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Abstract: The advancement of deep learning methods across various applications has
forced the creation of enormous training datasets. However, obtaining suitable real-world
datasets is often challenging for various reasons. Consequently, numerous studies have
emerged focusing on the generation and utilization of synthetic data in the training pro-
cess. Hence, there is no universal formula for preparing synthetic data and leveraging
it in network training to maximize the effectiveness of various detection methods. This
work provides a comprehensive overview of several synthetic data generation techniques,
followed by a thorough investigation into the impact of training methods and the selection
of synthetic data quantities. The outcomes of this research enable the formulation of con-
clusions regarding the recipe for developing synthetic data with high efficacy in enhancing
detection methods. The main conclusion for the synthetic data generation methods is to
ensure maximum diversity at a high level of photorealism, which allows improving the
classification quality by more than 5% to even 19% for different detection metrics.

Keywords: mutli-object detection; synthetic data generation; deep and transfer learning

1. Introduction
The necessity for annotated data has grown significantly in recent years, as deep

learning models heavily depend on large data collection for efficient training. As tasks
like people detection and tracking become more complex and precise, the importance
of extensive datasets becomes crucial. Object detection methods can be applied widely
in various fields, such as manufacturing [1], sports [2], and many others. It is especially
essential to have datasets that cover various scenarios, environmental conditions, and
diverse demographics to ensure the adaptability and robustness of models. The computer
vision community has dedicated resources to create datasets like PASCAL VOC [3] or MS
COCO [4], contributing significantly to research on complex tasks across different scenes.
However, while beneficial, these datasets do not cover all possible scenarios.
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The collection of extensive and diverse real-world data poses various challenges and
limitations. Gathering real-world data is a time-consuming process with higher operational
costs, particularly when manually annotating thousands of images with numerous objects,
inevitably leading to human errors. The current increase in privacy regulations and re-
strictions on data collection further complicates matters. Real data often contain sensitive
information, including people’s identities, locations, and activities, raising significant pri-
vacy concerns, especially in regions like the US and Europe, where regulations like the EU
General Data Protection Regulation [5] have been introduced. Considering the necessity for
diverse data to encompass a wide range of scenarios, synthetic data emerges as a valuable
solution that can be generated through simulation. The utilization of synthetic data pro-
vides the flexibility to create various scenarios with different nuances. With synthetic data,
it is possible to have control over the elements present in the scene, visibility of individuals
or objects, actions performed by actors, types of locations, and numerous other factors.

Three advanced types of methods generating labeled data can be distinguished, of-
fering richer information about the objects to be detected. The summary of these three
categories can be found in Table 1. These methods are performed once before training and
can be further augmented. The first type of method is to use background-less images of
objects to be learned (named in this work as Img: images generated without 3D software).
Such an image is being spawned on another one giving more valuable data. In the work
in [6] an algorithm is used in automotive transport for detecting road damage. To ensure
the realism of generated data, images of road cracks are only put on specially selected areas.
To improve the realism of synthetic data, the work in [7] focuses on using color-grading
images and fitting the size of the pasted object. This ensures a better blend with the back-
ground, enhancing visual coherence. The work in [8] introduces a cycle-GAN algorithm,
creating realistic images based on the provided ones. This is used in multi-organ detection
in CT images, generating realistic organ images.

Table 1. Summary of different methods of synthetic generation concerning the Img, Obj, Sim and its
application for object detection purposes, where Img: images generated without 3D software, Obj: 3D
models generated on a flat background, Sim: images rendered using crowd simulations.

Name Year Img Obj Sim Object of Detection

[9] 2023 ✓ - - Not Specified
[6] 2021 ✓ - - Road damage and cracks
[8] 2020 ✓ - - Multi-organ in CT images
[7] 2017 ✓ - - Groceries
[10] 2023 - ✓ - Groceries
[11] 2022 - ✓ - Road Cones
[12] 2019 - ✓ - Toys and groceries
[13] 2018 - ✓ - Not specified
[14] 2017 - ✓ - specific toys in cluttered room
[15] 2015 - ✓ - Aircraft and drones
[16] 2023 - - ✓ Vehicles
[17] 2023 - - ✓ Pedestrians and vehicles
[18] 2023 - - ✓ Construction yard protection
[19] 2023 - - ✓ Swimming and drowning people
[20] 2023 - - ✓ Pedestrians
[21] 2023 - - ✓ Ants
[22] 2020 - - ✓ Pedestrians
[23] 2019 - - ✓ Water closet objects, e.g., toilet, urinal
[24] 2018 - - ✓ Pedestrians and vehicles
[25] 2018 - - ✓ Vehicles
[26] 2017 - - ✓ Pedestrians
[27] 2017 - - ✓ Groceries
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Table 1. Cont.

Name Year Img Obj Sim Object of Detection

[28] 2017 - - ✓ Vehicles
[29] 2016 - - ✓ Various elements of a city
[30] 2016 - - ✓ Vehicles

The second popular category of methods presented in [11,14] is to use 3D software to
render 3D objects on a specific background (Obj: 3D models generated on a flat background).
This method works on the assumption that synthetic images do not have to be realistic
and ensures that the object is being rendered from multiple angles. Such an approach
diversifies the background of an image and provides information about the object from
different points of view, which is crucial while detecting more complex shapes. The work
in [13] suggests that the best results are obtained when the rendered objects used become
background-less, giving the possibility to change the background, as well as to rotate or
change their positions. Such an operation should be performed multiple times to ensure
filters learn the features of the object, not the background. The authors of [10] use an
especially prepared environment with various cameras and visual effects. Objects can be
rendered from various camera angles with different light settings. Blur and noise effects
are also added to 3D scenes.

The last noted group of methods uses a Game Engine for creating a full crowd simu-
lation (Sim: images rendered using simulation; refer to Figure 1), which is proven to be a
valuable tool for validating object detection [17], person detection [22], construction site
issues [18], and tracking methods [20,31]. However, it faces limitations in preparing diverse
data for training. The challenge lies in the difficulty of achieving a wide range of situations
essential for effective training. The complexity lies in addressing the challenge of data
diversity in synthetic data generation [13], as certain methods may lead to biased datasets
under specific input conditions. Models trained on diverse datasets exhibit enhanced
performance when dealing with data beyond the target domain. This is why simulations
can only be used to overcome specific problems. One of the possible usages [21] is to render
images of walking ants in a randomly generated environment, which is possible because
generating forest ground from a top view is a simple task to overcome. Labels are later
used to detect, track, and estimate their positions. Another approach [19] uses an ocean
simulation to detect people in the water. The simulation uses multiple ship models, varies
the weather conditions, and spawns thrash in the sea. The goal of an algorithm is to detect
drowning people and to distinguish them from swimming ones. The trained model will
only be used over the ocean, so there is no need to diversify the environment so much.

In the context of Virtual Worlds [30], synthetic data have found applications as prox-
ies for multi-object tracking analysis. In the context of detecting cars and traffic, virtual
crowd simulation is utilized to augment training data and expand datasets [23], particu-
larly emphasizing highly reflective objects, with a focus on bathroom utilities. The video
game environment [29] serves as a common tool, leveraging synthetic samples to achieve
results comparable to models trained on real-world data. The integration of synthetic data
generated within virtual simulations into training sets proves instrumental in significantly
enhancing the performance of object detection algorithms. An approach involving the gen-
eration of synthetic objects on real backgrounds [28], featuring a high density of detectable
objects, aims to emulate real-world clutter effectively. By incorporating multiple synthetic
and real datasets alongside a simulation tool [32], there is potential to create large volumes
of affordably annotated synthetic data. This approach can lead to the establishment of
domain similarity among these datasets, contributing to more robust and comprehensive
training datasets.
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Figure 1. Exemplary images of realistic crowd simulation implemented in Unreal Engine. Such
an approach gives an option for generating random pedestrian and car movement along with an
option for including additional objects. It also enables the simulation of different light reflections and
weather conditions.

Several authors have emphasized the importance of achieving photorealism in simu-
lated data, investigating the impact of synthetic datasets generated through photorealistic
rendering techniques. This focus extends to areas such as street scene parsing [24] and
transfer learning, with a predominant reliance on synthetic training data [27]. In the work
in [15], a new algorithm was designed to enhance realism by initiating from a limited set
of real images. Then, it estimates the rendering parameters needed to synthesize similar
images when provided with a coarse 3D model of the target object. Furthermore, the
generation of synthetic data [12] involves incorporating randomized illumination, blur,
and noise to address the challenges of object detection in complex environments. This
approach aims to overcome the limitations associated with existing methods, which heavily
depend on large volumes of labeled real data. In the realm of cross-modality learning,
a framework [26] employs terms utilizing a deep convolutional network to establish a
non-linear mapping between RGB and thermal data. This enables the learning of features
that are both discriminative and resilient to poor illumination conditions.

Models trained exclusively on synthetic data often fall short in performance when
tested on real-world datasets, and the process of data synthesis itself likely contributes to
the observed domain gap [33]. To mitigate the disparity between real and synthetic data,
two common strategies are employed. One approach involves mixing real data into the
training set alongside synthetic data. Other strategies include conducting fine-tuning on
mixed data after pretraining on larger uncorrelated with the given problem but in a similar
domain dataset (like COCO) or enhancing the quality of synthetic data to align more closely
with the target domain. While fine-tuning models with real data can lead to improvements,
it does not address the fundamental issue of the domain gap. Addressing the domain gap
for semantic segmentation [34] can be achieved by adapting the representations learned
by segmentation networks across synthetic and real domains. Alternatively, domain
randomization [25] can be applied together with fine-tuning on real data. In this approach,
simulator parameters such as lighting, pose, and object textures are randomized in non-
realistic ways, compelling the neural network to learn the essential features of the object of
interest despite the artificial variations introduced during simulation.

The presented investigation shows various methods for preparing synthetic data,
along with exploring techniques for training multi-object detection methods for classes
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with a limited number of data. The diversity of generated results is a key focus of synthetic
data, with considerations given to the issue of photorealism. This study presents a different
approach to training a multi-object detection algorithm using real data, synthetic data, and
a transfer learning approach. Then, the impact of the relationship between the number
of real and synthetic data on the effectiveness of training and classification was analyzed,
which allows for determining the required amount of synthetic data that must be added to
the training set. Finally, based on existing solutions for generating synthetic data (Img, Obj,
and Sim), the influence of data type on classification parameters was checked. The novel
outcome of the conducted research is the most effective recipe for generating synthetic
data and a method for utilizing such data in training models to detect large-sized objects.
This conclusion is derived from the latest knowledge and insights in the field, providing a
comprehensive guide for practitioners involved in similar applications.

2. Materials and Methods
2.1. Real Data

The existing databases of labeled photos have a restricted range of object classes. To
highlight the issue of insufficient data, as an example, specific classes of objects commonly
present in public transport were selected. These classes include items such as bicycles,
trolleys, wheelchairs, boxes, suitcases, and bags (Figure 2). Notably, only the bicycle and
suitcase classes are directly represented in the COCO database. The bag class was built
from classes of backpacks and handbags for which the differences were relatively small.

Figure 2. Exemplary set of real data for applied classes of bicycles, trolleys, wheelchairs, boxes,
suitcases, and bags composed of data from COCO, searching public databases of unlabeled photos
and own public transport dataset.

To create a dataset for network training, a thorough review of photos was conducted to
ensure a balanced distribution of the number of photos for each class. The actual data were
constructed by using photos from the COCO database and searching publicly available
databases of unlabeled photos (which were then manually tagged) and a database of public
transport photos [35]. This step aimed to address the challenge of data scarcity and provide
a more comprehensive and representative set for training the network. The total amount of
data concerning the mentioned classes and division into subsets is given in Table 2.
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Table 2. A summary of the amount of data for individual classes used in research (Total), with
division into training (Train), validation (Val), and test (Test) sets. Additionally, information about
the class’s availability in the COCO benchmark is included.

Class Name Total/Train/Val/Test COCO

Bicycle 3236/2268/651/317 Yes
Trolley 3249/2262/651/336 No
Wheelchair 3236/2270/654/312 No
Box 3277/2280/627/370 No
Suitcase 3281/2290/674/317 Yes
Bag 3251/2270/671/310 Mix

2.2. Synthetic Data Generation

In the process of generating synthetic data, a primary consideration was given to
ensuring diversity in the images. The Unreal Engine 5 was chosen as a guarantee of high
data quality. Unreal Engine provides unparalleled graphics quality, advanced physics,
and world-building utilities, thereby expediting work processes and elevating the overall
quality of generated datasets.

Unreal Engine 5 offers sophisticated tools for managing physics, creating realistic
human simulations, and controlling object behavior within a scene. It empowers developers
to achieve industry-leading graphics quality. The 3D models of classes listed in Table 2
were created in the Blender environment with various materials (Figure 3). To retrieve
detections of specific generated objects, the Unreal GT library [36] was employed. This
library enables the direct extraction of detections from crowd simulations (Figure 4d), a
tool built for Unreal Engine, during the synthetic data generation process.

Figure 3. View of 3D models used in synthetic data with sample materials.

As mentioned above, there are three common ways of generating synthetic images
for object detection. The Img method consists of adding background-less images to the
background image. Its main feature is, generating hundreds of images in a short time. The
problem lies in varying the pose of an object, which is crucial while learning more complex
shapes. Obj method uses the possibilities given by modern 3D graphic engines and is an
extension of an Img method, but instead of using flat images of objects to be learned, it uses
3D models rendered on a random background. The main advantage of such an approach is
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that an object is being seen from multiple views, which provides more information during
the learning process. This is the reason why a decision was made to skip the simple Img
approach and use Obj instead. The Sim method is based on a dedicated simulation, and
its main power is allowing us to recreate the destination environment, which is the reason
why it is being so often used in unusual problems. The main disadvantage of Sim is the
difficulty in varying the environment, which is in many cases very time-consuming. To
overcome this problem, the 3rd method (Square) was developed, which is a mixture of
Obj and Sim methods. The last mentioned method is the mix of images from Obj, Square,
and Sim approaches, which provide a rich and diverse dataset. A detailed summary and
description of general strategies of data generation are given below:

(a) Realistic city crowd simulation (b) Static square with changing background

(c) Random object and variable background (d) Object detection segmentation

Figure 4. Example of generated synthetic data for multiple object detection concerning the different
scenarios of generation and object segmentation.

• Realistic city crowd simulation (Sim: Figure 4a)—Features a realistic crowd simulation
in an urban setting with moving people, vehicles, weather conditions, and proper
lighting effects ensured by various sources of light positions. The scene includes 3D
buildings and additional elements like paper, waste bins, letter boxes, and trees. Large
objects on sidewalks are registered and marked, and cameras move around objects
with randomized positions. Such an approach results in a scene with numerous objects
blocking each other, situated at a relatively large distance from the camera.

• Static square with changing background (Square: Figure 4b)—Takes place in a static
square with a changing background, where a plane contains randomly placed objects
such as benches, lampposts, trees, garbage bins, and static cars, along with pedestrians.
In this case, large photos fill the background, randomly positioned around the stage,
and sizable objects are placed randomly on the stage. The camera view is random
relative to the center of the square, resulting in a multitude of objects obscured by a
randomly changing background, and closer proximity to the camera.
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• Random object and variable background (Obj: Figure 4c)—The scene comprises nine
photos serving as backgrounds (randomly chosen from a large dataset ensuring no
connection to our problem and its diversity), with objects generated in empty spaces
for photo capture against the specified background. Each photo contains one or a
maximum of two objects close to the camera. Generated objects are realistic, but
pictures in the background are not related to realistic scenes. Finally, no occlusions are
present, but the background changes dynamically.

• Mixed method (Mix)—Combines elements from the three approaches mentioned
above to generate a diverse dataset. It utilizes a mixture of realistic crowd simulation,
changing backgrounds, and random object placement techniques.

2.3. Multiple Object Detection Strategy

To demonstrate the practical application of synthetic data, the chosen object detection
method is You Only Look Once, version 7 (YOLOv7). YOLOv7 [37] is a state-of-the-art
real-time object detector that has a good relation of speed and accuracy concerning other
object detectors. YOLOv7 method was also chosen due to the clarity of the source code
and its possible modifications in the training method. It has surpassed its predecessors
and introduced several key features, including model reparameterization, dynamic label
assignment, and extended and compound scaling. The computational block in the YOLOv7
backbone is known as the Extended Efficient Layer Aggregation Network (E-ELAN). The
utilization of YOLOv7, with its advanced features and optimized architecture, aims to
showcase the effectiveness of synthetic data in enhancing the performance of a cutting-edge
object detection method for real-world applications.

The model was trained with different proportions of synthetic to real data. The first
model was conducted using only real data and was used for comparison with the other
approaches. All models trained using synthetic data use the same amount of real data.
Generated images were added only to the training dataset with different ratios. Training
data were augmented with the use of already implemented YOLOv7 methods such as
rotation, merge, shift, rescale, hue change, and noise addition.

During experiments, two training techniques were used: a standard one, training a
model from beginning to end, and a transfer-learning method. For the transfer learning
approach, a YOLOv7 model trained on a COCO [4] dataset was taken, then the feature
extractor (backbone) was frozen and the rest (front bone) was trained regularly. Such
an approach not only allows the model to train faster but also improves the accuracy
of detections. To test different ways of generating data, models were trained with each
synthetic data method separately, and then one was trained with a mix of all approaches.
All models were trained for 300 epochs, and hyperparameters were found experimentally
and then fine-tuned using a default evolutionary algorithm.

3. Results
All calculations were performed on a computer with the following parameters: Xeon

W-3200 processor, number of cores/threads 12/24, processor clock 3.3 GHz, cache memory
19.25 MB, 32GB RAM, and GPU NVIDIA Quadro RTX6000 24GB. The dataset was split in
the following manner: training set: 50% of labels, validation set: 30% of labels, test set: 20%
of labels. Later, cross-validation of the chosen models was performed. To create hybrid
datasets, synthetic data were added with various ratios to the training set. It was ensured
that the correct ratio was obtained by calculating the number of labels instead of images.

To evaluate the quality of the models’ outcomes, the following evaluation metrics
were applied: (a) Precision; (b) Recall; (c) Mean Average Precision (mAP), calculated at an
Intersection over Union (IoU) threshold of 0.55 (mAP@0.5); (d) mAP, evaluated using a
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series of IoU thresholds ranging from 0.5 to 0.954 (mAP@0.5:0.95); (e) F1 score; (f) Box loss
metric, indicating how accurately the algorithm can detect an object’s center; (g) Objectness,
measured as the probability of an object existing in a proposed region of interest; and (h)
Classification, utilizing the assignment of a class label to the detected object.

3.1. Evaluation of Different Training Approaches

As intended, the multi-object detection method was trained first on real data. Subse-
quently, a transfer learning procedure was executed using solely real data. In the second
phase, a combination of synthetic data and real data, called hybrid data, was employed.
The transfer learning approach was then repeated with this hybrid data, ensuring an equal
distribution of synthetic and real data in the hybrid set. The results demonstrate that
incorporating synthetic data in the form of hybrid data significantly enhances detection
quality (refer to Table 3).

Table 3. Results of different approaches in the training of object detection models with the application
of real and hybrid data concerning Precision, Recall, mAP parameters, F1 score, Box loss, Objectness,
and Classification. The best results were marked in bold.

Method Prec. ↑ Rec. ↑ mAP0.5 ↑ mAP:0.95 ↑ F1 sc. ↑ Box ↓ Object. ↓ Class. ↓
real 0.9162 0.8908 0.9360 0.7052 0.9033 0.0422 0.0081 0.0076
tf. real 0.9562 0.9472 0.9718 0.8018 0.9517 0.0350 0.0091 0.0039
hybrid 0.9646 0.9656 0.9848 0.8350 0.9651 0.0320 0.0074 0.0027
tf. hybr. 0.9850 0.9862 0.9952 0.8940 0.9856 0.0228 0.0077 0.0018

Training detection methods exclusively with real data proved to be the least effec-
tive, prompting the utilization of the transfer learning approach in this scenario. Further
improvements were observed when transfer learning (tf. real), hybrid data (hybrid), and
transfer learning for hybrid data (tf. hybr.) were applied, respectively. The results for the
Precision, Recall, F1 score, and mAP 0.5 parameters are above the value of 0.9, and only a
large difference is visible for the precise detection of the mAP 0.5:0.95 parameter, where the
transfer learning approach for hybrid data performs relatively best.

On an individual class basis, YOLOv7 demonstrated commendable results for ap-
proximate detection (mAP 0.5). However, a marked enhancement in the classification
efficiency of individual classes was achieved through the introduction of the transfer
learning approach for hybrid data, evident in the mAP parameter 0.5:0.95 in Table 4.

Table 4. Results of mAP parameters (0.5 and 0.5:0.95) for selected classes in multi-object detection,
proving that transfer learning applied for hybrid data is more accurate than real data with a limited
number of images. The best results were marked in bold.

Class Bicycle Trolley Wheelchair Box Suitcase Bag
mAP ↑ 0.5 :0.95 0.5 :0.95 0.5 :0.95 0.5 :0.95 0.5 :0.95 0.5 :0.95

real 0.98 0.79 0.98 0.81 0.96 0.67 0.89 0.64 0.94 0.71 0.86 0.61
tf. real 0.99 0.85 0.99 0.87 0.98 0.77 0.96 0.77 0.97 0.80 0.94 0.74
hybrid 0.99 0.87 0.99 0.88 0.99 0.81 0.98 0.81 0.99 0.85 0.97 0.77

tf. hybr. 1.00 0.91 1.00 0.92 1.00 0.87 0.99 0.89 1.0 0.90 0.99 0.86

3.2. Estimation of Synthetic Data Amount

This research also investigated the optimal proportion of generated synthetic data
in the training set. For hybrid data and the transfer learning approach, various ratios
of synthetic data to real data were examined. Firstly, only synthetic data were used for
training, indicating the worst results. On the other hand, when only real data were used,
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the highest mAP was observed (refer to Figure 5, top plot, and Table 5). Still, when an equal
amount of synthetic and real data are used, the model performance is slightly worse than
for a full real dataset. Even in extreme cases, where 90% synthetic data and 10% real data
are used, the results are worse only by an average of 7–11% compared with the full real
data. In the second step, synthetic data were added to the full real dataset (refer to Figure 5,
bottom plot, and Table 5). There is a trend showing that adding synthetic data significantly
improves the results. The major boost is observed after adding 25% of synthetic data.
Adding synthetic data, and thus enlarging the training set, definitely improves the results.
This confirms the usefulness of synthetic data in the context of supplementing real data.

Table 5. Results of different ratios of real and synthetic data in the training of models concerning
Precision, Recall, mAP parameters, F1 score, Box loss, Objectness, and Classification for the raw and
transfer learning approach. The best results were marked in bold.

Real Synt. Prec. ↑ Rec. ↑ mAP 0.5 ↑ :0.95 ↑ F1 sc. ↑ Box ↓ Object. ↓ Class. ↓
0 1 0.156 0.320 0.210 0.0521 0.032 0.076 0.0167 0.0359

0.05 0.95 0.652 0.584 0.616 0.598 0.337 0.041 0.0079 0.0133
0.1 0.9 0.842 0.766 0.802 0.814 0.539 0.052 0.0109 0.0111
0.2 0.8 0.841 0.773 0.806 0.825 0.549 0.050 0.0109 0.0107

0.25 0.75 0.869 0.763 0.813 0.823 0.551 0.041 0.0096 0.0098
0.5 0.5 0.850 0.822 0.836 0.863 0.590 0.044 0.0086 0.0090

0.75 0.25 0.882 0.828 0.854 0.88 0.621 0.041 0.0086 0.0075
1 0 0.916 0.891 0.903 0.936 0.705 0.042 0.0081 0.0076
1 0.25 0.959 0.971 0.965 0.985 0.823 0.032 0.0082 0.0050
1 0.5 0.962 0.975 0.968 0.989 0.840 0.032 0.0083 0.0046
1 0.75 0.965 0.972 0.968 0.987 0.843 0.032 0.0082 0.0050
1 1 0.965 0.966 0.965 0.985 0.835 0.027 0.0074 0.0027
1 1.25 0.969 0.970 0.969 0.990 0.849 0.033 0.0082 0.0047
1 1.5 0.974 0.972 0.973 0.990 0.853 0.032 0.0081 0.0041
1 1.75 0.974 0.974 0.974 0.990 0.852 0.033 0.0083 0.0044
1 2 0.964 0.979 0.971 0.989 0.851 0.033 0.0084 0.0050

Transfer learning approach

0 1 0.354 0.289 0.318 0.261 0.143 0.0635 0.0185 0.0322
0.05 0.95 0.845 0.749 0.794 0.802 0.519 0.0337 0.0085 0.0059
0.1 0.9 0.885 0.792 0.836 0.843 0.568 0.0323 0.0091 0.0063
0.2 0.8 0.892 0.838 0.864 0.878 0.624 0.0381 0.0138 0.0070

0.25 0.75 0.908 0.837 0.871 0.882 0.634 0.0320 0.0115 0.0051
0.5 0.5 0.892 0.844 0.867 0.881 0.635 0.0330 0.0114 0.0052

0.75 0.25 0.907 0.895 0.901 0.924 0.695 0.0306 0.0097 0.0043
1 0 0.956 0.947 0.952 0.972 0.802 0.0350 0.0091 0.0039
1 0.25 0.988 0.982 0.985 0.995 0.895 0.0270 0.0095 0.0027
1 0.5 0.986 0.983 0.984 0.995 0.893 0.0280 0.0093 0.0032
1 0.75 0.986 0.990 0.988 0.996 0.902 0.0280 0.0092 0.0035
1 1 0.985 0.986 0.986 0.995 0.894 0.0228 0.0077 0.0018
1 1.25 0.988 0.987 0.987 0.995 0.897 0.0290 0.0091 0.0031
1 1.5 0.986 0.989 0.987 0.995 0.897 0.0300 0.0089 0.0034
1 1.75 0.986 0.985 0.985 0.995 0.893 0.030 0.0089 0.0037
1 2 0.982 0.988 0.985 0.994 0.894 0.030 0.0089 0.0038
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Figure 5. Results of different approaches in the training process with the application of various
relations of real and synthetic data concerning the mAP parameters. The upper plot shows the ratio of
real data to the sum of real and synthetic data. In contrast, the bottom shows the relation of additional
synthetic data applied to full real data.

3.3. Choice of Synthetic Method Generation

During this phase, diverse methods for generating synthetic data were rigorously
tested and detailed in the corresponding Section 2.2. The YOLOv7 detection method was
individually trained on each approach through the transfer learning method. Subsequently,
an equivalent number of images were randomly selected from the datasets associated with
each approach, ensuring parity in the size of each set. After a comprehensive evaluation of
the various strengths and weaknesses inherent in each solution, it was determined that the
most favorable results were achieved by combining all approaches of synthetic generation
methods (refer to Table 6).

Table 6. Results of different approaches in the generation of synthetic data compared with all
parameters. The mixed scenario of all kinds of data generation gives the most promising results
confirming the diversity of data.

Method Prec. ↑ Rec. ↑ mAP0.5 ↑ mAP:0.95 ↑ F1 sc. ↑ Box ↓ Object. ↓ Class. ↓
Sim 0.927 0.907 0.936 0.721 0.9169 0.029 0.0087 0.0032
Obj 0.925 0.890 0.935 0.716 0.9072 0.0277 0.0100 0.0026
Square 0.918 0.878 0.925 0.696 0.8976 0.032 0.0083 0.0042
Mix 0.985 0.986 0.995 0.894 0.9856 0.0228 0.0077 0.0018

4. Discussion
The presented work explores diverse methods of generating synthetic data, including

crowd simulation, utilizing a plane with a variable background, and incorporating objects
onto photo backgrounds. Each approach has its own set of advantages and drawbacks,
with typical crowd simulation offering a limited amount of repeatable data, potentially
leading to more random outcomes.
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The research involved the inclusion of object classes represented in the COCO database,
as well as those requiring manual search and marking. Initially, the YOLOv7 network was
trained from scratch using real data. Subsequently, a pretrained model was employed
to enhance results. Finally, synthetic data, a blend of real and simulation data (hybrid
data) in varying proportions, were introduced, and the network training method was
repeated similarly to real data. The research also investigated the impact of options for
generating simulation data and the quantity of synthetic data relative to real data on
classification quality.

The results of the research show that the use of real data in the training process is
insufficient. Particularly for classes with limited or no available source data, the use of
synthetic data emerges as a highly effective alternative. This study employed the well-
established method of training the YOLOv7 network, with an extensive analysis of various
data generation approaches. Table 3 illustrates that employing hybrid data for the transfer
learning approach yields the best results across all indicated parameters. Notably, this
approach significantly enhances the precision of object detection, as evident in the mAP
parameter 0.5:0.95.

Furthermore, this research reveals that the influence of the amount of synthetic data
relative to real data is minimal (refer to Figure 5). However, it is worth noting that synthetic
data can be a good replacement and complement to real data when balancing data from
multiple classes is required. The research results present the same amount of real and
synthetic data in a hybrid set. However, in scenarios with limited real data, supplementing
the set with a larger volume of synthetic data proves beneficial. However, in scenarios
with limited real data, supplementing the set with a larger volume of synthetic data proves
beneficial. That is crucial for ensuring a proper balance of data in case not all classes are
represented by a sufficient number of real data. Synthetic data, with their capacity to
generate diverse yet realistic images, stand out as a key feature.

The primary criterion for data generation was maximizing diversity, and the use of the
Unreal Engine game engine helped maintain photorealism. Assessing the impact of photo
realism on subsequent work proved challenging due to the absence of clear parameters
for evaluating such realism. Diversity in the data was achieved through the incorporation
of different 3D models, multiple models in a single scene, object occlusions, random
arrangement of models, random positioning of camera views, diverse backgrounds, and
lighting. This diversity, practically unreachable in reality, fills a crucial gap when actual
images are unavailable.

Promising methods for data generation are generative models, such as generative
adversarial networks [38] and diffusion models [39], which are currently used in many
applications. This type of methodology currently serves mainly as a data augmentation
method, which creates coherent and logical images based on already provided pictures.
Future development of these methods may make them an alternative to generating synthetic
data and will speed up the process of preparing training data.

The strategy of training on synthetic data significantly affects the results and influences
the layers of neural networks [16]. Notably, the comparison between a detector trained on
real data and one trained on synthetic data revealed the highest similarity in the early layers,
while the most significant difference was observed in the head part of the network. Feature
extractors (first layers) are only responsible for detecting various shapes that are identical
for similar problems. This observation was used for a simple yet effective approach [14],
where the layers responsible for feature extraction were frozen in pretrained models on
real images. Subsequently, only the remaining layers were trained on synthetic data.

The effective application of simulation data, treated as synthetic data, plays a pivotal
role in enhancing the quality of training data preparation. On one hand, it facilitates the
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generation of substantial datasets that enrich real data with diverse sets in various aspects.
On the other hand, synthetic data become crucial when real data for a specific class is
lacking in any existing dataset. However, a significant challenge lies in appropriately
structuring the classifier architecture to bridge the gap between the domains of real and
synthetic data. The presented work delves into extensive research on the application of
synthetic data in the detection of numerous objects. The selected list of objects includes
classes with available data in publicly accessible benchmarks and classes requiring manual
resource search.

The utilization of synthetic data as a form of data augmentation is increasingly preva-
lent today. Image augmentation, as discussed in [9], is a popular way to boost dataset
quality. It involves rotating, scaling, adjusting color, and blending images to create more
labeled data, preventing overfitting during training. Such a process can be carried out in
each epoch, providing rich data every iteration. With numerous data generation scenarios
available, synthetic data finds practical applications in detecting various objects. Current
knowledge enables the generation of realistic data, and as successive graphics engines
are released, the photorealism of simulations is expected to improve. Nevertheless, a
significant challenge for the future lies in achieving appropriate domain transfer, domain
bias, and solutions for overfitting to construct a classifier based solely on synthetic images
that remain effective on real data.

5. Conclusions
Synthetic data generation serves as an ideal solution for training deep learning meth-

ods, especially in scenarios where accessing real data is impractical or restricted. Synthetic
data can also be a good complement to real data. In the course of the research, diverse
methods for generating simulation data were explored, along with assessing the training
approach for the existing detection method while considering the balance between gener-
ated and real data. The main limitation of synthetic data generation methods is the need to
have even a small amount of real data, as well as the evaluation of the domain gap, and this
is the main challenge for future research work. The distinctive characteristics of synthetic
data lie in their diversity, realism, and blended generation approach, making them a perfect
recipe for effective utilization in various applications.
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