 @2.2 GHz, RAM 16 GB (Santa Clara, CA, USA). 

 

Figure 4. Makespan during training (moving average of 30 values). 

 

Figure 5. Makespan during training (moving average of 100 values). 

 

Figure 6. Rewards during training (moving average of 30 values). 

 

Figure 7. Rewards during training (moving average of 100 values). 

In the next section, the results achieved and a comparative analysis are presented. 

  

Figure 5. Makespan during training (moving average of 100 values).

Appl. Sci. 2025, 15, x FOR PEER REVIEW 16 of 26 
 

the moving averages of the makespans and the rewards are selected as the measurement 

method. In Figures 4 and 5, the moving average of the makespan achieved from the DRL 

agent’s actions is presented. The first figure shows the progress of the makespan’s moving 

average for 30 measurements and the second one for 100 measurements. Each value is the 

average value of 30 or 100 production scenarios. As the figures show, the average 

makespan tends to be shorter in the last few steps of the training, starting at 700–750 min 

and finishing at 550–600. This is a 20–21% makespan reduction observed in the training 

procedure. The PC specifications for the training of the DRL model are the following: CPU 

Intel i7 @2.2 GHz, RAM 16 GB (Santa Clara, CA, USA). 

 

Figure 4. Makespan during training (moving average of 30 values). 

 

Figure 5. Makespan during training (moving average of 100 values). 

 

Figure 6. Rewards during training (moving average of 30 values). 

 

Figure 7. Rewards during training (moving average of 100 values). 

In the next section, the results achieved and a comparative analysis are presented. 

  

Figure 6. Rewards during training (moving average of 30 values).



Appl. Sci. 2025, 15, 232 17 of 26

Appl. Sci. 2025, 15, x FOR PEER REVIEW 16 of 26 
 

the moving averages of the makespans and the rewards are selected as the measurement 

method. In Figures 4 and 5, the moving average of the makespan achieved from the DRL 

agent’s actions is presented. The first figure shows the progress of the makespan’s moving 

average for 30 measurements and the second one for 100 measurements. Each value is the 

average value of 30 or 100 production scenarios. As the figures show, the average 

makespan tends to be shorter in the last few steps of the training, starting at 700–750 min 

and finishing at 550–600. This is a 20–21% makespan reduction observed in the training 

procedure. The PC specifications for the training of the DRL model are the following: CPU 

Intel i7 @2.2 GHz, RAM 16 GB (Santa Clara, CA, USA). 

 

Figure 4. Makespan during training (moving average of 30 values). 

 

Figure 5. Makespan during training (moving average of 100 values). 

 

Figure 6. Rewards during training (moving average of 30 values). 

 

Figure 7. Rewards during training (moving average of 100 values). 

In the next section, the results achieved and a comparative analysis are presented. 

  

Figure 7. Rewards during training (moving average of 100 values).

In the next section, the results achieved and a comparative analysis are presented.

5.4. Evaluation and Discussion

The DRL agent was trained by exploring the use case’s production environment.
The trained model was then able to perform under different circumstances and obtain
scheduling solutions. To evaluate the proposed method, the DRL scheduling algorithm
was compared with random decision-making and dispatch rules.

For testing, production scenarios were randomly generated with the following
characteristics.

• Workload: Random workloads were generated with the limitations described in
Section 4.2.

• Resource availability: In each episode, one line may be unavailable. This is a random
event happening in the simulation.

The implementation of the testing phase was realized with the use of Python as well.
For random workloads, each algorithm should propose an action and be evaluated. An
iteration included five steps (one for each algorithm). In each iteration, a production
scenario was generated. The initial status of the production system, as well as the workload
for each run, was randomly generated based on the production system requirements as
addressed in Section 4.2. In the beginning, one or no machines was unavailable, while all
tasks were pending and ready to be dispatched to resources. After this, each algorithm
proposed its action, and the simulation run was initialized. The result of each run, which
was the makespan returned by the DES model, was stored. Thus, for each scenario, one
could identify the performance of each algorithm.

In Figures 6 and 7, the moving average of the rewards from the DRL agent’s actions
is presented. The first figure shows the progress of the rewards’ moving average for
30 measurements and the second one for 100 measurements. Each value is the average
value of 30 or 100 production scenarios. As the figures show, the average reward tends to
be larger in the last few steps of the training, starting at 0.8–0.85 and finishing at 1–1.05.
This is a 19–20% reward improvement observed in the training procedure.

From the training procedure, there are two main conclusions. The first one is that
the DRL agent was able to train well and learn better actions over time. Starting from
large makespans, on average, it was able to reduce the average scheduling makespan by
20%. In the same manner, a reward improvement is observed, which is inversely related to
the makespan. The second observation is that the DRL agent does not follow the typical
reward progress seen in other reinforcement learning problems. In other words, the reward
does not start from zero and reach higher values at the end of the training. Initially, the
training rewards are high, and this is because there is not a terminal state other than the
production’s completion. This means that the agent’s reward cannot be negative or zero. It
can only be proportional to the makespan achieved, as defined in the methodology. In this
implementation, the agent does not learn how to navigate between states following actions
in order to reach a terminal state and achieve its goal. From the beginning, the agent can



Appl. Sci. 2025, 15, 232 18 of 26

perform any action and reach a terminal state. However, the agent learns how to navigate
through these states in order to maximize the reward. Thus, despite the fact that the
rewards during the first phase of the training are already large, the agent is able to find even
better solutions to the problem. Lastly, the agent explores a vast environment, affecting its
performance by necessitating the learning of problem-solving in a production system and
the ability to generalize to achieve optimal outcomes across a variety of circumstances.

One hundred testing scenarios were randomly generated in order to identify average
behavior, since the randomness introduced by the production scenarios, as well as the scale
of the problem, had to be adequately addressed in the results. In Table 3, the makespans
achieved for each algorithm for the testing scenarios are presented. From the last column
of the table, one can see that the DRL agent finds a better solution compared to all other
algorithms by 85%. In addition, the makespan achieved with DRL is, on average, shorter
than the best ones achieved by the other scheduling algorithms. In Figure 8, the graph
shows better the average makespan achieved by each algorithm.

Table 3. Makespans achieved with the different scheduling algorithms in the testing phase. With
bold the best performance in each production run is highlighted.

PROD
RUN

DRL RANDOM SPT LPT MTRJ

Makespan (min)

1 569 878 835 748 631
2 561 976 944 724 696
3 484 731 731 509 603
4 393 614 582 492 496
5 691 1117 1165 901 752
6 438 606 740 525 543
7 900 1201 1249 900 999
8 315 324 324 440 295
9 470 802 809 632 535

10 548 780 690 701 565
11 355 524 334 505 372
12 373 380 412 483 362
13 467 608 796 598 529
14 729 886 958 720 729
15 1108 1108 1551 1108 1205
16 367 479 627 460 455
17 458 464 647 622 502
18 652 652 971 652 652
19 601 699 846 601 649
20 495 729 751 656 513
21 443 715 720 588 627
22 413 608 509 570 416
23 564 886 852 711 607
24 632 725 866 816 586
25 1016 1448 1458 1016 1053
26 353 369 584 443 409
27 547 891 918 800 668
28 445 532 717 489 476
29 458 664 686 458 458
30 540 748 717 708 587
31 640.5 970 1046 744 826
32 432 432 679 447 499
33 529 608 739 572 577



Appl. Sci. 2025, 15, 232 19 of 26

Table 3. Cont.

PROD
RUN

DRL RANDOM SPT LPT MTRJ

Makespan (min)

34 496 496 821 607 682
35 365 524 514 458 366
36 335 381 394 473 363
37 1069 1069 1389 1069 1069
38 575 692 780 575 575
39 574 738 932 591 624
40 425 603 614 556 432
41 795 1239 1251 795 909
42 691 828 851 691 740
43 484 875 806 593 523
44 652 911 929 652 652
45 483.5 512 734 626 625
46 562.5 692 681 658 516
47 506 521 764 637 575
48 1186 1466 1570 1186 1337
49 360 412 463 455 416
50 509 509 697 509 509
51 691 1003 998 691 799
52 1029 1029 1511 1029 1029
53 505 623 636 677 523
54 575 575 834 575 575
55 717 1081 1097 756 746
56 574 805 886 574 596
57 455 510 520 560 469
58 601 799 1002 750 678
59 561 561 810 561 579
60 653 871 893 653 653
61 717 793 1115 770 793
62 416.5 421 550 554 435
63 717 1134 1095 772 918
64 316 357 285 387 315
65 496 496 716 496 596
66 432 774 721 578 461
67 470 710 645 660 515
68 783 783 1033 783 783
69 587 587 952 727 658
70 492 805 823 621 610
71 406 437 646 490 437
72 321.5 326.5 393 370 307.5
73 990 990 1287 990 990
74 562 857 872 600 591
75 418 418 634 418 427
76 388 411 412 522 398
77 599 552 864 732 608
78 365 531 577 433 366
79 410 537 464 540 410
80 407 612 584 523 407
81 649 667 829 639 639
82 413 418 562 459 429
83 474 521 614 691 502
84 310 396 382 396 335
85 466 592 636 696 460



Appl. Sci. 2025, 15, 232 20 of 26

Table 3. Cont.

PROD
RUN

DRL RANDOM SPT LPT MTRJ

Makespan (min)

86 666 992 1142 833 903
87 484 496 557 610 507
88 562 754 750 562 573
89 319 441 548 445 425
90 574 602 578 684 596
91 991 1042 1410 991 1014
92 587 628 778 546 587
93 616 799 900 799 672
94 574 591 903 686 553
95 367 367 554 416 397
96 493 797 795 660 584
97 692 678 1147 678 759
98 808 897 1164 808 851
99 618 657 812 832 626
100 372 515 460 496 380

AVG 554.63 694.61 795.31 638.73 599.14

Appl. Sci. 2025, 15, x FOR PEER REVIEW 18 of 26 
 

last column of the table, one can see that the DRL agent finds a better solution compared 

to all other algorithms by 85%. In addition, the makespan achieved with DRL is, on aver-

age, shorter than the best ones achieved by the other scheduling algorithms. In Figure 8, 

the graph shows better the average makespan achieved by each algorithm. 

In Figure 9, the results of all testing algorithms are shown in a graph. Firstly, one can 

see that the DRL scheduling algorithm performs, on average, better than all other algo-

rithms. At this point, it should be mentioned that the performance of an algorithm also 

depends on the use case. Thus, the DRL agent should be evaluated for different schedul-

ing methods. In Figure 10, it is obvious that the DRL agent outperforms the random job 

selection. This is expected, since the DRL agent has been trained to choose the best actions 

in each situation. This also validates the training of the DRL agent and its ability to adapt 

to a particular production scenario and perform well in different situations. Moreover, in 

Figure 11–13, a comparison of the DRL with each dispatch rule is presented. In the next 

section, a comparison of the different algorithms’ results is reported. 

 

Figure 8. Scheduling algorithms’ average makespan achieved. 

 

Figure 9. Comparison of all algorithms’ performance regarding makespan achieved through 100 

testing scenarios. 

554.64

694.61

795.32

638.73
599.14

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

DRL RANDOM SPT LPT MTRJ

av
er

ag
e 

m
ak

es
p

an
 f

o
r 

1
0

0
 e

p
is

o
d

es
 

(m
in

s)

Algorithm

Average makespan

Figure 8. Scheduling algorithms’ average makespan achieved.

In Figure 9, the results of all testing algorithms are shown in a graph. Firstly, one
can see that the DRL scheduling algorithm performs, on average, better than all other
algorithms. At this point, it should be mentioned that the performance of an algorithm also
depends on the use case. Thus, the DRL agent should be evaluated for different scheduling
methods. In Figure 10, it is obvious that the DRL agent outperforms the random job
selection. This is expected, since the DRL agent has been trained to choose the best actions
in each situation. This also validates the training of the DRL agent and its ability to adapt
to a particular production scenario and perform well in different situations. Moreover, in
Figures 11–13, a comparison of the DRL with each dispatch rule is presented. In the next
section, a comparison of the different algorithms’ results is reported.



Appl. Sci. 2025, 15, 232 21 of 26

Appl. Sci. 2025, 15, x FOR PEER REVIEW 18 of 26 
 

last column of the table, one can see that the DRL agent finds a better solution compared 
to all other algorithms by 85%. In addition, the makespan achieved with DRL is, on aver-
age, shorter than the best ones achieved by the other scheduling algorithms. In Figure 8, 
the graph shows better the average makespan achieved by each algorithm. 

In Figure 9, the results of all testing algorithms are shown in a graph. Firstly, one can 
see that the DRL scheduling algorithm performs, on average, better than all other algo-
rithms. At this point, it should be mentioned that the performance of an algorithm also 
depends on the use case. Thus, the DRL agent should be evaluated for different schedul-
ing methods. In Figure 10, it is obvious that the DRL agent outperforms the random job 
selection. This is expected, since the DRL agent has been trained to choose the best actions 
in each situation. This also validates the training of the DRL agent and its ability to adapt 
to a particular production scenario and perform well in different situations. Moreover, in 
Figure 11–13, a comparison of the DRL with each dispatch rule is presented. In the next 
section, a comparison of the different algorithms’ results is reported. 

 

Figure 8. Scheduling algorithms’ average makespan achieved. 

 

Figure 9. Comparison of all algorithms’ performance regarding makespan achieved through 100 
testing scenarios. 

554.64

694.61

795.32

638.73
599.14

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

DRL RANDOM SPT LPT MTRJ

av
er

ag
e 

m
ak

es
pa

n 
fo

r 1
00

 e
pi

so
de

s 
(m

in
s)

Algorithm

Average makespan

Figure 9. Comparison of all algorithms’ performance regarding makespan achieved through 100 test-
ing scenarios.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 19 of 26 
 

 

Figure 10. Comparison of DRL and RANDOM algorithms’ performance regarding makespan 
achieved through 100 testing scenarios. 

 

Figure 11. Comparison of DRL and SPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 12. Comparison of DRL and LPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 13. Comparison of DRL and MTRJ algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

  

Figure 10. Comparison of DRL and RANDOM algorithms’ performance regarding makespan
achieved through 100 testing scenarios.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 19 of 26 
 

 

Figure 10. Comparison of DRL and RANDOM algorithms’ performance regarding makespan 
achieved through 100 testing scenarios. 

 

Figure 11. Comparison of DRL and SPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 12. Comparison of DRL and LPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 13. Comparison of DRL and MTRJ algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

  

Figure 11. Comparison of DRL and SPT algorithms’ performance regarding makespan achieved
through 100 testing scenarios.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 19 of 26 
 

 

Figure 10. Comparison of DRL and RANDOM algorithms’ performance regarding makespan 
achieved through 100 testing scenarios. 

 

Figure 11. Comparison of DRL and SPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 12. Comparison of DRL and LPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 13. Comparison of DRL and MTRJ algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

  

Figure 12. Comparison of DRL and LPT algorithms’ performance regarding makespan achieved
through 100 testing scenarios.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 19 of 26 
 

 

Figure 10. Comparison of DRL and RANDOM algorithms’ performance regarding makespan 
achieved through 100 testing scenarios. 

 

Figure 11. Comparison of DRL and SPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 12. Comparison of DRL and LPT algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

 

Figure 13. Comparison of DRL and MTRJ algorithms’ performance regarding makespan achieved 
through 100 testing scenarios. 

  

Figure 13. Comparison of DRL and MTRJ algorithms’ performance regarding makespan achieved
through 100 testing scenarios.



Appl. Sci. 2025, 15, 232 22 of 26

6. Discussion
The results show that the DRL approach for scheduling is a good solution with

promising results and outperforms traditional methods. More specifically, the DRL agent is
able to propose a schedule that results in a shorter makespan than the other scheduling
approaches by 85%. This means that, in 85/100 testing scenarios, the DRL proposes a more
efficient schedule, resulting in a shorter production makespan. Comparing the DRL with
each other algorithm separately shows that the DRL performs better in 98% of the cases
compared to RANDOM, 98% compared to SPT, 96% compared to LPT and 90% compared
to MTRPJ. Lastly, in terms of the average makespan achieved by the algorithms, the DRL
results in a makespan that is shorter than the ones achieved by RANDOM, SPT, LPT and
MTRJ by 20%, 30%, 13% and 7.5%, respectively.

To further validate the findings, 95% confidence intervals were computed for the
mean makespan achieved by the DRL approach and the other methods. The intervals
demonstrate a statistically significant improvement in the makespan performance for DRL
across all test scenarios. Additionally, a paired t-test was conducted, with the p-values
confirming that the differences in the makespan between DRL and the baseline methods
were statistically significant (p < 0.05). Moreover, variability in the DRL performance across
different scenarios was observed, which was due to the dynamic nature of the production
workloads and the DRL agent’s policy adjustments based on state exploration. Despite this,
DRL consistently outperformed the other methods, reflecting its ability to adapt effectively
to uncertain and diverse conditions.

Traditional optimization methods, such as genetic algorithms (GAs), are well estab-
lished for their ability to handle complex scheduling problems through global search
heuristics [6]. However, these methods often require significant computational time and
manual parameter tuning, particularly for dynamic and uncertain production environ-
ments. In contrast, DRL offers several distinct advantages. DRL adapts dynamically to
changing workloads and system states without requiring complete rescheduling from
scratch, leading to significantly reduced computational times. While these methods often
require significant computational resources during training due to their iterative and data-
intensive nature, their ability to generalize across varying scenarios significantly outweighs
this initial cost. Furthermore, DRL integrates decision-making flexibility by learning from
the environment, rather than relying on predefined heuristic rules [46,54]. It effectively
navigates vast state and action spaces, making it particularly suited for dynamic and un-
certain environments. While traditional methods excel in deterministic scenarios, they
may struggle with real-time adaptability in stochastic environments, a challenge addressed
effectively by DRL. Additionally, DRL’s capacity to optimize the scheduling decisions
while generalizing across different problem scales further positions it as a competitive
alternative for modern manufacturing systems [51]. Despite its computational intensity
during training, DRL achieves superior long-term adaptability and scalability, as high-
lighted by the results of this study, with an observed makespan reduction of up to 20%.
The proposed implementation demonstrates notable advantages, such as scalability to
larger production setups and adaptability to dynamic workloads. This aligns with other
findings in the literature, such as those of Mnih [60], who highlighted the efficiency of
DQNs in approximating optimal policies in high-dimensional state spaces. Furthermore,
by leveraging state space reduction and task prioritization, the computational burden is
minimized without sacrificing the solution quality, underscoring its practical applicability
in smart manufacturing environments [51].



Appl. Sci. 2025, 15, 232 23 of 26

7. Conclusions
In conclusion, this study has successfully introduced and implemented a novel ap-

proach to production scheduling, employing a DRL agent guided by a DNN. The DRL
scheduling agent exhibited remarkable performance, achieving an 85% improvement in
selecting optimal dispatch rules (SPT, LPT and MTRJ) for each resource in a scheduling
problem instance. The comparison against traditional rules, such as SPT, LPT, MTRJ and
random job selection, highlighted the superiority of the DRL agent, particularly when
applied to real-world data from the bicycle industry. The development of a DES model,
replicating the dynamics of the bicycle industry, served as a crucial training basis for the
DRL agent. The results not only validate the effectiveness of the DRL agent but also em-
phasize its potential as a valuable tool to enhance production scheduling, especially in
conjunction with established dispatch rules.

While DRL demonstrates significant potential in dynamic scheduling, it has limitations
that warrant consideration. Training DRL models, such as the implemented deep Q-
network, is computationally intensive, requiring substantial time and resources, especially
for large-scale or complex production environments [60]. Additionally, the proposed
implementation does not fully capture real-world uncertainties, such as supply chain
disruptions and the addition of new products or product variants. Lastly, DRL’s sensitivity
to hyperparameter tuning and the potential for suboptimal policies in highly stochastic
settings pose challenges, requiring careful design and the evaluation of the reward structure
and state action representation.

As future work, we envision expanding the scope of this study by incorporating addi-
tional dispatch rules like FIFO and the Earliest Due Date (EDD) into the DRL scheduling
agent framework. Furthermore, future endeavors may explore the integration of standard-
ized models, such as the asset administration shell concept (AAS), to parameterize the DRL
agent. These anticipated extensions aim to further refine and generalize the applicability of
the DRL-based approach, contributing to the ongoing evolution of intelligent production
scheduling methodologies. Another topic for improvement is the optimization goal, seek-
ing to include more parameters, such as energy efficiency, the production rate, etc., resulting
in a multi-objective DRL agent in a manufacturing environment. The comparison of such
multi-objective agents’ implementations, following a central architecture and methodology,
is a topic of great interest, especially when considering other production environments with
different characteristics and conditions, where more limitations or applicability issues may
occur. Scalability advancements and framework validation in more complex environments
will be addressed in future research as well. This will be also supported by a variability
analysis of the deployed scenarios to identify the implications for the DRL performance
related to the workload or production setup scale. In addition, the effects of the environ-
mental parameters, requirements and limitations may be another topic of great intertest,
especially in larger production systems. Dynamic environments with more unexpected
events could also be addressed with the implementation of the DRL framework, such as
changes in the capacity and the processing power of resources or urgent production orders
and delivery. Lastly, when the scale of the problem is much greater, the state representation
and state space reduction could be a topic for further research, regarding the impact of the
state space formulation on the quality of the decisions.

Author Contributions: Conceptualization, K.A., N.N. and D.M.; Methodology, K.A., P.M. and E.B.;
Software, P.M. and E.B.; Validation, P.M. and E.B.; Formal analysis, K.A.; Data curation, P.M.; Writing—
original draft, P.M. and E.B.; Writing—review & editing, K.A., P.M., N.N. and D.M.; Supervision,
K.A., N.N. and D.M.; Project administration, K.A. and N.N.; Funding acquisition, K.A. All authors
have read and agreed to the published version of the manuscript.



Appl. Sci. 2025, 15, 232 24 of 26

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement no. 957204 MAS4AI. The dissemination of the results
herein reflects only the authors’ views, and the Commission is not responsible for any use that may
be made of the information that it contains.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chryssolouris, G.; Alexopoulos, K.; Arkouli, Z. Artificial Intelligence in Manufacturing Systems. Stud. Syst. Decis. Control 2023,

436, 79–135. [CrossRef]
2. Mourtzis, D. Advances in Adaptive Scheduling in Industry 4.0. Front. Manuf. Technol. 2022, 2, 937889. [CrossRef]
3. Cioffi, R.; Travaglioni, M.; Piscitelli, G.; Petrillo, A.; Parmentola, A. Smart Manufacturing Systems and Applied Industrial

Technologies for a Sustainable Industry: A Systematic Literature Review. Appl. Sci. 2020, 10, 2897. [CrossRef]
4. Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ.

2020, 229, 107776. [CrossRef]
5. Chryssolouris, G. Manufacturing Systems: Theory and Practice; Springer: New York, NY, USA, 2013.
6. Chryssolouris, G.; Subramaniam, V. Dynamic scheduling of manufacturing job shops using genetic algorithms. J. Intell. Manuf.

2001, 12, 281–293. [CrossRef]
7. Mourtzis, D.; Vlachou, E. A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based mainte-

nance. J. Manuf. Syst. 2018, 47, 179–198. [CrossRef]
8. Baldea, M.; Harjunkoski, I. Integrated production scheduling and process control: A systematic review. Comput. Chem. Eng. 2014,

71, 377–390. [CrossRef]
9. Ghaleb, M.; Zolfagharinia, H.; Taghipour, S. Real-time production scheduling in the Industry-4.0 context: Addressing uncertainties

in job arrivals and machine breakdowns. Comput. Oper. Res. 2020, 123, 105031. [CrossRef]
10. Alexopoulos, K.; Nikolakis, N.; Chryssolouris, G. Digital twin-driven supervised machine learning for the development of

artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 2020, 33, 429–439. [CrossRef]
11. Framinan, J.M.; Leisten, R.; García, R.R. Manufacturing Scheduling Systems: An Integrated View on Models, Methods and Tools;

Springer: London, UK, 2014; pp. 1–400. ISBN 978-1-4471-6272-8. [CrossRef]
12. Pierreval, H.; Mebarki, N. Dynamic scheduling selection of dispatching rules for manufacturing system. Int. J. Prod. Res. 1997, 35,

1575–1591. [CrossRef]
13. Choi, B.K.; You, N.K. Dispatching rules for dynamic scheduling of one-of-a-kind production. Int. J. Comput. Integr. Manuf. 2006,

19, 383–392. [CrossRef]
14. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0.

J. Intell. Manuf. 2017, 30, 1809–1830. [CrossRef]
15. Alexopoulos, K.; Koukas, S.; Boli, N.; Mourtzis, D. Resource planning for the installation of industrial product service systems.

IFIP Adv. Inf. Commun. Technol. 2017, 514, 205–213. [CrossRef]
16. Chryssolouris, G.; Papakostas, N.; Mourtzis, D. Refinery short-term scheduling with tank farm, inventory and distillation

management: An integrated simulation-based approach. Eur. J. Oper. Res. 2005, 166, 812–827. [CrossRef]
17. Cai, L.; Li, W.; Luo, Y.; He, L. Real-time scheduling simulation optimisation of job shop in a production-logistics collaborative

environment. Int. J. Prod. Res. 2023, 61, 1373–1393. [CrossRef]
18. Wei, H.; Li, S.; Quan, H.; Liu, D.; Rao, S.; Li, C.; Hu, J. Unified Multi-Objective Genetic Algorithm for Energy Efficient Job Shop

Scheduling. IEEE Access 2021, 9, 54542–54557. [CrossRef]
19. Li, W.; Luo, X.; Xue, D.; Tu, Y. A heuristic for adaptive production scheduling and control in flow shop production. Int. J. Prod.

Res. 2011, 49, 3151–3170. [CrossRef]
20. Yan, Y.; Wang, Z. A two-layer dynamic scheduling method for minimising the earliness and tardiness of a re-entrant production

line. Int. J. Prod. Res. 2012, 50, 499–515. [CrossRef]
21. Wen, X.; Lian, X.; Qian, Y.; Zhang, Y.; Wang, H.; Li, H. Dynamic scheduling method for integrated process planning and

scheduling problem with machine fault. Robot. Comput. Integr. Manuf. 2022, 77, 102334. [CrossRef]
22. Shi, D.; Fan, W.; Xiao, Y.; Lin, T.; Xing, C. Intelligent scheduling of discrete automated production line via deep reinforcement

learning. Int. J. Prod. Res. 2020, 58, 3362–3380. [CrossRef]

https://doi.org/10.1007/978-3-031-21828-6_4
https://doi.org/10.3389/fmtec.2022.937889
https://doi.org/10.3390/app10082897
https://doi.org/10.1016/j.ijpe.2020.107776
https://doi.org/10.1023/A:1011253011638
https://doi.org/10.1016/j.jmsy.2018.05.008
https://doi.org/10.1016/j.compchemeng.2014.09.002
https://doi.org/10.1016/j.cor.2020.105031
https://doi.org/10.1080/0951192X.2020.1747642
https://doi.org/10.1007/978-1-4471-6272-8
https://doi.org/10.1080/002075497195137
https://doi.org/10.1080/09511920500407541
https://doi.org/10.1007/s10845-017-1350-2
https://doi.org/10.1007/978-3-319-66926-7_24
https://doi.org/10.1016/j.ejor.2004.03.046
https://doi.org/10.1080/00207543.2021.2023777
https://doi.org/10.1109/ACCESS.2021.3070981
https://doi.org/10.1080/00207540903575385
https://doi.org/10.1080/00207543.2010.543171
https://doi.org/10.1016/j.rcim.2022.102334
https://doi.org/10.1080/00207543.2020.1717008


Appl. Sci. 2025, 15, 232 25 of 26

23. Liu, J.; Sun, B.; Li, G.; Chen, Y. An integrated scheduling approach considering dispatching strategy and conflict-free route of
AMRs in flexible job shop. Int. J. Adv. Manuf. Technol. 2023, 127, 1979–2002. [CrossRef]

24. Wang, G.; Zhang, G.; Guo, X.; Zhang, Y. Digital twin-driven service model and optimal allocation of manufacturing resources in
shared manufacturing. J. Manuf. Syst. 2021, 59, 165–179. [CrossRef]

25. Zadeh, M.S.; Katebi, Y.; Doniavi, A. A heuristic model for dynamic flexible job shop scheduling problem considering variable
processing times. Int. J. Prod. Res. 2019, 57, 3020–3035. [CrossRef]

26. Liu, W.; Jin, Y.; Price, M. New meta-heuristic for dynamic scheduling in permutation flowshop with new order arrival. Int. J. Adv.
Manuf. Technol. 2018, 98, 1817–1830. [CrossRef]

27. Mansouri, N.; Zade, B.M.H.; Javidi, M.M. Hybrid task scheduling strategy for cloud computing by modified particle swarm
optimization and fuzzy theory. Comput. Ind. Eng. 2019, 130, 597–633. [CrossRef]

28. Wang, P.; Lei, Y.; Agbedanu, P.R.; Zhang, Z. Makespan-Driven Workflow Scheduling in Clouds Using Immune-Based PSO
Algorithm. IEEE Access 2020, 8, 29281–29290. [CrossRef]

29. Wang, J.-J.; Wang, L. A Knowledge-Based Cooperative Algorithm for Energy-Efficient Scheduling of Distributed Flow-Shop.
IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 1805–1819. [CrossRef]

30. Park, J.; Chun, J.; Kim, S.H.; Kim, Y.; Park, J. Learning to schedule job-shop problems: Representation and policy learning using
graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360–3377. [CrossRef]

31. He, P. Optimization and Simulation of Remanufacturing Production Scheduling under Uncertainties. Int. J. Simul. Model. 2018,
17, 734–743. [CrossRef]

32. Shahzad, A.; Mebarki, N. Learning Dispatching Rules for Scheduling: A Synergistic View Comprising Decision Trees, Tabu
Search and Simulation. Computers 2016, 5, 3. [CrossRef]

33. Sun, J.; Zhang, G.; Lu, J.; Zhang, W. A hybrid many-objective evolutionary algorithm for flexible job-shop scheduling problem
with transportation and setup times. Comput. Oper. Res. 2021, 132, 105263. [CrossRef]

34. Mohan, J.; Lanka, K.; Rao, A.N. A Review of Dynamic Job Shop Scheduling Techniques. Procedia Manuf. 2019, 30, 34–39.
[CrossRef]

35. Priore, P.; Gómez, A.; Pino, R.; Rosillo, R. Dynamic scheduling of manufacturing systems using machine learning: An updated
review. Artif. Intell. Eng. Des. Anal. Manuf. 2014, 28, 83–97. [CrossRef]

36. Vasilis, S.; Nikos, N.; Kosmas, A.; Dimitris, M. A toolbox of agents for scheduling the paint shop in bicycle industry. Procedia
CIRP 2022, 107, 1156–1161. [CrossRef]

37. Taha, H.A.; Yacout, S.; Shaban, Y. Deep Reinforcement Learning for autonomous pre-failure tool life improvement. Int. J. Adv.
Manuf. Technol. 2022, 121, 6169–6192. [CrossRef]

38. Neves, M.; Neto, P. Deep reinforcement learning applied to an assembly sequence planning problem with user preferences. Int. J.
Adv. Manuf. Technol. 2022, 122, 4235–4245. [CrossRef]

39. Torres, A.d.R.; Andreiana, D.S.; Roldán, O.; Bustos, A.H.; Galicia, L.E.A. A Review of Deep Reinforcement Learning Approaches
for Smart Manufacturing in Industry 4.0 and 5.0 Framework. Appl. Sci. 2022, 12, 12377. [CrossRef]

40. Panzer, M.; Bender, B.; Gronau, N. Deep Reinforcement Learning In Production Planning And Control: A Systematic Literature
Review. In Proceedings of the Conference on Production Systems and Logistics, Online, 10–11 August 2021; pp. 535–545.
[CrossRef]

41. Cunha, B.; Madureira, A.; Fonseca, B.; Matos, J. Intelligent Scheduling with Reinforcement Learning. Appl. Sci. 2021, 11, 3710.
[CrossRef]

42. Mouelhi-Chibani, W.; Pierreval, H. Training a neural network to select dispatching rules in real time. Comput. Ind. Eng. 2010, 58,
249–256. [CrossRef]

43. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
44. Hubbs, C.; Wassick, J.M.; Hubbs, C.D.; Kelloway, A.; Sahinidis, N.V.; Grossmann, I.E. An Industrial Application of Deep

Reinforcement Learning for Chemical Production Scheduling. In Machine Learning for Engineering Modeling, Simulation, and Design;
Researchgate.net: Berlin, Germany, 2020.

45. Zhou, T.; Tang, D.; Zhu, H.; Wang, L. Reinforcement Learning with Composite Rewards for Production Scheduling in a Smart
Factory. IEEE Access 2020, 9, 752–766. [CrossRef]

46. Wang, Z.; Liao, W. Smart scheduling of dynamic job shop based on discrete event simulation and deep reinforcement learning.
J. Intell. Manuf. 2023, 35, 2593–2610. [CrossRef]

47. Tang, J.; Salonitis, K. A Deep Reinforcement Learning Based Scheduling Policy for Reconfigurable Manufacturing Systems.
Procedia CIRP 2021, 103, 1–7. [CrossRef]

48. Kardos, C.; Laflamme, C.; Gallina, V.; Sihn, W. Dynamic scheduling in a job-shop production system with reinforcement learning.
Procedia CIRP 2021, 97, 104–109. [CrossRef]

49. Zhou, L.; Zhang, L.; Horn, B.K. Deep reinforcement learning-based dynamic scheduling in smart manufacturing. J. Manuf. Syst.
2020, 93, 383–388. [CrossRef]

https://doi.org/10.1007/s00170-022-10619-z
https://doi.org/10.1016/j.jmsy.2021.02.008
https://doi.org/10.1080/00207543.2018.1524165
https://doi.org/10.1007/s00170-018-2171-y
https://doi.org/10.1016/j.cie.2019.03.006
https://doi.org/10.1109/ACCESS.2020.2972963
https://doi.org/10.1109/TSMC.2017.2788879
https://doi.org/10.1080/00207543.2020.1870013
https://doi.org/10.2507/IJSIMM17(4)CO20
https://doi.org/10.3390/computers5010003
https://doi.org/10.1016/j.cor.2021.105263
https://doi.org/10.1016/j.promfg.2019.02.006
https://doi.org/10.1017/S0890060413000516
https://doi.org/10.1016/j.procir.2022.05.124
https://doi.org/10.1007/s00170-022-09700-4
https://doi.org/10.1007/s00170-022-09877-8
https://doi.org/10.3390/app122312377
https://doi.org/10.15488/11238
https://doi.org/10.3390/app11083710
https://doi.org/10.1016/j.cie.2009.03.008
https://doi.org/10.1109/ACCESS.2020.3046784
https://doi.org/10.1007/s10845-023-02161-w
https://doi.org/10.1016/j.procir.2021.09.089
https://doi.org/10.1016/j.procir.2020.05.210
https://doi.org/10.1016/j.procir.2020.05.163


Appl. Sci. 2025, 15, 232 26 of 26

50. Wang, Y.-C.; Usher, J.M. Learning policies for single machine job dispatching. Robot. Comput. Integr. Manuf. 2004, 20, 553–562.
[CrossRef]

51. Hu, L.; Liu, Z.; Hu, W.; Wang, Y.; Tan, J.; Wu, F. Petri-net-based dynamic scheduling of flexible manufacturing system via deep
reinforcement learning with graph convolutional network. J. Manuf. Syst. 2020, 55, 1–14. [CrossRef]

52. Zhang, C.; Song, W.; Cao, Z.; Zhang, J.; Tan, P.S.; Xu, C. Learning to dispatch for job shop scheduling via deep reinforcement
learning. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, BC,
Canada, 6–12 December 2020.

53. Luo, S. Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning. Appl. Soft Comput. 2020,
91, 106208. [CrossRef]

54. Qin, Z.; Johnson, D.; Lu, Y. Dynamic production scheduling towards self-organizing mass personalization: A multi-agent dueling
deep reinforcement learning approach. J. Manuf. Syst. 2023, 68, 242–257. [CrossRef]

55. Zhang, J.; Guo, B.; Ding, X.; Hu, D.; Tang, J.; Du, K.; Tang, C.; Jiang, Y. An adaptive multi-objective multi-task scheduling method
by hierarchical deep reinforcement learning. Appl. Soft Comput. 2024, 154, 111342. [CrossRef]

56. Zeng, Y.; Liao, Z.; Dai, Y.; Wang, R.; Li, X.; Yuan, B. Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement
learning and attention mechanism. arXiv 2022, arXiv:2201.00548.

57. Lin, C.-C.; Deng, D.-J.; Chih, Y.-L.; Chiu, H.-T. Smart Manufacturing Scheduling With Edge Computing Using Multiclass Deep Q
Network. IEEE Trans. Ind. Inform. 2019, 15, 4276–4284. [CrossRef]

58. Waschneck, B.; Reichstaller, A.; Belzner, L.; Altenmüller, T.; Bauernhansl, T.; Knapp, A.; Kyek, A. Optimization of global
production scheduling with deep reinforcement learning. Procedia CIRP 2018, 72, 1264–1269. [CrossRef]

59. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
60. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]
61. Mourtzis, D.; Papakostas, N.; Mavrikios, D.; Makris, S.; Alexopoulos, K. The role of simulation in digital manufacturing:

Applications and outlook. Int. J. Comput. Integr. Manuf. 2015, 28, 3–24. [CrossRef]
62. Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res.

2020, 58, 1927–1949. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.rcim.2004.07.003
https://doi.org/10.1016/j.jmsy.2020.02.004
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.jmsy.2023.03.003
https://doi.org/10.1016/j.asoc.2024.111342
https://doi.org/10.1109/TII.2019.2908210
https://doi.org/10.1016/j.procir.2018.03.212
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://doi.org/10.1080/0951192X.2013.800234
https://doi.org/10.1080/00207543.2019.1636321

	Introduction 
	Literature Review 
	Method 
	Scheduling Problem Formulation 
	Reinforcement Learning Approach 
	Q-Learning and Deep Q-Network 
	Environment 
	State 
	Action 
	Reward 

	Framework for DRL Scheduling Agent Training 

	Industrial Pilot Case 
	Pilot Case Description 
	Scheduling Problem Description 

	Method Implementation and Evaluation 
	DRL Agent Implementation 
	DRL Framework Implementation 
	DRL Model Training 
	Evaluation and Discussion 

	Discussion 
	Conclusions 
	References

