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Abstract

:

Multivariate time series (MTS) clustering has been an essential research topic in various domains over the past decades. However, inherent properties of MTS data—namely, temporal dynamics and inter-variable correlations—make MTS clustering challenging. These challenges can be addressed in Grassmann manifold learning combined with state-space dynamical modeling, which allows existing clustering techniques to be applicable using similarity measures defined on MTS data. In this paper, we present a systematic overview of Grassmann MTS clustering from a geometrical perspective, categorizing the methods into three approaches: (i) extrinsic, (ii) intrinsic, and (iii) semi-intrinsic. Consequently, we outline 11 methods for Grassmann clustering and demonstrate their effectiveness through a comparative experimental study using human motion gesture-derived MTS data.
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1. Introduction


1.1. Background on Multivariate Time Series Clustering


Many daily events around us, such as physical activities tracked by sensors, stock market fluctuations, and changes in nature, can be represented as time series, which can be broadly divided into univariate and multivariate time series. A univariate time series, recorded over time   t = 1 , 2 , … , L ,   is defined as a row vector   y =  [ y  ( t )  , … , y  ( L )  ]  ∈  R  1 × L     [1,2,3,4,5,6]. In contrast, a multivariate time series (MTS), which is a record of   p > 1   dimensional data, is defined as a matrix   Y =  [ y  ( 1 )  , … , y  ( L )  ]  ∈  R  p × L    . During the last few decades, several analysis techniques such as clustering [7,8], forecasting [9], and classification [10] have been explored to understand the relationships among the p variables and their temporal dynamics in MTS. Among these techniques, MTS clustering has attracted significant research interests due to its capability in unveiling temporal characteristics and the underlying relationships among the variables [3,7,11,12].



To effectively capture the characteristics of MTS data, various representation techniques have been extensively investigated in the literature, including dynamical models [13,14], linear subspaces [2,15], and variants of principal component analysis [16,17]. The autoregressive moving average (ARMA) model, in particular, has been a popular choice for dynamical modeling due to its ability to effectively capture MTS characteristics [14,18,19]. However, since MTS data represented by ARMA models do not reside in a Euclidean vector space, calculating similarities between MTS samples for clustering becomes challenging. To address this issue, the observability matrix derived from ARMA model parameters has been introduced to represent MTS in a linear subspace [20,21]. Note here that such linear subspace representations have been primarily investigated in computer vision problems [22].




1.2. Three Approaches to Grassmann Clustering


These linear subspaces representing MTS can be analyzed within a special topological space known as the Grassmann manifold—a high-dimensional differentiable manifold defined by a set of linear subspaces [23]. According to this definition, each linear subspace (i.e., MTS sample) is an element of the Grassmann manifold, and can thus be regarded as a point on the manifold, as shown in Figure 1. In this manifold, traditional Euclidean distance-based dissimilarity measures are not applicable due to its non-Euclidean geometry. Consequently, several studies have investigated clustering methods that account for the geometric properties of the Grassmann manifold where the data resides [24].



As shown in Figure 1, we categorize the existing works on Grassmann clustering into three approaches: extrinsic, intrinsic, and semi-intrinsic. Among these, the extrinsic approach, which performs clustering in an embedded low-dimensional space (i.e., local planes) derived from the Grassmann manifold [18,22,25], has been a popular choice due to its computational efficiency. Techniques such as reproducing kernel Hilbert space (RKHS) embeddings [15] and Gaussian radial basis function kernels [26] are commonly used to define the embedded space. By enabling the calculation of similarities in a local Euclidean space, extrinsic approach methods have been successfully applied in various studies, including dictionary learning [27] and neighborhood-preserving embedding [22]. However, selecting appropriate embedding techniques for different datasets remains a significant challenge [15]. This difficulty arises because the clustering process is performed in the embedded space, which may not fully capture the manifold’s global structure.



Different from the extrinsic approach, methods belonging to the intrinsic approach [20,24,28] cluster MTS samples directly on the surface of the Grassmann manifold, as shown in the middle panel of Figure 1. In this approach, geodesic distance—the shortest path between two points on the manifold—is used as the measure for clustering. By using the geodesic distance, the intrinsic approach takes advantages of preserving the natural distribution of MTS data on the Grassmann manifold. For example, the authors of [20] effectively analyzed image data acquired under variations of lighting conditions and camera perspectives using the intrinsic approach. Moreover, applying this approach to multi-view clustering problems across datasets has been observed to improve clustering accuracy [28]. However, the intrinsic approach imposes certain limitations on the available clustering methods. For instance, since the concept of a mean is not well defined on the manifold, traditional mean-based clustering methods cannot be applied.



Both approaches have their respective pros and cons. The last semi-intrinsic approach was designed to take advantages of the two approaches [29]. Specifically, this approach clusters MTS data directly on the manifold using a special type of mean called the Karcher mean [30]. The Karcher mean, which is also known as a Riemannian center of mass, is defined as a local minimizer of the sum of squared distances to a finite set of points on the Grassmann manifold, thereby providing a natural notion of an “average” subspace in a non-Euclidean setting. Although it calculates approximated mean, conventional mean-based clustering methods such as k-means clustering and mean shift can be applied [29]. According to [21,31], even better MTS clustering accuracy was obtained by using the Karcher mean. However, it was observed in [32] that the Karcher mean is sensitive to outliers, which leads to inaccurate sample means. Moreover, the iterative nature of Karcher mean calculation does not guarantee convergence, potentially resulting in a suboptimal solution (i.e., inaccurate sample means) [32].




1.3. Motivation and Contributions


As discussed above, each of the three Grassmann clustering approaches has distinct characteristics. Additionally, the available clustering methods and (dis)similarity measures vary across these approaches, leading to various options. Notably, the extrinsic approach has been the most widely adopted [19,33,34,35,36,37,38,39,40,41,42,43], while intrinsic methods have been explored in relatively few studies such as [41]. However, as discussed in Section 3.1 and Table 6, the intrinsic approach exploits the true manifold geometric characteristics, which may lead to a better clustering accuracy.



Several studies have demonstrated that clustering performance depends on the chosen approach. For instance, Ref. [25] compared extrinsic and intrinsic approaches, Ref. [29] examined the differences between extrinsic and semi-intrinsic approaches, and Ref. [31] compared intrinsic and semi-intrinsic approaches. However, to the best of our knowledge, a systematic comparative study including all the three approaches has not yet been conducted in the literature. Given the differences in geometric characteristics and the lack of comprehensive comparisons, it is challenging to determine the most appropriate approach for specific applications.



In this paper, we aim to fill this gap by systematically comparing the three approaches to provide a valuable reference for researchers. Our contributions are threefold:




	
We provide a detailed explanation of the three approaches, including a comparison of their distinct advantages and disadvantages.



	
We outline 11 Grassmann clustering algorithms, employing different clustering methods and (dis)similarity measures tailored to each approach.



	
We conduct comprehensive experiments on the clustering performance of these 11 methods using a human motion MTS dataset.








Integrating Grassmann clustering with deep learning techniques has also become prominent research topic, garnering significant attention [35,36,38,42,43,44,45]. However, this study focuses on analyzing and comparing the three approaches. Investigating deep learning-based approaches thus falls outside the scope of this work.




1.4. Organization


The rest of this paper is organized as follows: We revisit the state-space dynamical model and Grassmann manifold in Section 2 for immediate reference. Detailed descriptions of the three geometrical approaches for Grassmann MTS clustering are provided in Section 3. In Section 4, we provide extensive experimental results obtained using human motion gesture-derived MTS data followed by technical challenges and future research directions in Section 5. Lastly, Section 6 provides concluding remarks.





2. Grassmann Manifold


This section gives a brief account of the state-space dynamical model and Grassmann manifold, as well as its geodesic distances for immediate reference. We refer the readers to [23,46,47] for greater details regarding these topics.



As aforementioned, let   y  ( t )  ∈  R p    where   p > 1   and   t = 1 , … , L ,   be a set of p-dimensional time sequences of data with L equal time stamps. MTS is frequently represented as a matrix by stacking horizontally as follows:   Y =  y ( 1 ) , y ( 2 ) , … , y ( L )  ∈  R  p × L    .



2.1. A Brief Review on the State-Space Dynamical Model


ARMA is a well-known dynamical model for MTS data modeling [20]. Given y(t), a p-dimensional time sequence acquired at time t, the ARMA model can be defined as follows:


     y ( t ) = Mz ( t ) + w ( t )     w ( t ) ∼ N (  0 , R  )       z ( t + 1 ) = Tz ( t ) + v ( t )     v ( t ) ∼ N (  0 , Q  )     



(1)




where   z ∈  R d    indicates the hidden state vector of dimension d. Symbols   M ∈  R  p × d     and   T ∈  R  d × d    , respectively, denote the measurement matrix and the transition matrix. The former  M  encodes details of the structural correlation while the latter  T  captures the temporal dynamic of the MTS. Symbols  w  and  v  indicate the noise component modeled as Gaussian distribution with zero mean and covariance   R ∈  R  p × p     and   Q ∈  R  d × d    , respectively.



The observation equation   y ( t ) = Mz ( t ) + w ( t )   links the observed data   y ( t )   to the hidden state   z ( t )   through the measurement matrix  M  with Gaussian noise   w ( t )  . The state transition equation   z ( t + 1 ) = Tz ( t ) + v ( t )   models the evolution of the hidden state   z ( t )   over time, driven by the transition matrix  M  and process noise v(t). This framework enables the decomposition of observed time series data into latent dynamic processes while accounting for noise.



The parameters   { M , T }   of the ARMA model can be learned via a closed-form solution proposed in [46]. The most common similarity between the two models is to compute the subspace angles between column subspaces of the extended observability matrices    O  m T  , which is defined as follows [46]:


    O  m T  =    M  T  ,   MT  T  ,     MT  2   T  , … ,     MT   m − 1    T   ∈  R  q × d   ,  



(2)




where   q = m p   and    ( · )  T   denotes the transpose.




2.2. A Brief Review of the Grassmann Manifold


A Grassmann manifold   G  r , s   , which shows a nonlinear structure, can be defined as a set of r-dimensional linear subspaces embedded in an s-dimensional Euclidean space, where   r ≤ s  . A linear subspace can be perceived as a point on a Grassmann manifold, which may be specified by an   s × s   orthogonal matrix   X =   X  T    of rank r. Theoretically, the Grassmann manifold is defined as a particular subset of the symmetric matrices   S y  m s    [48] as follows:


   G  r , s   =  { X ∈ S y  m s  |   X  T  = X , r a n k  ( X )  = r }  .  



(3)







A linear dynamical system (LDS) can thus be regarded as a point on the Grassmann manifold corresponding to the column space of the extended observability matrix [20]. Geodesic distance is used for the measurement between two MTS points on the manifold. This geodesic distance is defined as the length of the shortest curve between the two points [23], as shown in Figure 2.



In this context, to represent the subspace spanned by the columns of extended observability matrices    O  m T   defined in (2), an orthonormal basis can be computed by using thin singular value decomposition (thinSVD) [49] (see Algorithm 1). In other words, a linear subspace corresponding to (2) is operationally stored as a thin–tall orthonormal matrix   U ∈  R  q × d     for computation. Algorithm 1 details the process of representing an MTS as a linear subspace.






	Algorithm 1 Subspace generation for MTS



	
	1:

	
Input: Given a set of n MTSs,    {  Y i  }   i = 1  n  ;   ∀  Y i  ∈  R  p × L    , state-space dimension d, size of truncated observability matrix,   m = d  




	2:

	
for   i ← 1   to n do




	3:

	
  Compute    T i  ∈  R  d × d     and    M i  ∈  R  p × d     of LDS model using (1) for each   Y i  .




	4:

	
  Compute    O i T  =   M i T  ,   (  M i   T i  )  T  ,   (  M i   T i 2  )  T  , … ,   (  M i   T i  m − 1   )  T   ∈  R  m p × d     using the   M i   and   T i  .




	5:

	
  Compute    U i   Σ i   V i T  = t h i n S V D  (  O i T  )   




	6:

	
end for




	7:

	
Output: Subspaces    {  U i  }   i = 1  n  ;   ∀  U i  ∈  R  q × d    , where   q = m p  .














The canonical distance between two subspaces is called a principal angle [50]. Let  U  and  V  be two orthonormal matrices; the principal angles   0 ≤  θ 1  ≤ … ≤  θ d  ≤ π / 2   between two subspaces   s p a n ( U )   and   s p a n ( V )   are defined recursively by


        c o s  θ k  =  max   u k  ∈ s p a n  ( U )         max   v k  ∈ s p a n  ( V )     u k T   v k            subject  to   u k T   u k  = 1 ,    v k T   v k  = 1 ,    u k T   u j  = 0  and   v k T   v j  = 0 ,     



(4)




where   j = 1 , … , k − 1  . The cosine of the principal angle is the first canonical correlation [47].




2.3. Geodesic Distance on Grassmann Manifold


It has been shown that the principal angles are related to the geodesic distance of the Grassmann manifold by [47]:


   d g 2   U , V  =  ∑ i   θ i 2  .  



(5)




Another commonly used measure named the Procrustes distance (PD) metric for a Grassmann manifold is defined as follows [20]:


   d p 2   U , V  =    P D  U → V  + P D  V → U   2    



(6)




where


     P D  U → V      = t r  I −   A  T  A   where  A =   U  T  V ,       P D  V → U      = t r  I −   B  T  B   where  B =   V  T  U ,     








and   t r ( · )   denotes the trace. A more complete list of geodesic distances of the Grassmann manifold can be found in [23,47].





3. Grassmann MTS Clustering


Since (dis)similarity measurement and learning are the key components of MTS clustering, the problem of MTS clustering is revisited as a learning problem in the Grassmann manifold using linear dynamic modeling. Moreover, depending on the characteristics of the adjusted clustering algorithm, the learning problem can be boiled down to a point-to-point matching problem through geodesic distances. Broadly speaking, the MTS clustering on the Grassmann manifold can be streamlined and grouped into three categories as the intrinsic approach, extrinsic approach, and semi-intrinsic approach. In the following subsections, each of the categories will be detailed.



3.1. Intrinsic Grassmann Clustering


The core idea of the first intrinsic approach is to constrain the MTS clustering completely within the manifold itself [20]. It is thus clear that the existing clustering algorithms in the literature are not relevant unless they are altered according to the geometric characteristics of the Grassmann manifold [51]. Since we cannot define the Gaussian density function on the Grassmann manifold, for instance, the Gaussian mixture model (GMM) [1] algorithm is inappropriate in Grassmann MTS clustering. Another counter-example is the k-means clustering because taking the mean of MTS is unclear. Hence, the simplest and yet the most intuitive resolution form of its kind is to replace the similarity measure with geodesic distances in accordance with a considered clustering algorithm. With these observations in mind, the spectral clustering [52,53] algorithm, which is suitable in this context, is considered.



In the spectral clustering algorithm, the clustering problem is regarded as an eigenanalysis problem of the Laplacian matrix. The first step is to construct an affinity matrix   A ∈  R  n × n     by calculating the distance for all the pairs of the MTS data   U i  . Since MTS data do not lie in the vector space, as aforementioned, the geodesic distances shown in (5) and (6) are utilized instead of the usual distance measures. According to [53], the affinity matrix can be generated in several ways, including a fully connected graph (FC), an m-nearest neighbors (mNN) graph, etc. [53]. The next step is to convert the affinity matrix into a normalized Laplacian matrix   L  n o r m   . Lastly, the conventional spectral clustering algorithm shown in Algorithm 2 is then performed.






	Algorithm 2 Grassmann spectral clustering



	
	1:

	
Input: n points    {  U i  }   i = 1  n   on the Grassmann manifold, number of clusters K.




	2:

	
Compute the affinity matrix    A  ( i , j )   = exp     −  d 2    U i  ,  U j     σ 2       where   i ≠ j  ,    A  ( i , i )   = 0  , and   d (  U i  ,  U j  )   is a dissimilarity measurement function such as distance defined in (5) and (6), and  σ  is a spread factor.




	3:

	
Compute the normalized Laplacian matrix    L  n o r m   =   D   −   1 2      ( D − A )    D   −   1 2       where    D  ( i , i )   =  Σ  j = 1  n   A  ( i , j )    .




	4:

	
Compute the lowest K eigenvectors of   L  n o r m   .




	5:

	
Form a matrix   V ∈  R  n × K     containing the K eigenvectors.




	6:

	
Normalize the rows of  V  to have unit length by    Z  ( i , j )   =  V  ( i , j )   /   (  Σ j    V   ( i , j )  2  )    1 2     .




	7:

	
Let every row of  V  be the corresponding point in the Euclidean space, the new set of points become    {  z i  }   i = 1  n   where   ∀ z ∈  R K   .




	8:

	
Output: Clusters   {  C 1  , … ,  C K  }   with    C k  =  { i |  z i  ∈  C k  }    obtained by the k-means clustering on    {  z i  }   i = 1  n  .















3.2. Extrinsic Grassmann Clustering


Different from the intrinsic methods discussed in the previous section, the core idea of the extrinsic approach is to embed points (i.e., MTSs represented by linear subspaces) on the Grassmann manifold into a Euclidean space [49] or a feature space such as reproducing a kernel Hilbert space (RKHS) via kernel mapping. Clustering is then performed on the new space [47]. Each approach is discussed in the following subsections in greater detail.



3.2.1. Embedding MTS Points on the Manifold into a Euclidean Space


Since the Grassmann manifold G (3) is differentiable, a derivative can be defined at any point   U ∈ G  . Let   α ( t )   be a curve on the manifold, then its derivative    α ′   ( t )    at a point  U  is called a tangent space    T U  G   to G at  U . Note that the tangent space is equivalent to a real vector space. For every point  U , a unique geodesic starting from  U  in every direction can be defined in the form of an exponential map   E x  p U  :  T U  G → G   such that   d  ( U , E x  p U   (  V T  )  )  =   ∥  V T  ∥  U    for every   V T   in    T U  G   (see Figure 3 for an illustrative description). The inverse map to   E x  p U   ( V )    can be defined by the logarithm   L o  g U   ( · )    only in a certain neighborhood of  U  [49].



With forward mapping   E x  p U   ( · )    and inverse mapping   L o  g U   ( · )   , a geodesic distance measure, namely, tangent norm    d T   ( U , V )    between   U , V ∈ G  , can be defined as follows [49]:


   d T 2   ( U , V )  =   〈 V , V 〉  U  =   ∥ L o  g U   ( V )  ∥  F 2  ,  



(7)




where   〈  ,  〉   denotes the inner product and    ∥ · ∥  F   is the Frobenius norm. Algorithms 3 and 4, respectively, describe the process of computing both mappings   L o  g U   ( · )    and   E x  p U   ( · )    [49]. Figure 3 depicts the relations of the forward and reverse mappings between the Grassmann manifold and its tangent space.






	Algorithm 3 Manifold to tangent space mapping,   L o  g U   ( · )   .



	
	1:

	
Input: A to-be-mapped point on G,   V ∈  R  q × d     and   U ∈  R  q × d    




	2:

	
  R Σ   S  T  = t h i n S V D  (  ( I −   VV  T  )  U   (   V  T  U )   − 1   )   




	3:

	
  Ω =  tan  − 1    ( Σ )   




	4:

	
   V T  = v e c  ( R Ω   S  T  )                   ▹  v e c ( · )   is a vectorization process




	5:

	
Output:    V T  ∈  R  q × d    



















	Algorithm 4 Tangent space to manifold mapping,   E x  p U   ( · )   .



	
	1:

	
Input: A to-be-mapped point on    T U  G  ,    V T  ∈  R  q × d     and   U ∈  R  q × d    




	2:

	
  R Σ   S  T  = t h i n S V D  ( d e v e c  (  V T  )  )        ▹  d e v e c ( · )   denotes de-vectorization process.




	3:

	
   V = U S cos Σ + R sin Σ   




	4:

	
Output:   V ∈  R  q × d    












From the perspective of mapping points on the nonlinear manifold G onto the tangent space, as depicted in Figure 3, it can be seen that the manifold is locally embedded into a Euclidean space [20]. In other words, such mappings are essentially equivalent to flattening the manifold via local diffeomorphisms. On the tangent space with mapped MTS data points, general-purpose clustering algorithms designed for Euclidean space can be deployed.



However, it is worth noting here that such manifold mapping may lead to some problems. The exponential map   E x  p U   ( · )    is onto but only one-to-one in a neighborhood of  U . The   L o  g U   ( · )    is restrictively defined only around a small neighborhood of  U . It is impossible to define global coordinates that make the whole manifold resemble Euclidean space [48].




3.2.2. Embedding MTS Points on the Manifold into an RKHS via Kernel Mapping


The main idea of this approach is to perform the MTS clustering on a feature space. This is due to the property that positive definite kernels can be defined and computed on the Grassmann manifold. Thus, any clustering method that can be kernelized while still taking into account the geometry of the manifold can be deployed. Examples include, but are not limited to, k-means, spectral clustering, and support vector clustering. Before we go further in detail, it should be noted that this approach may not be appropriate for large-scale data. Moreover, there is no theoretical basis for choosing kernel functions and the associated parameters [48].



Assume points   U ∈ G   are mapped to a feature vector   ϕ ( U )   in a Hilbert space through the kernel learning method [47]. Considering that a kernel function   k : ( G × G ) → R   is used to define the inner product on a Hilbert space, an RKHS is thus formed. According to Mercer’s theorem, however, only positive definite and symmetric kernels delineate a valid RKHS. A few Grassmann kernel functions have been devised such as projection kernel, which is derived from the Frobenius norm and defined as follows:


      K   p r o j .   ( i , j )       = ∥   U i T   U j    ∥  F           = t r {   U i   U i T     U j   U j T   } .     



(8)




The canonical correlation kernel is defined as follows:


   K  C C   ( i , j )   = Σ  ( 1 )  ,  



(9)




where   Σ ( 1 )   denotes the first singular value obtained by singular value decomposition of    U i T   U j     e . g . , use   [ u , Σ , v ]  = s v d   U i T   U j    in  Matlab   [25]. Algorithm 5 provides a detailed description of kernel Grassmann clustering.






	Algorithm 5 Kernel Grassmann clustering



	
	1:

	
Input: n points    {  U i  }   i = 1  n   on the Grassmann manifold, number of clusters K




	2:

	
Construct projection kernel matrix   K  p r o j .    (8) or canonical correlation kernel   K  C C    (9).




	3:

	
Compute the normalized kernel matrix    K  n o r m   =   D   −   1 2     K   D   −   1 2       where    D  ( i , i )   =  Σ  j = 1  n    K   p r o j .   ( i , j )     or    Σ  j = 1  n   K  C C   ( i , j )    .




	4:

	
Compute the top K eigenvectors of   K  n o r m   .




	5:

	
Form a matrix   V ∈  R  n × K     containing the K eigenvectors as columns.




	6:

	
Let the new set of points be    {  z i  }   i = 1  n  ;   ∀ z ∈  R  1 × K     corresponding to the i-th row of  V .




	7:

	
Apply k-means clustering on    {  z i  }   i = 1  n  .




	8:

	
Output: Clusters   {  C 1  , … ,  C K  }   with    C k  =  { i |  z i  ∈  C k  }   
















3.3. Semi-Intrinsic Grassmann Clustering


The main focus of the two previous approaches is on how to measure similarities between MTS samples, such as geodesic distances. However, we are frequently required to compute not only the dissimilarity but also the mean of the given data. For example, k-means and mean shift [51] and their variants require the mean computation of the given data. On the Grassmann manifold, computing the data mean is not straightforward and requires a specific form of mean computation known as Karcher mean [30,54]. As shown in Algorithm 6, the Karcher mean computes the data mean by minimizing the squared distances between points and the mean on a manifold, iteratively. With the Karcher mean, the last approach, namely, the semi-intrinsic approach performs the MTS clustering directly on the Grassmann manifold. Typical instances of this approach applied in k-means (see Algorithm 7 for details) and mean shift clustering on the Grassmann manifold can be found in [20,51], respectively.



Since this approach is directly performed on the Grassmann manifold, the geodesic distances shown in (5)–(7) can be used as similarity/dissimilarity measures. The semi-intrinsic approach differs from the intrinsic approach in the sense that it performs clustering on the manifold based on Karcher mean as well as geodesic distance while mean computation is undefined for the intrinsic approach.






	Algorithm 6 Karcher mean



	
	1:

	
Input: Given a set of n points    {  U i  }   i = 1  n   on the Grassmann manifold, maximum iteration N




	2:

	
Randomly select a   U i   and use an initial estimate of the Karcher mean   μ o  , and set   j = 1  .




	3:

	
while  ( j ≤ N )  do




	4:

	
  Compute the inverse exponential map   v i   of   U i   by    v i  =  exp   μ j    − 1    (  U i  )   .




	5:

	
  Compute the average tangent vector    v ¯  =   1 n    ∑  i = 1  n   v i   .




	6:

	
  If    ∥   v ¯   ∥    is small, then stop. Else, move   μ j   in the average tangent direction using    μ  j + 1   =  exp  μ j    ( ϵ  v ¯  )   , where   ϵ > 0   is small step size, typically 0.5.




	7:

	
    j = j + 1  




	8:

	
end while




	9:

	
Output: Karcher mean  μ  over the input points    {  U i  }   i = 1  n  



















	Algorithm 7 Semi-intrinsic Grassmann clustering based on k-means.



	
	1:

	
Input: n points    {  U i  }   i = 1  n   on the Grassmann manifold, number of clusters K, maximum iteration N




	2:

	
Initialize K cluster centers    {  μ k  ( 0 )   }   k = 1  K   randomly and set   j = 1  .




	3:

	
while   ( j ≤ N )   do




	4:

	
  Measure a dissimilarity between   U j   and   μ k  ( j )    using distance functions on manifold such as depicted in (5), (6) or (7).




	5:

	
  Assign   U j   to cluster   C k  , which shows min   d   U j  ,  μ k  ( j )     .




	6:

	
  Re-compute the K cluster centers    {  μ k  ( j )   }   k = 1  K   using the Karcher mean.




	7:

	
    j = j + 1  




	8:

	
end while




	9:

	
Output: Clusters   {  C 1  , … ,  C K  }   with    C k  =  { i |  z i  ∈  C k  }   













3.4. Summary of MTS Clustering on Grassmann Manifold


Figure 4 provides an overview of ARMA-modeled MTS clustering on the Grassmann manifold. The following is a summary of the three approaches discussed in this section.



	
Intrinsic approach: We adopt inherent (dis)similarity for the Grassmann manifold, such as principle angle and Procrustes distance, for spectral clustering algorithms.



	
Extrinsic approach: We embed the Grassmann manifolds into an RKHS and canonical correlation Grassmann kernel where clustering distortion is minimized. We flatten the Grassmann manifold via local diffeomorphisms (tangent spaces), i.e., the manifold is locally embedded into Euclidean space, and hence, we perform clustering via spectral clustering techniques in tangent space.



	
Semi-intrinsic approach: We perform k-means clustering on Grassmann manifolds through the use of the Karcher mean. The Karcher mean (minimizer of squared distances between points and the mean on the manifold) is an iterative approach to calculating the mean of a set of points on the manifold. This minimization problem is solved by iteratively moving from manifold to tangent spaces and vice versa.








4. Experiments


The goal of this section is to evaluate each approach of the Grassmann clustering algorithms and the (dis)similarities discussed in Section 3. These methods are then empirically analyzed and compared in terms of the clustering performance. To achieve this goal, a human motion capture-derived MTS dataset from CMU Graphics Lab Motion Capture (MOCAP) [55] is utilized in this experimental study. The following subsections provide details of the database, experimental protocols, and the results with discussions. All experiments were conducted using a PC with a 3.6 GHz CPU, 32 GB memory, and on the Matlab platform.



4.1. Database


As shown in Table 1, a subset of the MOCAP database, which consists of 216 motion samples corresponding to nine gestures (i.e., clusters) taken from 12 subjects, was utilized in this study. Motion capture encompasses recording human motion through tracking (i) the movement of 41 markers taped on human actors, and (ii) the movement of human actors’ skeletons. The former consists of 123   ( = 41   marker ×  3 D   coordinates  ( x , y , z ) )   elements stored in C3D format (called C3D dataset hereafter for simplicity), while the latter is characterized by 62 Euler angle features stored in AMC format (called AMC dataset hereafter). Therefore, by having only the first   L = 120   time stamps because of the convenience and speed of the clustering process, so each sample of C3D and AMC is represented by a matrix   Y ∈  R  p × L     with   p = 123  ,   L = 120  , and   p = 62  ,   L = 120  , respectively.




4.2. Experimental Setup


As mentioned earlier in this paper, the MTS is modeled with the LDS as shown in (1) with order numbers   d = 5   and   m = d  . For performance measures, both clustering accuracy (%) and normalized mutual information (NMI) are adopted following [56]. The higher accuracy or NMI (range from 0 to 1) indicates better performance in MTS clustering.



As discussed in Section 3, we evaluated 11 Grassmann clustering methods in our experiments, which are summarized in Table 2. The 11 Grassmann clustering methods are comprised of four intrinsic methods, four extrinsic methods, and three semi-intrinsic methods. For the intrinsic approach, spectral clustering methods were evaluated using a fully connected graph and mNN graph, with principal angle and Procrustes distance. The extrinsic approach consists of two spectral clustering, which use tangent space as the embedding space, and two kernel spectral clustering methods, utilizing the projection kernel and canonical correlation kernel. Similar to the intrinsic approach, two graph types and dissimilarity measures were used for spectral clustering as well in the extrinsic approach. To evaluate the semi-intrinsic approach, the k-means clustering algorithm was selected with tangent norm, principal angle, and Procrustes distance.



To observe the impact of the spreading factors  σ  and the number of neighbors m on clustering performance, the spectral clustering algorithm is evaluated over various settings:   σ ∈ [ 0.1 , 0.5 , 1 : 1 : 5 , 10 , 20 , 50 , 100 , 1000 ]   and   m ∈ { 3 : 1 : 9 }  . The maximum number of iterations for the k-means algorithm and Karcher mean algorithm is set to 100 and 30, respectively. In our experimental study, the number of clusters K is assumed to be known beforehand. If the K is unknown, one can use a search algorithm such as an elbow method [57] to determine its optimal value. For statistical evidence, all experiments are repeated 30 times where the average values are recorded.




4.3. Results and Discussion


In this section, we compare our 11 Grassmann clustering methods in terms of clustering accuracy and NMI. As discussed in Section 4.2, the spectral clustering algorithm has been evaluated at various  σ  and m settings. However, due to page constraints, we report only the best-performing results together with the associated parameter settings as shown in Table 3 and Table 4.



4.3.1. Results on Clustering Movements of 41 Markers (C3D Dataset)


In Table 3, we compare the performance of the 11 Grassmann clustering methods using the C3D dataset. As discussed in Section 3, our experimental results reveal significant differences among the Grassmann approaches. The results show that the four intrinsic methods achieved the best performance, followed by two extrinsic SC methods, and three semi-intrinsic methods. In contrast, the two Grassmann kernel-based extrinsic methods yielded lower performance compared to the other approaches.



Interestingly, the Procrustes distance outperformed other metrics such as Euclidean distance and principal angle. Furthermore, the combination of the principal angle and Procrustes distance for the k-means consistently yielded better performance than the tangent norm in the semi-intrinsic approach. In the extrinsic approach, SC with Euclidean distance performed comparably to the intrinsic methods, while KSC methods exhibited the worst performance among the 11 methods. This suggests that tangent space extrinsic methods generally outperformed Grassmann kernel methods on the C3D dataset.





 





Table 3. Clustering performances of 11 Grassmann clustering methods combinations for C3D dataset.






Table 3. Clustering performances of 11 Grassmann clustering methods combinations for C3D dataset.





	
Measure

	
Clustering

	
Euclidean

	
Tangent

	
Principal

	
Procrustes




	
Methods

	
Distance

	
Norm

	
Angle

	
Distance






	
NMI

	
k-means

	
-

	
0.738

	
0.752

	
0.787




	
FC-SC 1

	
0.820 ( σ  = 100)

	
-

	
0.822 ( σ  = 10)

	
0.844 ( σ  = 2)




	
mNN-SC 2

	
0.792 ( σ  = 3, m = 7)

	
-

	
0.799 ( σ  = 5, m = 8)

	
0.844 ( σ  = 0.5, m = 5)




	
PK-KSC 3

	
0.731




	
CCK-KSC 4

	
0.690




	
Accuracy

	
k-means

	
-

	
66.975

	
68.364

	
70.972




	
FC-SC

	
71.482 ( σ  = 100)

	
-

	
72.053 ( σ  = 100)

	
73.596 ( σ  = 5)




	
mNN-SC

	
75.170 ( σ  = 100, m = 8)

	
-

	
78.750 ( σ  = 0.1, m = 8)

	
84.228 ( σ  = 0.5, m = 5)




	
PK-KSC

	
64.198




	
CCK-KSC

	
66.049








Abbreviations: 1 Spectral clustering (SC) with fully connected affinity (FC-SC); 2 SC with m-nearest neighbor affinity (mNN-SC); 3 Kernel Grassmann clustering (KSC) with projection kernel (PK-KSC); 4 KSC with canonical correlation kernel (CCK-KSC). Numbers in bold represent the highest performance and underlined numbers represent the second best performance.













 





Table 4. Clustering performances of 11 Grassmann clustering methods combinations for AMC dataset.
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Measure

	
Clustering

	
Euclidean

	
Tangent

	
Principal

	
Procrustes




	
Methods

	
Distance

	
Norm

	
Angle

	
Distance






	
NMI

	
k-means

	
-

	
0.730

	
0.726

	
0.769




	
FC-SC 1

	
0.755 ( σ  = 1)

	
-

	
0.753 ( σ  = 1)

	
0.777 ( σ  = 1)




	
mNN-SC 2

	
0.756 ( σ  = 100, m = 6)

	
-

	
0.767 ( σ  = 5, m = 8)

	
0.829 ( σ  = 3, m = 9)




	
PK-KSC 3

	
0.747




	
CCK-KSC 4

	
0.806




	
Accuracy

	
k-means

	
-

	
69.367

	
68.704

	
70.586




	
FC-SC

	
66.127 ( σ  = 2)

	
-

	
66.049 ( σ  = 2)

	
68.719 ( σ  = 50)




	
mNN-SC

	
67.315 ( σ  = 0.1, m = 7)

	
-

	
72.253 ( σ  = 5, m = 8)

	
74.568 ( σ  = 103, m = 6)




	
PK-KSC

	
65.911




	
CCK-KSC

	
72.361








Abbreviations: 1 Spectral clustering (SC) with fully connected affinity (FC-SC); 2 SC with m-nearest neighbor affinity (mNN-SC); 3 Kernel Grassmann clustering (KSC) with projection kernel (PK-KSC); 4 KSC with canonical correlation kernel (CCK-KSC). Numbers in bold represent the highest performance and underlined numbers represent the second best performance.












4.3.2. Results on Clustering Skeleton Movements (AMC Dataset)


Similar to Table 3, Table 4 presents the clustering NMIs and accuracies obtained using the AMC dataset. In this dataset, the intrinsic approach also outperformed other methods, with mNN-SC using Procrustes distance achieving the best performance. However, in the extrinsic approach, the results exhibited a different trend compared to the C3D dataset. This is evident in the two Grassmann kernel methods: the canonical correlation kernel achieved the second-best NMI and accuracy, while PK-KSC recorded the lowest performance. Although the semi-intrinsic k-means method showed lower performance overall than the intrinsic methods, it performed comparably to the intrinsic mNN-SC when using Procrustes distance.



Consistent with the C3D dataset results, Procrustes distance outperformed other measures in both the intrinsic and semi-intrinsic approaches. Among the four extrinsic Grassmann methods, there were significant performance differences. These discrepancies in performance among the extrinsic methods were even more pronounced when compared with the C3D results, indicating that the extrinsic approach still faces challenges in selecting appropriate embedding methods for optimal performance.




4.3.3. Computational Efficiency


Table 5 compares the CPU time of the investigated methods for two key processes in Grassmann clustering: affinity calculation and the clustering process. We report the average CPU time based on 100 repetitions of the experiment. In terms of affinity calculation, Procrustes distance demonstrated greater efficiency in CPU time compared to other metrics, including Euclidean distance, tangent norm, and principal angle. Overall, the four intrinsic methods outperformed both extrinsic and semi-intrinsic approaches. Notably, the two intrinsic spectral clustering methods using Procrustes distance achieved the best CPU time among the 11 methods. In contrast, PK-KSC was the most computationally expensive method for affinity calculation, requiring 670 times more CPU time than mNN-SC with Procrustes distance, the fastest method in our experimental setting.



For the clustering process, the three semi-intrinsic methods exhibited the longest CPU times, taking approximately 1000 times longer than the other methods. Aside from the semi-intrinsic methods, the remaining eight methods had similar CPU times. This significant difference in computation time for the semi-intrinsic methods is largely attributed to the Karcher mean computation, which involves iterative forward and inverse mapping between the Grassmann manifold and the tangent space.




4.3.4. Discussion


In our experiments, the intrinsic approach demonstrated the best clustering performance among the three approaches. This result is attributed to the fact that the clustering process is conducted directly on the surface of the Grassmann manifold, effectively capturing the inherent nonlinear nature of high-dimensional MTS data [20]. Consequently, both NMI and accuracy achieved the highest results, underscoring the intrinsic approach’s ability to handle MTS data efficiently. Furthermore, these intrinsic methods also exhibited the fastest CPU times in our experimental setup, as they do not require additional embedding or averaging processes.



In contrast, the extrinsic approach relies on the idea of manifold embedding. As a result, the performance of the extrinsic approach was highly dependent on the choice of projection methods, as has been highlighted in previous studies [15,24,58]. Additionally, the efficiency of affinity computation was influenced by the projection operator. Despite its drawbacks, the extrinsic approach allows for the use of any Euclidean-based clustering algorithms or distance measures, offering flexibility in method selection. While we have considered commonly adopted embedding techniques from the literature [43,59] in this work, our results are sufficient to draw conclusions.



The semi-intrinsic approach, on the other hand, performed comparable or worse in terms of NMI and accuracy compared to the other methods. Specifically, its NMI and accuracy were similar to those of the extrinsic approach but slightly lower than those of the intrinsic approach. However, the clustering performance of the semi-intrinsic methods remained more stable than that of the extrinsic approach across different datasets and evaluation metrics. Due to the iterative nature of the Karcher mean computation, the semi-intrinsic methods exhibited the worst CPU times during the clustering process. Despite these drawbacks, the concept of averaging MTS on manifold space has been shown to improve performance in tasks like action recognition, as reported in [21,31]. Moreover, the semi-intrinsic approach remains the only method that can leverage various mean-based clustering algorithms.





4.4. Summary of Results and Observations


The obtained results and observations are summarized as follows:




	
From the comparison of NMI, accuracy, and CPU time shown in Table 3, Table 4 and Table 5, the intrinsic approach proved to be more effective and efficient than the other approaches.



	
The performance of the extrinsic approach was observed to be highly dependent on the choice of the projection operator.



	
The semi-intrinsic approach demonstrated lower clustering performance compared to the other approaches.








In Table 6, we provide a summary of the investigated three Grassmann approaches in terms of merits and demerits.





5. Technical Challenges and Future Research Directions


Grassmann manifold learning faces several key challenges: (i) addressing nonlinearity, (ii) selecting appropriate metrics, and (iii) reliance on single-manifold representations. Firstly, to represent datasets as points on a Grassmann manifold, data orthogonality must be ensured. This requirement aligns well with the nonlinear nature of many datasets. However, most clustering methods still rely on Euclidean metrics, which may not fully capture the intricacies of the Grassmann structure. Future research must carefully integrate nonlinearity to broaden the scope of Grassmann manifold applications.



Once a dataset is represented as Grassmann points, it becomes essential to utilize metrics specifically designed for the Grassmann manifold to ensure effective analysis. In this work, we outlined three Grassmannian approaches to address this challenge, offering practical guidelines for selecting the most suitable method based on their respective strengths and limitations. Nevertheless, further research is required to establish optimal metrics tailored to various datasets and experimental conditions. Additionally, most existing manifold learning studies rely on a single manifold to represent datasets. However, datasets can often be better characterized on Grassmann manifolds of varying dimensions. Metrics such as the generalized Grassmannian distance [60], which calculates distances between manifolds, facilitate this flexibility. Previous research [41] has demonstrated the potential of using multiple manifolds, and similar approaches are becoming increasingly important as the truncation dimensions of Grassmann manifolds can vary depending on the characteristics of the data.




6. Conclusions


In this paper, we streamlined three Grassmann clustering approaches—extrinsic, intrinsic, and semi-intrinsic—for MTS clustering using state-space dynamical modeling. We outlined 11 clustering algorithms from these approaches and empirically evaluated them on human motion-derived MTS data. Based on our comparative experimental results, we analyzed each approach in terms of its unique characteristics, strengths, and limitations. This analysis offers valuable insights that can serve as key references for future research in the field.
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Figure 1. An overview of the three Grassmann MTS clustering approaches: (1) extrinsic approach, which embeds MTS into an Euclidean space (e.g., a tangent space) where the conventional clustering methods can be adopted, (2) intrinsic approach, which uses a geodesic distance for computing the similarity between MTS samples on the Grassmann manifold, and (3) semi-intrinsic approach, in which the sample cluster mean is computed using the Karcher mean. 
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Figure 2. (a) State-space dynamical models can be described in   R d   by linear subspaces. To compare two linear subspaces, the principal angles between them can be used conventionally. (b) Linear subspaces in   R d   can be represented as points on the Grassmann manifold. 
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Figure 3. The relation of the Grassmann manifold and its tangent space in which  U  is chosen as the Karcher mean. 
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Figure 4. An illustrative summary of the Grassmann MTS clustering. 
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Table 1. Summary of the MOCAP subset utilized in our experimental study.
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Cluster No.

	
Gestures

	
Num. of Samples

	
Taken from Subjects






	
1

	
Forward walking

	
46

	
#7, #8, #35




	
2

	
Forward running

	
22

	
#9, #35




	
3

	
Jumping

	
30

	
#118




	
4

	
Salsa dancing

	
30

	
#60, #61




	
5

	
Picking up something

	
25

	
#64, #115




	
6

	
Golf swing

	
11

	
#63, #64




	
7

	
Story

	
30

	
#138




	
8

	
Marching

	
10

	
#138




	
9

	
Walking with arm out

	
12

	
#132




	
Total

	
216

	
-











 





Table 2. Eleven combinations of Grassmann clustering techniques used in evaluation.
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Methods

	
Clustering

	
(Dis)similarity Measure

Kernel Function

	
Graph Types

	
Parameters






	
Intrinsic approach

(4 methods)

	
Spectral

clustering

	
Principal angle,

Procrustes distance

	
Fully connected



	
spreading factor 1




	
mNN

	
spreading factor, m-neighbor 2




	
Extrinsic

approach

(4 methods)

	
Tangent space

(2 methods)

	
Spectral

clustering

	
Euclidean distance 3

	
Fully connected

	
spreading factor




	
mNN

	
spreading factor, m-neighbor




	
Grassmann kernel

(2 methods)

	
Kernel spectral

clustering

	
Projection kernel,

Canonical correlation kernel

	
Fully connected

	
-




	
Semi-intrinsic approach

(3 methods)

	
k-means 4

	
Tangent norm,

Principal angle,

Procrustes distance

	
-

	
-








1 Spreading factors   σ ∈ [ 0.1 , 0.5 , 1 : 1 : 5 , 10 , 20 , 50 , 100 , 1000 ]   considered for affinity matrix  A  in spectral clustering. 2 Number of nearest neighbors   m ∈ { 3 : 1 : 9 }   considered for the  A . 3 Euclidean distance is chosen as it is the commonly used distance metric in vector space. 4 A total of 100 iterations are used for Karcher mean computation. A total of 30 iterations are used for all clustering methods.













 





Table 5. Clustering (CPU time) performances of the 11 methods on C3D data (in seconds).
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Clustering

Methods

	
CPU Time on Affinity Calculation

[CPU Time on Clustering Process]




	
Euclidean

Distance

	
Tangent

Norm

	
Principal

Angle

	
Procrustes

Distance






	
k-means

	
-

	
29.043

[102.612]

	
1.879

[102.488]

	
1.163

[102.361]




	
FC-SC

	
6.656

[0.064]

	
-

	
0.429

[0.065]

	
0.253

[0.062]




	
mNN-SC

	
6.749

[0.074]

	
-

	
0.431

[0.074]

	
0.252

[0.068]




	
PK-KSC

	
169.069

[0.063]




	
CCK-KSC

	
0.380

[0.065]











 





Table 6. Merits and demerits of three umbrella Grassmann MTS clustering algorithms.
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	Approaches
	Merits
	Demerits





	Intrinsic
	Exploit the true manifold geometric characteristics
	Inflexible, the existing algorithms have to be substantially modified, if not designed afresh



	Ex-Tangent space
	Can adopt any commonpurpose clustering algorithm in principal
	Problematic if the mapping point is too far away from reference point, e.g., Karcher mean



	Ex-Kernel embedding
	Give reasonably good performance, can adopt various Grassmann kernels
	Inflexible, limited to kernel-based clustering methods, inherit open problems of kernel learning methods



	Semi-intrinsic
	Enable exploiting true manifold geometric characteristics without major alteration on the existing algorithms
	Slow, require forward and reverse mappings between manifold and tangent space iteratively
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