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Abstract

:

The present study employs machine learning regression analyses to investigate the efficiency of photovoltaic (PV) panels utilizing solar energy under the influence of environmental factors. The experimental study was conducted on two 100-watt monocrystalline and two polycrystalline PV panels, which were divided into clean and dirty groups. The following variables were monitored and recorded for a period of six months: radiation, panel temperature, air temperature, wind speed, humidity, pressure, and ultraviolet (UV) radiation. Additionally, current, voltage, and power were recorded. These measurements were taken during the production of energy by PV panels. Monocrystalline PV panels exhibited an 8.6% increase in energy efficiency, while polycrystalline PV panels demonstrated a 6.2% increase, following the collection and cleaning of data in accordance with the IEC 61724 standard. Six distinct machine learning regression analyses were conducted on the dataset. The results were compared using the Root Mean Square Error (RMSE) and the coefficient of determination (R2). The Random Forest model demonstrated the greatest predictive success, while the Support Vector Regression (SVR) model exhibited the lowest performance.
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1. Introduction


The efficiency of photovoltaic (PV) panels is significantly influenced by a range of environmental factors, including irradiance, humidity, temperature, and wind speed. It is of paramount importance to study these factors in order to optimize the performance of PV systems and increase their energy output. This research presents a synthesis of findings obtained through six months of measurements, with the objective of elucidating the impact of environmental conditions on the efficiency of PV panels.



Among the environmental factors that affect the efficiency of photovoltaic (PV) panels, temperature is among the most critical. As the temperature of solar cells increases, their efficiency tends to decline. This phenomenon occurs because elevated temperatures can result in increased electron-hole recombination rates within the semiconductor material, which in turn reduces the overall output voltage and power conversion efficiency [1,2]. For instance, it has been demonstrated that PV panels typically demonstrate an efficiency reduction of approximately 0.2% to 0.5% for each degree Celsius temperature increase above 25 °C [2]. Given this temperature sensitivity, it is necessary to incorporate cooling mechanisms into PV systems, such as photovoltaic–thermal (PV/T) systems. These can help mitigate the negative effects of high temperatures by utilizing waste heat for thermal applications [1].



Furthermore, irradiance levels are a significant factor in determining the efficiency of PV panels. The amount of solar radiation that falls on the panels is directly proportional to their energy output. In conditions that are optimal for the operation of photovoltaic (PV) panels, the panels are capable of reaching their maximum efficiency when the irradiance levels are high. However, during cloudy weather or low-light conditions, such as dawn and dusk, the efficiency of PV panels can decline significantly. Studies indicate that photovoltaic (PV) systems are capable of operating at approximately 80% of their rated capacity under partial shading conditions, which can result in notable losses in energy production [3]. Consequently, the configuration of PV systems must consider the fluctuating irradiance levels throughout the diurnal cycle and across different seasons to ensure optimal performance.



Humidity is another environmental factor that can impact the efficiency of photovoltaic (PV) panels. High humidity levels can result in the accumulation of moisture on the surface of the panels, which can subsequently lead to a reduction in light transmission and, consequently, a decline in energy output. Furthermore, humidity can facilitate the proliferation of biological contaminants, such as algae and mold, which can impede sunlight and diminish the functionality of the panels over time [4]. Conversely, low humidity levels have been demonstrated to enhance the efficiency of PV panels by reducing the probability of moisture-related complications. However, it is essential to maintain an equilibrium between humidity levels and other environmental factors, as extreme conditions can precipitate thermal stress and material degradation.



Furthermore, wind speed represents another crucial environmental factor influencing the efficiency of PV panels. A sufficient wind speed can facilitate the cooling of the panels, thereby reducing their temperature and increasing their efficiency [5]. It has been demonstrated that elevated wind speeds can result in a reduction in the operating temperature of photovoltaic (PV) panels, thereby enhancing their performance, particularly in hot climates [5]. However, excessive wind speeds can pose mechanical risks to photovoltaic (PV) installations, potentially leading to structural damage or failure. Consequently, the design and installation of PV systems must consider local wind conditions in order to ensure both efficiency and durability.



It is also essential to consider the impact of environmental conditions on the deterioration of PV panels over time. Factors such as temperature fluctuations, humidity, and exposure to pollutants can contribute to the degradation of the materials used in photovoltaic (PV) panels, which can result in a reduction in efficiency. For example, prolonged exposure to elevated temperatures can cause thermal cycling, which can result in the delamination of layers within panels and the formation of microcracks [6]. To mitigate these effects and ensure the longevity and efficiency of PV systems, regular monitoring and maintenance are essential. In addition to the environmental factors previously discussed, the geographical location of PV installations can also have a significant impact on their efficiency. Regions with elevated levels of solar radiation and favorable climatic conditions are more likely to achieve higher energy outputs from photovoltaic (PV) systems. Conversely, regions with high levels of cloud cover, high humidity, or extreme temperatures may experience a reduction in efficiency [4]. Consequently, the choice of location is of paramount importance in the deployment of PV systems, as it can have a significant effect on their overall performance and energy production capacity.



Various approaches to maximizing PV panel output power performance have been presented in the literature. Huang et al. studied an M-shaped configuration of PV panels and showed that this arrangement can increase the efficiency of solar energy production compared to traditional S-shaped configurations [7]. An artificial neural network (ANN) model was developed by Ρουμπακιάς and Stamatelos, trained on real performance data, for the purpose of predicting the output of a grid-connected photovoltaic (PV) park. In their research, they emphasized the ability of ANNs to separate the effects of pollution on PV panels [8]. Natsheh and Samara examined the utility of non-linear autoregressive neural networks (NARXs) and deep feedforward neural networks (DFFs) with exogenous inputs for modeling the maximum output power of photovoltaic (PV) panels. Their comparative analysis demonstrated that different neural network architectures can yield varying degrees of accuracy in predicting PV output, thereby suggesting the possibility of employing specialized approaches in performance modeling [9].



In the existing literature, numerous environmental factors have been incorporated into machine learning regression models at the regional level. Thombare et al. [10] achieved an optimal result with a linear regression model for solar energy estimation, whereas Ramedani et al. [11] used Support Vector Regression with temperature, dew point, wind speed, cloud cover, and visibility data for irradiance estimation. In their study, Kasireddy et al. [12] employed a range of estimation models, including Lasso, Ridge, Linear, and Support Vector Regression (SVR), to predict solar energy output. Massaoudi and colleagues [13] employed a Random Forest model to predict PV power (relative humidity, wind speed and direction, horizontal irradiance, relative horizontal irradiance, temperature).



The efficiency of photovoltaic (PV) panels is inextricably linked to a multitude of environmental factors. It is crucial to comprehend these influences in order to enhance the efficiency of PV systems and guarantee their long-term reliability as a renewable energy source. In this study, the energy outputs of 100-watt polycrystalline and monocrystalline PV panels were monitored during the initial six months of the year, with the data obtained subjected to analysis using six distinct machine learning regression models. This allowed for a comparison of the predictive capabilities of various PV panel power output models.




2. Materials and Methods


In this study, measurements were taken and recorded from the PV panel experimental system installed at Istanbul University’s Cerrahpaşa Avcılar Campus between 1 January and 30 June 2023. The output energy power, current, and voltage values of the PV panels were automatically measured with the specially designed experimental study system [14], while the environmental factors affecting these electrical output parameters were measured and recorded.



2.1. Materials


As illustrated in Figure 1, the experimental photovoltaic (PV) system installed at Istanbul University-Cerrahpaşa Avcılar Campus comprises a number of components. Tomatech brand 100 Watt mono-crystalline and polycrystalline PV panels were utilized in the experimental setup, and the technical specifications of these panels are detailed in Table 1. The experimental system was designed to compare the power generation performance of PV panels with different surface conditions (clean and dusty). The clean PV panels were subjected to regular cleaning, whilst the uncleaned PV panels were allowed to accumulate dust on their surfaces. This grouping was created to more comprehensively analyze the effects of environmental factors on PV panels.



A Davis brand meteorological system was integrated into the system, allowing for the measurement and recording of environmental factors affecting the PV panels. The meteorological system and the PV panel test system operated in parallel for each measurement, providing real-time monitoring of the data presented in Figure 2.



The Data Acquisition System (DAS) at the center of the system automatically measured and recorded the electrical parameters of the PV panels such as current, voltage, and power throughout the day using a GW Instek programmable electronic load. In order to evaluate the effect of environmental factors on energy production, a dust sensor (Dust Sensor) was used to measure the dust accumulation on the surface of the PV panels and a Kipp & Zonen pyranometer to determine the intensity of solar radiation. This system provides a comprehensive data collection and monitoring infrastructure to compare the power generation performance levels of PV panels under clean and dusty surface conditions. The experimental setup provides a critical basis for understanding the performance of PV panels under different environmental conditions and for using this data in energy prediction models.



Figure 2 illustrates the instantaneous measurement of meteorological data, including wind direction, temperature, wind speed, precipitation, pressure, solar radiation, humidity, and UV values, at a designated meteorological station. The interval for data measurement and recording can be modified and synchronized with the parameters utilized for electrical measurement of the photovoltaic (PV) panels.




2.2. Methods


In this empirical study, six distinct machine learning methods—namely, linear regression, Ridge regression, Lasso regression, ElasticNet regression, Support Vector Regression, and Random Forest—were utilized to predict six months’ (January–June) energy production data of 100-watt monocrystalline and polycrystalline photovoltaic (PV) panels under environmental impacts. This study applied machine learning algorithms to model the relationship between energy production and environmental parameters. The dependent variable (target) was defined as energy production, while the independent variables (features) were irradiance, air temperature, panel temperature, humidity, atmospheric pressure, wind speed, and ultraviolet index. The dataset was created from the data recorded every hour between 8:00 am and 17:00 pm and optimized to perform meaningful analyses. In this context, the most significant 10 to 15 data points of each day were selected using Python programming language and powerful data filtering and processing libraries. This optimized dataset formed the basis of mathematical models analyzing the relationship between energy production and environmental variables:


  y = f ( i r r a d i a n c e , t e m p e r a t u r e , p a n e l   t e m p e r a t u r e , h u m i d i t y , p r e s s u r e , w i n d   s p e e d , U V   i n d e x )  











In this context, the variable y denotes the energy production, whilst the variable f is contingent on the machine learning algorithm employed. This approach yielded a comprehensive evaluation of the impact of environmental factors on energy production and facilitated the identification of the most suitable model for predicting the performance of PV panels under diverse environmental conditions.



The comparative results are presented in Section 3. The analysis of these disparate machine learning regression models yielded the determination of Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared coefficient (R2) values, which in turn facilitated the production prediction in PV panels, with the results presented in order of descending merit. Similar regression-based approaches have been employed in studies predicting material properties and energy outputs under varying environmental and operational conditions, demonstrating the versatility and accuracy of these methods [17,18].



The linear regression model is based on the assumption of a linear relationship between the estimated energy production and the observed data. Ridge regression represents a variant of linear regression, whereby a penalty term is introduced to prevent overfitting. The principal objective is to guarantee that the model avoids overfitting. Lasso regression is a further variant of linear regression. In contrast to the aforementioned method, it attempts to make a prediction by reducing the less important features of the model to zero. ElasticNet represents a combination of Ridge and Lasso regressions, with the objective of achieving enhanced prediction outcomes by leveraging the strengths of both methodologies.



The fundamental approach to modeling the relationship between independent (X) and dependent variables (y) is that of linear regression. The fundamental assumption of linear regression is that the relationship between the independent and dependent variables can be expressed as a straight line.


  y =   β   0   +   β   1     X   1   +   β   2     X   2   + … +   β   n     X   n   + ϵ  











In this model, the dependent variable   ( y  ) is regressed on the intercept (    β   0   ) ,   and the coefficients (    β   i    ) for each independent variable. The independent variables   (   X   1   )   are also included in the model, along with an error term (  ϵ  ) [19].



The issue of overfitting can be addressed by the introduction of an L2 penalty term to the loss function, as is performed in Ridge regression.


  L o s s   F u n c t i o n =   ∑  i = 1   n    (         y   i   − ( β   0   +   β   1     X   i   ) )   2   + a   ∑  j = 1   p      β   j   2      











Lasso regression employs an L1 penalty, which not only reduces the magnitude of coefficients but also causes some of them to become zero, thereby facilitating the selection of pertinent features [20].


  L o s s   F u n c t i o n =   ∑  i = 1   n    (         y   i   − ( β   0   +   β   1     X   i   ) )   2   + a   ∑  j = 1   p        β   j        











The ElesticNet algorithm employs a hybrid approach, integrating both the Lasso (L1) and Ridge (L2) penalties [21].


  L o s s   F u n c t i o n =   ∑  i = 1   n    (         y   i   − ( β   0   +   β   1     X   1   +   β   2     X   2   +   β   3     X   3   ) )   2   +   a   1     ∑  j = 1   p        β   j       +   a   2     ∑  j = 1   p      β   j   2      











Support Vector Regression (SVR) employs a non-linear approach to data partitioning in order to generate forecasts. The predictions of this model are typically concentrated around a central value. Similarly, the Random Forest model, which is also a non-linear forecasting model like the SVR, employs a method of combining multiple decision trees to make forecasts. In general, this model demonstrates efficacy in the analysis of complex and variable data.



SVR is fundamentally distinct from linear and regularized regression models in that it fits the optimal hyperplane within a margin (  ϵ  ) [22].


  y =   ω   T   X + b  











Random Forest is an ensemble learning method that aggregates the predictions of multiple decision trees:


    y  ^  =    1   M      ∑  m = 1   M      f   m   ( X )    











The variable   M   represents the number of trees, while     f   m   ( X )   denotes the prediction derived from the m-th tree [23].



The selection of the most appropriate model is contingent upon the nature of the data and the analysis requirements. Linear regression, despite its status as a fundamental and elucidating model, is vulnerable to multicollinearity and the risk of overfitting. Regularized regression models, such as Ridge and Lasso, have been shown to enhance the generalization capacity of the model. ElasticNet combines these advantages. Support Vector Machines (SVMs) and Random Forest are more suitable for non-linear and complex data structures.



In this study, the input data (features) for the regression models consist mainly of environmental parameters: irradiance, air temperature, panel temperature, humidity, atmospheric pressure, wind speed, and ultraviolet index (UV index). These parameters were recorded concurrently with energy production data from monocrystalline and polycrystalline photovoltaic panels. The modeling of environmental factors as input variables (features) and the utilization of energy production as the target variable (target) is a key aspect of this study. During the preparation of the dataset, missing data were removed, anomalous values were rectified, and consistent scaling was ensured among all variables.



The integration of these parameters into the models was achieved by combining data on the environmental conditions and the energy produced under these conditions in each observation. For instance, radiation and temperature were identified as key determinants of energy production, and their individual and joint effects were analyzed. Regression models have been developed to predict energy production using environmental data. This methodological approach facilitated a comprehensive examination of the relationship between environmental factors and energy production, thereby enhancing the representation of this relationship in non-linear models.



In this study, all experiments were conducted using the Python programming language, which offers a comprehensive ecosystem of libraries supporting data analysis and machine learning processes. Various Python-based libraries were utilized to facilitate different stages of the analysis. Notably, the Pandas library was employed for data preprocessing and manipulation, encompassing operations such as loading datasets, editing date formats, and filtering data from the previous six months. NumPy was used for numerical calculations and working efficiently with arrays, while Matplotlib was used for visualizing actual and predicted energy production values over time and comparing the performance of different models. Furthermore, the scikit-learn library played a critical role in the implementation and evaluation of linear regression, Ridge, Lasso, ElasticNet, Support Vector Regression (SVR), and Random Forest models. The Matplotlib.dates module was utilized for the purpose of editing date formats in the visualizations. The computational resources employed for this study comprised an Intel(R) Xeon(R) CPU @ 2.20 GHz, 83.5 GB RAM, and an NVIDIA A100-SXM4-40GB GPU provided in the Google Colab environment. The combination of this powerful computational infrastructure and Python libraries provided an efficient process for processing data, training and evaluating models, and increasing the reproducibility and reliability of the results.





3. Results and Discussion


In this experimental study, the daily peak energy data obtained from photovoltaic (PV) panels between 1 January 2023 and 30 June 2023, and the value of the environmental factors in that period, were analyzed with machine learning regression models. Six distinct regression models were subjected to a comparative analysis, and error functions were identified. The following regression models were employed for the analysis: linear regression, Ridge regression, Lasso regression, ElasticNet regression, Support Vector Regression (SVR), and Random Forest models. The graphs for each model are provided below, and the MAE, MSE, and R2 values are presented in Table 2 for comparison.



Figure 3 illustrates a comparable trend between the predicted values (orange) and the actual values (blue) of clean and dirty PV panels. However, it is evident that the model’s predictions exhibit discrepancies in certain abrupt changes. The outcomes for both monocrystalline and polycrystalline clean PV panels are notably favorable.



As illustrated in Figure 4, the regression analysis employing the Ridge method yielded results that are nearly identical to those obtained through linear regression. The predictions are, for the most part, in close alignment with the true values; however, some discrepancies are still evident at the upper and lower limits of the dataset. This variant of linear regression employs an additional penalty term to prevent overfitting.



Figure 5 illustrates the performance of Lasso regression, which exhibits a comparable outcome to that of linear regression. It is, however, noteworthy that the estimated curve deviates to a great extent from the actual data in certain areas. Lasso regression is comparable to Ridge in that it prevents overfitting by selecting variables and reducing some coefficients to zero.



As illustrated in Figure 6, the ElasticNet model exhibits a performance that is nearly identical to that of the Lasso and Ridge models. Although a comparable pattern is evident between the actual and predicted values, discrepancies are apparent at certain points.



Figure 7 illustrates that the SVR model exhibits a relatively low level of performance. There is a notable discrepancy between the predicted and actual data. As illustrated in the graph, the predicted values exhibit a tendency to remain within a narrow range, which limits their capacity to reflect the inherent variability of the data. This indicates that the model is unsuitable for this particular dataset.



As illustrated in Figure 8, the Random Forest model demonstrates a high degree of accuracy in predicting and reproducing actual values. The model is based on decision trees and is capable of capturing complex structures within the dataset. It is more successful than other models, particularly in terms of capturing the fluctuations of the data. Nevertheless, discrepancies are still evident at certain points.



The results demonstrate that the Random Forest model exhibits the optimal performance in energy prediction, whereas the SVR model produces the least accurate predictions.



Notably, linear regression has demonstrated efficacy in short-term forecasts of photovoltaic power generation, exhibiting minimal error rates. The Ridge and Lasso models have demonstrated the capacity to produce efficacious forecasts of energy production by examining the impact of factors such as solar radiation and temperature on the forecast. The ElasticNet model has demonstrated the capacity to accurately model the effects of environmental variables by combining the advantages of both the Ridge and Lasso models.



The SVR model has demonstrated a robust performance in forecasting time series data and a range of weather scenarios. The Random Forest model has also exhibited a high accuracy in solar energy forecasting, particularly when working with meteorological datasets.



The capacity of these models to make accurate predictions in different weather conditions contributes to the more efficient use of solar energy and the increased stability of energy systems.



As demonstrated in Table 2, a comparative analysis of the performance outcomes of six machine learning models (i.e., linear regression, Ridge, Lasso, ElasticNet, SVR, and Random Forest) was conducted for the purpose of predicting the energy production of monocrystalline and polycrystalline photovoltaic (PV) panels under both clean and polluted conditions. While all models demonstrate similar coefficients of determination (R2), the Random Forest model consistently achieves the lowest error values (MAE and MSE) across all scenarios, making it the most accurate and reliable model. For instance, it attains R2 = 0.93696 for clean monocrystalline panels and R2 = 0.94204 for clean polycrystalline panels, while maintaining a comparable performance under dirty conditions, with R2 = 0.93353 for monocrystalline and R2 = 0.93802 for polycrystalline panels. The Random Forest model’s superior performance is further evidenced by its ability to minimize errors, showcasing its robustness in handling both linear and non-linear relationships in the data.



The Random Forest model’s capacity to produce analogous outcomes in both clean and dirty conditions can be attributed to its resilience and adaptability to noise. This demonstrates the model’s capability to effectively learn the dynamics of energy production in both datasets. The following factors are identified as the primary contributors to this phenomenon:




	-

	
Patterns in dirty panel data: The data obtained from dirty panels may not contain completely random noise, but may contain specific and consistent patterns that affect energy production. The Random Forest model has been shown to successfully identify these patterns while maintaining a high level of predictive accuracy.




	-

	
The Random Forest model demonstrates a strong overall performance, characterized by its capacity to produce accurate results despite the presence of noise and variability in the data. The structure of multiple decision trees enables Random Forest to perform robustly on datasets with noise and variability. The model demonstrates an equal aptitude in learning relationships and trends in both clean and dirty datasets.









Similar energy production profiles were exhibited by the dataset. It was observed that despite the presence of contamination, the energy production profiles of dirty panel data were comparable to those of clean panels. This phenomenon led to a high degree of predictability.



Conversely, the SVR model demonstrated the poorest performance across all scenarios, exhibiting elevated error values and R2 values approaching zero. This suggests that the SVR model is unable to capture the underlying patterns of the dataset and is particularly sensitive to non-linear and noisy characteristics arising from varying environmental conditions.



The performance of the linear models (linear regression, Ridge, Lasso, and ElasticNet) is comparable, with error metrics and R2 values that are similar to each other. It is evident that the Lasso and ElasticNet models yield slightly superior outcomes in comparison to the linear regression and Ridge models, a phenomenon that can be attributed to their capacity for regularization and the mitigation of overlearning. The higher R2 values observed in predictions made for dirty panels compared to clean panels indicate that these models are better able to adapt to noise-induced patterns in the dataset.



Consequently, the Random Forest model emerges as the most effective and reliable option for energy production prediction in PV systems. The model’s robust performance across both clean and dirty datasets underscores its generalization capability and its capacity to generate precise predictions irrespective of the data type. However, a detailed validation of these results and additional analyses using different models or alternative metrics would contribute to consolidating the findings in a broader context.



Figure 9 depicts a comparative graph of six-month energy measurements of dirty and clean PV panels, along with predictions generated by machine regression. In the course of measuring the data for the period between 1 January and 30 June 2023, it was not possible to obtain 17 days’ worth of data due to a system failure. The graphs of clean and dirty PV panels below demonstrate the critical importance of maintaining the cleanliness of PV panels for optimal energy production, as well as the detrimental impact of pollution on the efficacy of energy prediction models based on machine learning regression.



Figure 10 illustrates the comparative rates of energy efficiency improvement for clean and dirty monocrystalline and polycrystalline photovoltaic (PV) panels. In accordance with the IEC 61724 standard [24], data collection and PV panel cleaning were performed in the course of this study. The increase in monocrystalline panels was observed to be 8.56%, while the corresponding figure for polycrystalline panels was 6.22%.




4. Conclusions


In this study, a comparative analysis of machine learning regression models was conducted to predict the energy output power of photovoltaic (PV) panels under varying environmental conditions. The results demonstrate that clean monocrystalline and polycrystalline panels generally yield higher and more stable energy production, which improves the accuracy of prediction models and reduces the difference between predicted and actual values. Conversely, dirty panels exhibit a reduced energy output and increased variability, making predictions less precise.



Among the evaluated models, the Random Forest model consistently outperformed other regression models across all scenarios. It achieved the lowest MSE and MAE values and the highest R2 scores for both monocrystalline and polycrystalline panels, under both clean and dirty conditions. For instance, in monocrystalline clean panels, the Random Forest model achieved an MSE of 25.051, an MAE of 2.417, and an R2 value of 0.93696, while for dirty panels, it maintained an MSE of 29.005, an MAE of 2.583, and an R2 value of 0.93353. Similarly, in polycrystalline panels, the Random Forest model delivered the best performance, with MSEs of 28.921 and 33.485 and R2 values of 0.94204 and 0.93802 for clean and dirty panels, respectively.



Although the R2 values across the models are relatively similar, indicating comparable explanatory powers, the Random Forest model distinguishes itself with significantly lower MSE and MAE values. This indicates that while all models achieve a similar level of general fit to the data, Random Forest provides more precise predictions with smaller errors. This superiority can be attributed to its ability to handle non-linear relationships and noise more effectively, which is particularly evident in the performance differences observed in MSE and MAE metrics.



These results highlight the Random Forest model’s robustness and ability to provide accurate predictions across different panel types and surface conditions. The model’s ability to consistently achieve low error rates and a high explanatory power makes it a reliable choice for predicting the energy output under diverse environmental conditions.



Future work should focus on validating these findings with additional datasets and exploring the use of other advanced models to ensure the generalizability of the results. Moreover, further investigations into feature importance and model interpretability could provide deeper insights into the factors influencing energy production predictions.
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Figure 1. Data Acquisition System outdoor test bench [14]. 
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Figure 2. Weather station instant data screen image. 
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Figure 3. Linear regression modeling predictions of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 4. Ridge regression modeling predictions of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 5. Predictions of Lasso regression modeling of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 6. Predictions of ElasticNet Regression modeling of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 7. Predictions for SVR modeling of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 8. Random Forest modeling predictions of clean and dirty monocrystalline and polycrystalline PV panels. 
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Figure 9. Graph of six-month energy production estimates of clean and dirty PV panels. 
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Figure 10. Energy efficiency graph of dirty and clean PV panels. 
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Table 1. Electrical characteristics of PV modules at STC [15,16].






Table 1. Electrical characteristics of PV modules at STC [15,16].





	Module Name
	TT100-36PM
	TT100-36P





	Cell Type
	Monocrystalline
	Polycrystalline



	Max. Power (Pmax)
	100 W
	100 W



	Max. Power Voltage (Vmp)
	20.60 V
	19.4 V



	Max. Power Current (Imp)
	4.86 A
	5.16 A



	Open Circuit Voltage (Voc)
	24.05 V
	22.9 V



	Short Circuit Current (Isc)
	5.13 A
	5.52 A



	Number of Cells
	36
	36



	Dimensions
	680 × 790 × 20 mm
	674 × 944 × 20 mm










 





Table 2. Performance comparison of energy production prediction models for clean and dirty monocrystalline and polycrystalline photovoltaic (PV) panels.
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Model

	
Monocrystalline Clean

	
Monocrystalline Dirty

	
Polycrystalline Clean

	
Polycrystalline Dirty




	
MSE

	
MAE

	
R2

	
MSE

	
MAE

	
R2

	
MSE

	
MAE

	
R2

	
MSE

	
MAE

	
R2






	
Linear Regression

	
21.460364

	
2.446629

	
0.946

	
29.862416

	
2.913831

	
0.93157

	
31.382007

	
3.225071

	
0.9371

	
39.496208

	
3.563459

	
0.9269




	
Ridge

	
21.459944

	
2.446566

	
0.946

	
29.861922

	
2.913753

	
0.93157

	
31.381909

	
3.225063

	
0.93711

	
39.496099

	
3.563451

	
0.9269




	
Lasso

	
21.248957

	
2.405298

	
0.94653

	
29.625856

	
2.883666

	
0.93211

	
31.231422

	
3.214784

	
0.93741

	
39.362826

	
3.5576

	
0.92715




	
ElasticNet

	
21.325286

	
2.421202

	
0.94634

	
29.707916

	
2.893632

	
0.93192

	
31.277662

	
3.217466

	
0.93731

	
39.415989

	
3.558854

	
0.92705




	
SVR

	
368.06379

	
15.83324

	
0.07381

	
401.98623

	
16.62928

	
0.07879

	
459.72607

	
17.90789

	
0.07862

	
496.83077

	
18.58907

	
0.08044




	
Random Forest

	
25.051308

	
2.416703

	
0.93696

	
29.005226

	
2.58343

	
0.93353

	
28.921422

	
2.585306

	
0.94204

	
33.485835

	
2.628908

	
0.93802
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