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Abstract

:

The increasing influence of AI across various scientific domains has prompted engineering to embark on new explorations. However, studies often overlook the foundational aspects of the maritime field, leading to over-optimistic or oversimplified outputs for real-world applications. We previously highlighted the sensitivity of trained models to noise, the importance of computational efficiency, and the need for feature engineering/compactness in hydrodynamic models due to the stochastic nature of waves. A novel data analysis framework was introduced with two purposes to augment data for machine learning (ML) models: transferring features from high-fidelity to low-fidelity surrogates and enhancing simulation data and increasing computational efficiency. The current issue addresses the second objectives. Wave-induced response time series data from experiments on a spherical model under various wave conditions were analyzed using continuous wavelet transform to extract spectral-temporal features. These features were then reorganized into a new feature map and augmented with additional endogenous features to enhance their uniqueness. Different ML models were trained; the new framework substantially reduced training costs while maintaining fair accuracy, with training times slashed from hours to seconds. The significance of the current study extends beyond the maritime context and can be utilized for ML applications in intrinsically stochastic data.
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1. Introduction


In recent decades, ML has emerged in many fields, especially the areas dealing with data. The maritime studies also have tried taking advantage of current trends to solve many challenges in the hydrodynamics and seakeeping studies. Seakeeping basically deals with the interaction of waves and floating bodies while considering certain factors such as the modeling of waves as exciting force on the one hand and investigating the impact of dimensional and mass parameters on the other hand. As such, the final goal is to establish a solid input-output relationship while considering the intermediary role of the floating body as a system, indicated in Figure 1. This involves constructing a mathematical model, normally a tuned second-order transfer function so-called Response Operator Amplitude (RAO) or a trained network to replicate and generalize the system behaviors [1,2].



Considering Figure 1, data and algorithm are the cornerstones of any ML model. Not only does any ML network demand quality data that can be replicative of real-world phenomena but also an efficient data analysis framework is required to map specific input/output features (known scenarios to the labels). The role of data analysis is not only to preserve salient features on either side of Equation (1) [3], correlating input to output and vice versa, but more importantly, to digest complex real-world data. In Equation (1),   Y   k     denotes output,   U [ k ]   input,   G (   k   − 1   )   the transfer function, and   k   the discrete time instance.


  Y   k   = G (   k   − 1   ) U [ k ]  



(1)







More accurately, stochastic real-world phenomena such as wave elevation are abounded with highly detailed features. Although reduction and condensation of these features to salient ones help in characterizing the input-output relationship, it essentially requires very long observation window for monitoring the system behaviors, or in other words, presenting very long averaged span behaviors, i.e., hour. Despite apparent efficiency, this falls short in observing systems processes in shorter windows for deterministic purposes. In this respect, for a shorter time or capturing more detailed behavior of the system and later training them into the network, an efficient data analysis process is vital.



Another issue for the practical implementation of ML models for real-world hydrodynamics, ocean engineering, and seakeeping purposes that has been barely addressed is the quantity of onboard recorded data and the associated learnable features. Before an ML model can be practically deployed, it is essential to evaluate its performance in relation to the extension of data/features. One network might be very efficient in establishing the input-output relationship; however, it might only be valid for a limited dataset (sub-optimal models). Although the network architecture performance may stay theoretically consistent for higher data provision, the computational costs are another issue on the ground; a network might be able to establish the mapping very effectively, yet the training time may take hours or days, turning ML to an unsustainable computational method [4]. The training time can be reduced at the expense of computational resources, i.e., using parallel GPUs or TPUs; however, it incurs extra costs. These constraints limit the real-world application of ML networks in this context. Consequently, any developed network is likely to have limited utility, rarely extending beyond the scope of the tested models. This necessitates establishing a robust foundation for practical ML applications.



The solutions to this problem can be sought in two ways. First is to optimize the ML network (algorithm), so the network must be capable of accommodating, processing, and preserving massive features in minimum training time. The second aspect involves feature engineering, where one constructs a data analysis framework that retains the intricate features of the data while enabling the use of less time and computation-intensive models for training on large datasets [4]. In general, not only in the maritime domain but also in all fields of science, the rise of ML in line with advancements in computational resources has led researchers to directly use them as a tool for their specific problem [5]. While this research has yielded promising results for its specific objectives, these challenges have been neglected in terms of broader generalization and real-world deployment of the ML model [6].



To address the above, the current study aims to discuss the data analysis framework given in part A of the current issue [7] to demonstrate how it substantially reduces the computational costs and training time with fair accuracy, allowing to accommodate extensive numbers of wave scenarios into the network while preserving the salient features for short observation windows and nuanced behavior of a system.



1.1. Literature Review


To the best of the authors’ knowledge, ML networks have not been exclusively studied for computational efficiency’s sake thus far in maritime studies. Even in recent carried out reviews such as [8], this issue has not been specifically addressed. The only attempt that partially addressed the computational efficiency is in [2], wherein the pace of computation has been considered as the assessment benchmarks sea state estimation models using the concept of wave buoy analogy (WBA). This shortcoming stems from the fact that the current literature has mainly utilized ML networks as an engineering tool for dealing with nonlinear problems, particularly high-order nonlinearities and stochastic patterns such as [9,10].



The works in this scope are numerous, embracing a wide range of applications in seakeeping and maritime studies such as prediction of vessel motions in [11,12] ship maneuvering [13,14] which rested upon time-series forecasting models, Sea State Estimation (SSE) using vessel response data [15,16,17]. In fact, the carried-out research has endeavored to feed and train a network with batches of data, either experimental, real-world, or simulation data, to later utilize the network for prediction behavior.



Additionally, the number of studies which presented a comparison of different networks or evaluated the performance of a network compared to the baseline networks or dataset are few. Cheng et al.’s proposed network has been compared with the baseline to highlight the efficiency of the deep learning model for estimating sea state using ship response data [18]. However, no discussion was drafted regarding computational efficiency, computational resources, and training time.



Concerning these issues, a solid insight can be obtained through the set of studies conducted by [5] at MIT University. Although the studies have been carried out in computer science, the extension of the results embraces all applications of ML and Deep Learning (DL). Thompson et al. pronounced that the use of DL for applications with big data such as Natural Language Processing (NLP) and image recognition is indispensable [5]. However, despite the flexibility and efficiency, it comes with the complexity of the network such that for any improvement of performance by   k   factor, at least     k   2     more parameters must be trained in the network. The second issue is overparameterization since increasing     k   2     parameters end up with at least     k   4     nodes, leading to overparameterization. This simply means that achieving a tenfold enhancement would necessitate a computation surge of at least 10,000 times.



In [4], the limitation of ML and DL has been addressed in detail. Accordingly, several issues can be outlined. First, a slight increase in the number of inputs for a network exponentially soars the number of required nodes for training, so-called over-parameterization. In that, a state-of-the-art network for image recognition possessed 480 million parameters for a 1.2 million input training set from ImageNet. Roi et al. extensively discussed the issues associated with training the Neural Networks (NL) which pronounced the impact of customized activation functions and regularization to improve training [19]. In terms of computational time, he stressed that it is directly related to     2   t     order with   t   as the network depth. However, the study was limited to a few specified scenarios.



Computational resource-wise, although the GPUs and TPUs have grown incredibly to almost 10 times per year since 2012 [20], a significant portion of the rise originated from a less financially appealing avenue—extending model runtime across more machines. This fact highlights a challenge in scaling DL computation, as boosting hardware hours or the quantity of chips results in costs escalating nearly in tandem with computing power enhancements. Consequently, this approach could rapidly become financially unsustainable for real-world with big data. The results of these studies posed the idea that the new data analysis approach is necessary to tackle the computational limits of DL. As a result, the solution must be sought in less computationally expensive techniques.



A solution has been discussed by [20] in reply to the inherent computational issues of DL networks. Accordingly, inspired by the generalization capabilities of the first principal formula in various fields, the proposed solution is to break down a network into smaller blocks for training, where each module can be trained individually. This approach is called modular training, as shown in Figure 2.



In this context, and as far as the authors are aware, the challenges associated with using ML/DL in maritime studies have not been thoroughly discussed in relation to the prevailing physical and environmental data, nor has a solution been proposed. Here, we briefly outline the crux of the issue concerning wave data nature. Subsequently, we present a solution to minimize computational costs. Although our solution addresses challenges within the hydrodynamic domain, it is broadly applicable to systems characterized by inherent stochasticity and probabilistic models, including patient flow in hospitals, warehouse inventory processes, and stock prices.




1.2. Problem Statement


The ultimate goal of any ML network, beyond academia purposes, is onboard deployment for measurement or estimation, integrating the data into other systems (in maritime, into navigational aid systems). In this order, two approaches can be sought. First is to train a versatile, though standalone network for any specific ship on a well-equipped local PC. The second is to feed the data from various ships into a cloud space where a mother network can be trained, updated, and further used for all connected ships to the network. Each approach has practical applications beyond the maritime field. For example, the first approach is used for smart phone fingerprint lock, and the second approach in training large-scale models like ChatGPT. Notably, the network behind ChatGPT was trained using over 175 billion text-based parameters [21], demonstrating the immense computational resources required for such tasks. This highlights the scalability of advanced ML techniques, which can be leveraged for maritime applications where large datasets and complex models are increasingly relevant. In the realm of interaction between water and structures, particularly floating structures, the challenge is amplified by the complex modeling of waves and the vast amount of data involved. Since waves exhibit stochastic characteristics, a broad spectrum of wave scenarios must be considered to accurately represent the diversity of real-world phenomena numerically. In practice, whether through simulation or field recordings, the spectral bandwidth required for inputting any ML network results in massive scenarios. Moreover, to fully capture the system dynamics, such as induced wave response, both the wave data and the vessel’s output in some form (such as label) must be incorporated into the network for mapping as per Figure 1 and Equation (1). Moreover, the learnable features in recorded data from onboard sensors must be quantitatively considered. As highlighted in [22], the daily recorded data by a research vessel alone surpasses 1 TB. While not all data pertain directly to seakeeping, the portion attributed to seakeeping can be significant.



As extensively discussed in [23], the features within the data can be represented in different forms, even though the data processing must be fine-featured enough to replicate the nuance of data, otherwise, the features will be limited to very low-order features and general behavior of the system. All of these lead to a massive quantity of numeric data that are needed to be trained in the ML network. Yet, the conducted studies thus far have not only been trained on limited datasets but also have overlooked the computational efficiency of the trained network. So, as addressed, the pertinent computational costs (i.e., for a DL hamper utilizing sufficient data for more practical purposes) and the studies might only curb the theoretical appetite rather than practical implementation.




1.3. Aims and Novelty


To address these shortcomings, this work has come up with a novel idea that not only alleviates the issue for maritime context, but the extension of work can fundamentally address the same issue for any inherent stochastic process. In this order, a generic geometric shape has been excited by the wave in the model test basin to collect quality and lean input-output data of wave and floating body responses. Later, the obtained time series is segmented into small observation windows. To capture as many features as possible from the data, the continuous wavelet transformation in various scales has been applied to the time series. The resulting coefficients reflect the saliency map. In the next stage, through feature engineering and data processing that will be explained, the data has been reorganized and compressed while preserving the salient features. The engineered matrices are labeled with the respective wave information and proceed for analysis and training. The innovative setup results in a significant reduction in training time and computational power while preserving the data features and reasonable classification accuracy. To better highlight the advantages and effectiveness of the current setup, an identical dataset has been tested for Convolutional Neural Network (CNN) and Neural Network (NN) to compare the performances and showcase the efficiency of the novel approach. The current framework could potentially replace generic ML/DL models for practical applications that require long training, with the goal of integrating these models into onboard systems with minimal computational overhead. The structure of the remaining content is as follows: Section 2 provides an overview of the data generation process, Section 3 outlines the data processing framework, Section 4 evaluates the efficiency of the proposed technique, and finally, Section 5 concludes the paper and discusses future directions.





2. Data Generation


The current section describes the details pertinent to the model test in the laboratory. Given the associated complexities for the development of the concept and a uniform geometrical shape, a sphere was employed for running the test in the model basin. The simple model assisted in limiting the variables affecting the floating body motions, such as mooring lines, wave direction respective to the model, and increasing the controllability over results.



Experimental Test Setup


The experimental study was conducted at the Australian Maritime College’s (AMC) Model Test Basin within the National Centre for Maritime Engineering & Hydrodynamics (NCMEH). A scaling factor of 1:36 was applied to the geometry, and the Qualisys Motion Capture System was utilized to measure the sphere’s 6 Degrees of Freedom (DOFs). Sampling was performed at a rate of 200 Hz. Before the experiment, the Qualisys data underwent calibration. The primary objective was to gather high-quality data in considerable volume. A 1:6 porous beach was positioned at the aft end of the basin to mitigate wave reflections, as illustrated in Figure 3. A single taut mooring was employed to securely hold the model sphere from the basin floor to its bottom. Further details regarding the experimental model parameters are provided in Table 1. The model has been simplified to minimize the uncertainties and involve playmakers/parameters as much as possible.



In order to assess the proposed theoretical data analysis framework, stochastic inputs of irregular waves by utilizing a distribution derived from the JONSWAP spectrum [24] were used. Subsequently, the test time frame was extended to 40 min to encompass a broad range of spectral constitutions sampled from the JONSWAP spectrum. Table 2 outlines the specifics of the input waves applied to the model with relevant parameters. More details about the test setup can be found in [25].



The heave decay test is performed by measuring the force applied to the single mooring with a load cell installed on the swivel, according to Figure 4, to find out the natural period of the sphere where the validation is presented in [7]. Figure 5 indicates the results of 6 DOF responses to waves for the sphere excited by unidirectional irregular waves in the form of time series. Note that data showed some discontinuity due to Qualisys glitches. However, they have been smoothened by move mean interpolation before further processing. Regardless, due to the very high sampling frequency, the contribution of those glitches was insignificant.



The test specifications are outlined in Table 3, while the parametric spectrum formulation for JONSWAP, denoted as   S   ω    , is provided in Equation (2). Here, α represents the spectral energy parameter, (σ1, σ2) signify the spectral width parameters, γ stands for the peak enhancement factor, and g denotes the acceleration due to gravity. Wave parameters, such as the significant wave height     H   s     and peak period      T ¯    p     in Equation (3), can subsequently be derived from statistical moments     m   n     applied to   S   ω     using Equation (4). To achieve comprehensive spectral coverage, the model underwent an extended run lasting 40 min. Given the symmetrical shape of the model, wave direction had no effect on the induced response. Therefore, the only variable parameter was the wave peak period chosen to minimize uncertainties.


  S   ω   =      α g   2       16 π   4        ω   − 5   e x p   −    5   4           ω     ω   p          − 4       γ   b    



(2)
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     H   s   = 4    m   0      ,      T ¯    p   = 2 π       m   0       m   2         



(3)






    m   n   =   ∫  0   ∞      ω   n     S   ω   d ω  



(4)









3. Data Analysis Setup


This section illustrates the data processing and elucidates how the innovative approach condenses features in the data for deterministic purposes.



3.1. Inspiration and General Framework


As discussed, the very shortcoming with the conventional approaches thus far has been the feature engineering before feeding data into the ML network. Ideally, to perform the effective input/output mapping, the association of details in the form of attributes to each batch of data increases the entropy and eventually enhances the separability. However, the challenge arises from the multitude of scenarios and the overlap of features among various attributes. Consequently, a significant amount of data is necessary to improve the distinction between nearly identical features while maintaining information entropy as given by Equation (5), where p:   X   belong to probability between 0 and 1, X is a discrete random variable (RV), and   p ( x )   is probability distribution. As broadly discussed in seminal work [7], higher entropy amounts to higher information tantamount to more possible state of outcomes which positively helps in the separation of features between different classes in certain conditions.


  H   X   = −   ∑  x ∈ X    p   x     log  ⁡  p ( x )      



(5)







The repercussion is computational deficiency since many neurons are required to not only distinguish these differences for pattern recognition but also to be trained by nuanced features. However, by encoding (compressing) the detailed attributes before uniquely mapping each scenario, the computational cost can be substantially reduced. The challenge arises when extensive features exist in the departure domain, requiring association with categorical labels during mapping. This issue becomes more challenging for deterministic purposes for two reasons. First, the observation window is small, so it is hard to provide feature uniqueness concerning class labels. Secondly, overall extension of features is vast, resulting in a large spread between various observations of the same class. However, it is easier to link the attributes by spreading commonality as a thread for longer observation lengths, where the statistical properties come into the picture.



The present feature engineering has been designed to address the above two discussed issues. However, it can serve other purposes, i.e., Part A [7]. The general process of the current approach is outlined in the flow diagram depicted in Figure 6. The first outcome, focusing on feature manipulation, was discussed in the previous issue. This issue aims to delve into the second outcome, which concerns feature classification.



Beginning from the left side of the diagram, the wave, acting as the input, excites the floating object, functioning as the system, resulting in 6 DOF responses presented as time series as the system output. The objective of employing wavelet analysis on short segments of these time series is to extract maximal information from the data. Subsequently, these features undergo numerical rearrangement, facilitating eventual manipulation and classification based on the wave class. The final grey blocks denote the outcomes of feature engineering, providing direct control over the refined features. The first outcome was discussed in Part A, and the current setup aims to delineate how it leads to the training cost reduction. In the following, the mathematical description is delineated.



The representation of the 6 DOFs must adhere to a specific format to enable further mathematical operations. At this stage, the time series is initially segmented into small observation windows of       y ( k )   i j   ,   y ( k )   i j   , … .   y ( k )   N j       for   i = 1 : N  , 40 s for current purposes and   j = 1 : 6   denotes DOFs. Subsequently, each individual DOF, or the linear combination of time series forms a new time series, as is the approach adopted here. Despite encompassing all numeric features within the data, this new time series does not carry any inherent physical meaning [15]. The rationale behind this is primarily attributed to the complex interaction between the mooring system’s impact on floating object responses and the mutual effects of these responses as given in [26].



Therefore, the   ς   k     as a vector in Equation (6) represents the summation of the 6 DOFs. For a vector   ς ( k )  , representing the response of the sphere/vessel,   k   stands for the discrete sample instance, and   l   the length of the vector, set in this setup to 40 s, equating to 8000 samples.


    ς   k     l   =   ∑  d = 1   6        y   d   [ k ]   l      



(6)







To capture intricate spectral-temporal features of sphere responses to waves, we implemented the Morse Wavelet applied on     ς   k     l    . This wavelet, constructed by amalgamating complex exponential and Gaussian windows, offers distinct advantages as highlighted in prior literature [23,27]. Specifically, the Generalized Morse wavelet has been utilized with parameters such as symmetry (  γ  ) set to be 3, and time-bandwidth     p   2     set to 60 that ends up with the most symmetric shape of the wavelet. This analytical wavelet, characterized by a scaling factor, functions as a filter bank, systematically extracting detailed spectral-temporal features by convolving it over     ς   k     l    . Equation (7) delineates the wavelet function, wherein   U ( ω )   signifies the unit step,     a   β , γ     is a normalizing constant, and   ω   denotes frequency, with   m   and   n   determining the matrix arguments. For more details, please read [28].


    Ψ   p , γ   = U ( ω )   a   β , γ     ω        p   2     γ        e     − ω   γ      



(7)







Equation (8), as the result of wavelet operation on the data, denotes 2D matrix of     Γ   m , n     k    , representing the wavelet coefficients. This matrix can be visualized as an image, aiding in a clearer comprehension of the spectral composition of a signal and the amplitude of its features along a fixed temporal axis. Each pixel in the image correspond to the normalized wavelet coefficient between 0 and 1. This 2D array     Γ   m , n     k     can then be converted into a grayscale image of size   [ M × M ]   using a linear transformation outlined in Equations (8) and (9). In this transformation, the Pixel Value is determined by   Υ  , which functions as a scaling factor adjusting the pixel intensity between 0 and 255 for picture size of [256 × 256], while   ξ  , the shift parameter, represents a constant that can be adjusted to control brightness; for our purposes, it is set to 0. The benefit of the normalization setup presented in Equations (8) and (9) lies in establishing a global normalization approach right from the outset for all subsequent values. The range of the global normalization can be adjusted by   m   and   n   which leads to the extension of feature space capacity.


    Γ   m , n     k   =   Ψ   p , γ   × ς ( k )  



(8)








      P   m , n     = Υ     ×     Γ   m , n     k     + ξ    



(9)





Applying Equation (7) iteratively to all   m   and   n   values of     Γ   m , n     k    , we obtain matrix     P   m , n     that represents the pixel intensity values or range of normalization bin ranging from 0 to 255, where both are set to 256. Subsequently, the pixel values are normalized to a range between 0 and 1 using Equation (10), resulting in the vector     Κ   a , b    , where   a , b   = (256, 1), thereby transforming the matrix into a column vector.


     Κ   a , b     =      ∑  m = 1   256    P     m a x   ∑  m = 1   256    P        



(10)







To have a visual representation, the normalized coefficient can be captured in the form of an image, so-called scalogram. Nevertheless, the vector   Κ   as the feature vector can be reflected in 3D space on a diagonal plane. Figure 7 indicates the feature map of the wavelet coefficient in the form of a scalogram for two different time series with various noise levels, whereas Figure 8 shows the mapping of   K   vector for each image in new space. The intention is to indicate how the difference in normalized averaged feature value is manifested differently. In fact, the map in Figure 7 illustrates the fine spectral/temporal representation while the projection in Figure 8 indicates the condensed features of the respective map in the temporal direction of   l = 8000   samples.



In Figure 7, left image, the scalogram is superimposed with white Gaussian noise, characterized by a variance of     σ   2   = 0.01  , equating to a signal-to-noise ratio (SNR) of 8.99. This noise appears as scattered white pixels across the scalogram. Figure 7 illustrates how this noise affects the new feature space, leading to increased variation and spread of features, particularly below an intensity of 0.5. Additionally, features are shifted within the range below 0.5 due to the higher average value of the vector. Consequently, there exists a qualitative and quantitative correlation between noise variance and feature spread in the new space. Upon closer inspection of the primary low-frequency components in Figure 7, which appear prominently as a broad white region, their consistent influence can be observed across the diagonal spread in Figure 8 above 0.5, akin to salient low-frequency features. It is crucial to acknowledge the reverse spectral direction in the new feature space; the upper regions in the image’s height direction correspond to lower frequency constitution, whereas lower regions denote higher frequencies. Hence, the lower spectral elements, represented by white regions at the bottom of the image, manifest as higher heights in Figure 8.



Overall, the new process has compacted the temporal features while maintaining the spectral composition through normalized wavelet coefficients, not only in the temporal dimension but also accounting for the intensity of feature amplitudes in the spectral dimension. This condensation encapsulates nuanced information within the 40-s time series, encoded into a vector as a unified data packet, and suitable for subsequent classification or regression tasks. This data transformation offers fresh perspectives on feature distribution and composition, enabling them to be manipulated, organized, sorted [7], and ultimately correlated with the inputs.




3.2. Feature Engineering


The new summative approach to normalized wavelet coefficients has condensed the features with respect to the specific time series from sphere response, equivalent to a particular incident wave characteristic. The common sense is to relate each feature within the vector   K   to the given wave specification as the class label, i.e., parameters such as peak period, significant wave height, and sea state condition in general. However, the direct establishment of this relationship ends up with the non-uniqueness problem for features, and some operations are required to turn the features in   K   into more unique and specific combinations relating to the given label. As per seminal study, this can be done by the reorganization of features within   K   based on the intensity such that   K   is divided into two vectors of equal size,   A   and   B  . Vector     A   a , b     and     B   a , b     consist of dummy values set to 0.5 in their arguments, with   K ≤ 0.5   for   A   and   K > 0.5   for vector   B  . This simple operation turns the     K   ( 1 , b )   ′     to     K   ( 2 , b )   ′     that must be related to any specific class. Having said that, increasing the number of thresholds for reconstruction leads to a more unique combination of features to the label, for example     K   ( 5 , b )   ′    . However, this setup is kept minimized to examine the approach feasibility for primary demonstration, and discussion is given in the further subsection. Regardless, Figure 9 indicates the projection of vector   K   into two planes based on pixel magnitude regarding Figure 7 and Figure 8, where features can be better visually monitored.



Indeed, this operation acts as a filter that sieves the signal into two sets of features based on their low and high-frequency characteristics. What sets this mechanism apart from conventional low and high-pass filters is its ability to function simultaneously as both. As discussed extensively in [29], the main issue within the features for classification is the level of entropy. The proposed projection helps to sieve the data not only into two spectral bands but also into two entropy levels, where the left-hand-side picture in Figure 9 indicates the projection with high entropy and vice versa for the right image. To examine this, the best is to perform statistical tests on the data, where the higher level of variance in the features amounts to higher entropy, eventually enhancing the chance of classification, which has been addressed in Section 4.1.




3.3. Feature Space Extension


Due to the stochastic and probabilistic nature of wave-governing parameters such as height and period, the feature space must be spacious; in this context, a sub-optimal trained model especially concerned with computational efficiency. As the number of inputs increases, neural networks encounter     k   4     order overparameterization. However, prioritizing the model’s ability to accommodate massive inputs is essential. Thus, it is significant to assess whether the ML model can effectively handle the data with both computational efficiency and accuracy.



To address the first issue, two parameters can be worked out in the current data analysis setup: first, the range of features for each pixel equivalent to the local normalization of the wavelet coefficient; and second, the reorganization of features of matrix   K   to the n number of vectors projecting on more planes based on the wavelet intensity. Reorganizing features allows directly relating the particular response to the wave parameters label with two features. These features in the form of vectors for any specific time segment hold two values between 0 and 0.5 and 0.5 and 1 according to Equation (9) that represent endogenous characters, which can be further statistically worked out as the new attributes for the input-output relationship. Feature engineering on new features also enhances the entropy for the newly added attributes that can assist in better classification. This issue has been extensively explained in Section 4, where the uniqueness impacts feature classification considerably. In Equation (9), this can be characterized by   Υ   which has been set to 255 for initial test. However, the extension of this value dictates the uniqueness of features and correspondingly the permutations to the wave parameters that is indirectly linked to computational resources. Figure 10 indicates the extension of   Υ   and corresponding number of unique permutations that can be achieved for features. Simply, for 2056, the number of particular features is of the order of     N   2     equals to 4,227,136 numbers of unique permutations of features.



On the other hand, increasing the number of projections plane adds two more possibilities. First, it amplifies the number of distinct permutations between vectors taken from each plane while preserving feature uniqueness in each vector. Second, due to uniqueness, the newly engineered attribute will show high variance that improves the classification. All these concepts will be practically demonstrated in Section 4. The immediate result is a notable extension in the range of scenarios targeted for modeling waves, whether using these approaches separately or in combination. Figure 10 also indicates increasing the number of permutations based on the projection plane that grows exponentially. Nevertheless, it must be noted that despite feature space extension, increasing projection planes incurs computational costs for further training, so a trade-off seems to be necessary.



In summary, the proposed data analysis process enables the extraction of detailed features from the system’s response to external forces, combined with the system’s characteristics, which can be labeled by the user (supervised ML) with the corresponding wave parameters. Additionally, the current mechanism shrinks the detailed stochastic features to the unique normalized values representative of each deterministic scenario. This setup not only reduces the computational costs due to the compression of fine features and their unique representation but supports the extensive number of unique features. The proposed mechanism shares similarities with the encoder in a variational autoencoder up to the latent space. However, it incurs lower computational cost since it is less mathematically intensive and does not rely on operations involving neurons and nodes.





4. Data Analysis Framework Application


This section demonstrates how the proposed data analysis framework significantly reduces computational costs and time compared to conventional NN and DL networks. Additionally, we will explore the effectiveness of this framework with various classifiers and showcase its performance in wave classification using supervised learning models.



4.1. Irregular Waves and Data Processing


Although all 6 DOFs were captured during the test, only 4 DOFs are employed to maintain the consistency of the framework with the ongoing research developed for advancing ships using the state-of-the-art simulator data available in the MARITIME SIMULATION CENTRE of AMC. As such, surge and sway vectors additively formed vector   ξ   to represent translational response features, whereas roll and yaw-shaped vector   ψ   denotes the spatial response to induced waves. The size of observation window is selected to be 40 s corresponding to 8000 samples. To further condense the features within the scalograms, a max-pooling filter is applied on the original 256 to 256 matrix which essentially condenses the matrix size based on the filter window size according to Equation (11). In this respect, different window size has been utilized to investigate the effect of matrix resolution on computational cost and validation accuracy.


  M a x P o o l i n g     X     i , j   =   m a x   a , b = 0   f − 1     X     i × s + a   , ( j × s + n )    



(11)







Given the input feature map represented as   X  , which is an image with dimensions   (   W i d t h   i n p u t   ,   H e i g h t   i n p u t   )  , or more accurately, the matrix of wavelet coefficient, and   f   as the size of the max pooling window with a stride of   s  ,   i  , and   j   iterating over the spatial dimension. Figure 11 indicates the original and lower resolution scalogram through the max pooling operation. As can be seen despite the resolution lost, the features as the vector of summative normalized wavelet coefficient are almost identical. On this basis, the down-sampled matrix is employed for the primary part of the investigation, which will be discussed in the next section.



In the next stage, the features within the normalized vector of   K   split into two vectors of   A   and   B   to form the features array respective to the wave class given in Table 3. Simply, the first array   A   is characterized by black pixels as minor wavelet value below 0.5, and the second array   B   includes the normalized wavelet coefficient above 0.5. Figure 12 summarizes the data processing mechanism.



To perform statistical tests on features of data with respect to the projection planes and to examine entropy on each plane, the wave data in Table 3 is processed with a max-pooling operation of window size 32 that reduces the resolution of the features from 256 to 8 vectors. Subsequently, the one-way Analysis of Variance (ANOVA) statistical test is carried out on raw data,   A   and   B  . Generally, ANOVA is a statistical method utilized to assess differences among the means of multiple groups. Specifically, the one-way ANOVA determines if there are statistically significant variations among the means of three or more independent groups [30]. The test has been carried out on raw data, white and black planes. As such, the features with higher variance possess higher entropy and are more functional for classification. As can be witnessed in Figure 13, the projection has enhanced the variance of features substantially. However, augmenting the current set with additional attributes that contribute extra variance can potentially enhance the entropy, particularly if these attributes are endogenous and intrinsic to the data’s characteristics.



In this order, the resolution has been increased in max-pooling to the window of size 8 corresponding to 32 features, where a higher number of features facilitates the comparison of nuances through exploratory and statistical analysis. Numerous studies have been conducted, and three images depicting the response to the same temporal segment were selected as representative samples. Comparing the features among three wave scenarios, specifically 2, 5, and 6, as outlined in Table 3, reveals not only existing disparities but also hints at additional features that may need to be incorporated into the dataset. Figure 14 indicates the scalograms for scenarios 2, 5, and 6. Evidently and as discussed in [29], the main differences exhibited are in the height of white pixels appearance. Figure 14b illustrates the linear relationship between features in scenarios 2 and 5 and 5 and 6, where closer spectral range pixels (normalized wavelet coefficient) show higher linear dependency.



The bar chart in Figure 14c not only illustrates the variation in the undercurve area between different scenarios but also quantifies the bin where the highest intensity of the coefficient is observed. While the correlation between vectors may reflect certain aspects, it necessitates another metric to translate the correlation value into a meaningful feature. After test and trial, the undercurve area and the summation of a minimum feature value in each segment can be incorporated as additional features to the existing features in vector     K   ( 2 , b )   ′    , resulting in 10 attributes in vector form instead of 8, as depicted in Figure 12. To achieve higher resolution, these feature arrays must be appropriately scaled up. For instance, two additional features for resolution 8 need to be scaled up to eight arrays, with each array repeated four times. So, for vector     C   i , j     as the size of (1,10) to be the feature with the size of   i = 1 : 8   for original attributes and   j = 9 : 10   for two extra attributes with a max pooling size of 32, the extra features must be extended with factor of   α  , for example,   α = 4   for max pooling 8, so the resulting feature vector will be     C   i , j     with   i = 1 : 32  , and   j = 33 : 40  .



To explore whether additional attributes can potentially enhance feature variance, we analyzed the cumulative response data to the sphere over a 40-min period. For simplicity, the analysis was conducted using eight features. The ANOVA representation for additional features is shown in Figure 15, with feature 9 denoting the undercurve area and feature 10 assigned to the summation of minimum intensity value. These new features have significantly boosted the variance and uniqueness regarding the spectral contribution of each segment for classification, as they fall into two unique ranges. Consequently, the new setup has been employed to train the classification models presented in the next section.




4.2. Model Training


For training purposes, various ML and DL networks can be utilized, e.g., regression and classification models. To this end, the input-output data from the experiment can be directly used for classification or training the regression model. However, as elaborated in Part A, the computational issues arise for both techniques; for classification, the given importance to meticulous nonlinear behaviors that carry the detailed behavior of the system is as much as the governing characteristics and lower order terms. This can end up with unnecessary costs for higher order terms on the one hand, and on the other hand, the network allocates the same importance for both intrinsic behaviors of the system. On the other hand, the low variance of features demands a higher number of neurons for training to capture the detailed nuances. In terms of the regression model, the issue is due to high dimensional space which could be effective if features exhibit variance, helping to construct the regressor. Two approaches can be sought to tackle this. The first is to reduce data features or to apply a low-pass filter to preserve the main characters and construct the regression on this. The second is to reduce feature space through feature reduction techniques such as Principal Component Analysis (PCA). Both methods somewhat overlook the nuanced properties of data essential for characterizing short observation lengths.



As a result, the current approach is to compress features instead of eliminating features, while transforming the data into a lower dimensional feature space. These operations substantially reduce computational costs for training. To demonstrate, we initially utilized Support Vector Regression (SVR) on the data for regression purposes and compared it with other models.



SVR, derived from the support vector machine (SVM), is a nonlinear estimation model designed to transform nonlinear data into a high-dimensional feature space. In this space, linear techniques can be effectively applied by identifying an optimal hyperplane. For more detailed information, one can refer to [29]. To evaluate the current data analysis framework, the SVR is constructed on data in Table 3 with different batch sizes for max pooling ranging from     2   n     for n = 3:8, equivalent to 8 × 8 to 256 × 256 pixels. Also, the number of additional features has been scaled accordingly.



Two metrics are of importance to measure training time and validation error. For evaluating validation error, the error is computed based on the ratio of incorrectly detected labels. For training, the data was randomly partitioned to an 80/20 ratio initially and then taken through the training process. Figure 16 indicates the obtained validation error versus training time. Evidently, max-pooling size and training time show an inverse correlation. More accurately, for the simplest case of resolution 8, the array of data for training is composed of 14,160 rows and 10 columns for six classes of wave data, where every 10 features are attributed to one class. To examine the effectiveness of data projection feature engineering, both the raw data and the white pixel data were trained using the same setup for a resolution of eight features. The error obtained for the raw data was 36.44%, while the error for the white projection was found to be 83.33%. The results again pronounce the significance of the proposed model to sieve salient features with higher entropy.




4.3. Comparison with CNN and ANN


However, to showcase the significance of computational time, the same data set has been trained by Convolutional Neural Network (CNN). For this, light networks have been utilized to minimize the computational cost as much as possible. The architecture of CNN has been adopted according to [29], as shown in Figure 17. The dataset includes 14,166 images of scalograms corresponding to 2361 images for each class, so the training dataset embraces 11,333 images and 2833 images for the test. In addition, the obtained matrix of features of black projection has been processed directly into a CNN and a feed-forward Neural Network model instead of images. The architecture of ANN is with the input with 128 neurons, two hidden layers of 8 neurons, and an output of size 6 corresponding to the wave scenarios.



According to Figure 16, the new setup allows to reach 92.66% validation accuracy only within 4.66 s of training time, which is achieved with a normal laptop computational power with processor 11th Gen Intel Core i5-1145G7 @ 2.6 GHz with installed memory of 16.0 GB. This becomes more significant when it compares with the DL model performance for the same dataset on the images, as reflected in Table 4. To further improve the computational resources, the same dataset and network were trained on a system with a single GPU of NVIDIA GeForce GTX 1060 6.0 GB, processor Xeon E5-1650 v4 @3.6 GHz with installed RAM 16.0 GB. All the training was run on MATLAB 2024a deep learning package. Although the validation accuracy of CNN outperforms the new approach, the computation time and resources are out of comparison, and the new approach has resulted in a tremendous reduction in training time. Additionally, the engineered features and the matrix of black projection for the whole data have been processed directly to the mentioned ANN and CNN. The obtained results are given in Table 4, where the engineered features have shown a significant improvement in computational costs for CNN and ANN on a normal computational resource, yet SVR takes the lead by far. This result demonstrates the significant computational efficiency of the current innovative data analysis in reducing training time for real world, with a large amount of data that can be the crux and fruit of the current work.




4.4. Comparison of Different Classifiers


Based on Figure 16, the resolution of 64 seems to be a trade-off between computational efficiency and validation accuracy, so to enhance training performance, alternative supervised ML models for classification tasks have been investigated. In this order, different classifiers are examined on the set of engineering features to seek further improvement. To achieve this goal, the data has undergone testing with seven classifiers, and the results are depicted in Figure 18.



The linear discriminant classifier (LDA) has demonstrated the most favorable balance between accuracy and computational time, boasting a 96.24% accuracy rate and a training time of nearly 4 s. To delve deeper into the factors contributing to the compatibility of LDA with the data, a more thorough examination is warranted. So, to limit the dimensional space to a more meaningful representation, the model has been trained by a resolution of 8 corresponding to 10 feature arrays.



To address this, Figure 19 indicates the linear cluster representation of features 5 and 7 for all classes of wave conditions. As can be seen, despite overlaps between classes, they are discernible and separable. As indicated in Figure 20a, the LDA works perfectly on the features with higher separability due to its mathematical model. In short, the DA algorithm endeavors to maximize the separability between known categorical groups by maximizing the distance between the mean value of the groups and minimizing the variance in each group. As such, the discriminant can be obtained by eigenvectors of matrix   S  , which is constructed according to Equation (12) [30], in which   B   denotes the matrix of variance between the group, and   W   is the matrix of variance within the group.


  S =   W   − 1   B =    C o v a r i a n c e   T o t a l   − C o v a r i a n c e ( W )   C o v a r i a n c e ( W )     



(12)







So, as per Figure 20b, the linear boundary perfectly separated two features’ clusters. To explore the potential for further enhancing classification performance, quadratic discriminant analysis was employed as the separator. However, the results indicated a high error rate. Capturing the mutual linear representation of clusters with respect to certain classes has revealed the reason behind this. As indicated in Figure 21a,b, some clusters showed a scatter distribution, where the quadratic boundary missed the scattered features, so they contributed to the error. However, according to Figure 21b, the LDA inclusively covered the scattered features, resulting in high separability and less classification error.




4.5. Performance in Transition


Another practical issue frequently addressed for ML/DL models in the context of seakeeping is the capability of the trained model to timely detect transitions from one condition to another. This issue has been addressed in [31,32] as one of the main challenges in Sea State Estimation (SSE) using vessel motions. The origination of this issue is discussed in [15]. In short, the ML and DL models need to be trained by many permutations of input-output data, enabling them to perfectly detect the transition from one specific condition to another. However, the more scenarios in the dataset, the higher the computational costs. The problem is more pronounced for sequential time stamps. To give a simple mathematical representation, in case of only two input-output sets of data (wave-response) represented by     F   ( 1 , H )     and     G   ( 1 , H )     of observation window of   H   size, all permutations of   F   and   G   are required to be trained. This corresponds to   H !   number of permutations that are needed to be trained for only two inputs, which increases exponentially by increasing the scenarios. Indeed, the essential shortcoming in the data analysis framework has imposed some constraints which impede the capability for instantaneous acquisition of changes. To this end, the current feature engineering setup has been tested to explore its functionality in transitioning from one force to another. A scenario has been set up using 470 s of each wave class to investigate the estimation throughout and during the transition from one wave to another.



The estimation results are depicted in Figure 22, with transitions marked by black dotted boxes. Clearly, the current setup has effectively distinguished between wave classes or input forces during transitions, indicating a high sensitivity of the trained model to each class. However, to mitigate misclassification within each scenario, the most cost-effective approach is to utilize the Move-mode mechanism, as per [23], which effectively smoothens the estimation process. However, this mechanism comes with the expense of adding time lag to estimation, which is 10 s for Figure 22 and 3 s for Figure 23. In summary, the current featured engineered framework allowed fair estimation of input force (wave) using system (sphere) responses (4DOFs) for deterministic purposes in 40 s with negligible computational expenses. The easiness of the current framework allows the inclusion of many wave scenarios to replicate real-world phenomena while preserving the nuanced features of the input-output relationship for training machine learning models. Aside from that, the proposed model can be easily reinforced or updated with negligible training time and the augmentation of new data.





5. Conclusions and Future Works


This work has proposed a feature engineering technique to address the challenges associated with sea state estimation/prediction using ML/DL models. We extract fine spectral-temporal information using continuous wavelet transform on the short observation windows. Normalization and filtering salient features based on wavelet coefficient intensity on different projection planes help sieve features with high entropy for classification and establish a data framework capable of accommodating extensive process information. To enhance feature variance, additional endogenous attributes are incorporated. We demonstrate our technique using data from a floating simple geometrical sphere to map sphere responses to wave inputs. Evaluating the technique’s computational efficiency and validation accuracy, we processed 40 min of experimental data. Our specifically tailored technique outperforms conventional ML techniques such as CNN and ANN, reducing training time from 493 min for CNN to 4 s with validation accuracy of 98.38% and 91.92%. Even using a single GPU, our technique surpasses CNN and ANN in training time. While the SVR and classification models also perform well, feature-engineered data notably reduces training time for CNN and ANN from minutes to 154 s and 50 s with validation accuracy above 90%. Testing various classifiers, we found that LDA improves validation accuracy further to 96.24% for identical feature resolution. We discuss the reasons behind the improvement and address classification issues in transition conditions by testing feature-engineered data in a synthesized transitory condition between various waves. Our technique exhibits remarkable performance and sensitivity in estimating transitions between inputs over time. While promising, further validation with higher-fidelity datasets under more complex conditions, such as varying wave angles of approach, is necessary. In addition, the use of short observation windows may limit the capture of long-term dependencies and broader trends, potentially impacting accuracy in certain applications.



Overall, the proposed data analysis technique holds promise for practical implementation of ML models in real-world applications. Its potential extends beyond hydrodynamics, encompassing seakeeping, ship response prediction, sea state estimation using ship motion, and maneuvering. Moreover, it can be applied to any stochastic system requiring a data-driven model trained for numerous input/output mappings to replicate real-world scenarios.



Despite the progress made, future investigations could explore additional dimensions of the research. Firstly, benchmarking the model against a wider range of process noise levels would provide insights into how validation accuracy may be affected. Furthermore, the current setup only accounts for variations in wave frequency, so future studies could expand to examine the impact of changes in other variables, such as wave amplitude, on training time, and feature distribution. Additionally, the observation window in the current study was fixed at 40 s. The current setup might show either positive or negative sensitivity to this factor. Future work should investigate the impact of varying the observation length on feature variability and further training. Scaling from experimental data to real-world trials is a perennial challenge in hydrodynamics studies, and further research is needed to assess the impact of scaling on ML performance. Beyond seakeeping applications, the current framework could be tested on different datasets and applied to other phenomena, such as atmospheric events like wind and rain or the relationship between weather temperature and frost formation.
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Figure 1. Underlying mapping for ship and wave data-driven models. 
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Figure 2. The solution for modular network training by Thompson and friends [20]. 
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Figure 3. Model Test Basin layout. 
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Figure 4. Swivel and load cell setup for heave decay test. 
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Figure 5. Presentation of 6DOFs induced response to one of the tested scenarios. 
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Figure 6. Data analysis flow diagram. 
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Figure 7. Representation of features for wave response in the form of greyscale scalograms for two different segments of data (wavelet coefficients). 






Figure 7. Representation of features for wave response in the form of greyscale scalograms for two different segments of data (wavelet coefficients).



[image: Applsci 15 00346 g007]







[image: Applsci 15 00346 g008] 





Figure 8. Manifestation of features after operation given in Equations (5)–(7) in new form with respect to scalograms, with green dots for left image and red dots for right scalogram. 
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Figure 9. 3D view of feature spread projection (a), projection to black plane (b), and white plane (c). 
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Figure 10. Increasing the number of features through normalization (a) and increasing the number of features via projection plane (b). 
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Figure 11. The scalogram with original size (a) and the down sampled image as the result of max pooling operation (b) with the relevant normalized feature representation in the bottom. 
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Figure 12. Schematic representation of data analysis process. 
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Figure 13. Indication of features variance for raw data (a) and projection on black plane (b). 
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Figure 14. (a) The scalograms of response to scenarios 2, 5, and 6 from left to right. (b) Linear relationship between features in scenarios 2 and 5 (left) and 5 and 6 (right). (c) Comparison of features between far (left) and close (right) frequencies. 
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Figure 15. Enhancement of features variance using two new additional features. 






Figure 15. Enhancement of features variance using two new additional features.



[image: Applsci 15 00346 g015]







[image: Applsci 15 00346 g016] 





Figure 16. Comparison of computational error and time for different max-pooling size. 
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Figure 17. Architecture of CNN. 
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Figure 18. The performance of classifiers on the feature engineered data (Orange bar for error and blue bar for computational time). 
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Figure 19. Clusters scatter for two features with respect to the known wave classes. 
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Figure 20. (a,b) The indication of LDA for clusters classification. 
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Figure 21. (a) The indication of quadratic (a) and linear (b) discriminant analysis for clusters classification of engineered features. 
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Figure 22. Indication of estimation in transition between waves (dotted boxes indicate transition time stamps). 
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Figure 23. Comparison of raw estimation with 3 s lagged smoothening filter. 
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Table 1. Model and mooring line parameters.
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Parameter

	
Value

	
Unit






	
Mooring Line Diameter

	
5

	
mm




	
Mooring Line Material

	
Ultra-high molecular weight polyethylene




	
Pretension on Mooring Line

	
12.2

	
kg




	
Sphere Diameter

	
400

	
mm




	
Sphere Mass

	
4.305

	
kg




	
Spring Stiffness

	
20,568.75

	
N/m











 





Table 2. Regular and irregular wave parameters.






Table 2. Regular and irregular wave parameters.





	
Test

Number

	
Condition

	
Target Wave Height

	
Measured Wave Height

	
Wave Period

	
Test

Duration




	
1

	
Regular

	
50 mm

	
48.78 mm

	
1.0–2.8 s

	
75 s




	

	
Significant Wave Height (     H   s     )

	

	
Peak Period (     T   p     )

	




	
2

	
Irregular

	
50 mm

	
45.44 mm

	
1.2–2.4 s

	
40 min











 





Table 3. Detailed parameters of the JONSWAP spectrum and wave parameters.






Table 3. Detailed parameters of the JONSWAP spectrum and wave parameters.





	
Wave Test Parameters




	
Scenario

	
Significant Wave Height (m), Hs

	
    Peak   Period ,      T ¯    p      

	
Run Time (s)

	
    γ    

	
σ1

	
σ2

	
A






	
1

	
0.05

	
1.4

	
2400

	
1

	
0.07

	
0.09

	
0.0081




	
2

	
0.05

	
1.0

	
2400

	
1

	
0.07

	
0.09

	
0.0081




	
3

	
0.05

	
1.8

	
2400

	
1

	
0.07

	
0.09

	
0.0081




	
4

	
0.05

	
1.6

	
2400

	
1

	
0.07

	
0.09

	
0.0081




	
5

	
0.05

	
2.0

	
2400

	
1

	
0.07

	
0.09

	
0.0081




	
6

	
0.05

	
2.2

	
2400

	
1

	
0.07

	
0.09

	
0.0081











 





Table 4. Comparison of training time and accuracy between CNN and SVR utilized with new data processing.






Table 4. Comparison of training time and accuracy between CNN and SVR utilized with new data processing.





	ML Model
	Hardware
	Batch Size
	Validation Accuracy (%)
	Training Time (s)





	CNN on raw data
	CPU
	128
	98.38
	29,591



	CNN on raw data
	GPU
	128
	98.42
	2413



	SVR on engineered data
	CPU
	128
	91.92
	4.7



	CNN on engineered data
	CPU
	256
	91.10
	154



	ANN on engineered data
	CPU
	256
	94.67
	50
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