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Abstract: Soil Organic Matter (SOM) is crucial for soil fertility, and effective detection
methods are of great significance for the development of agriculture and forestry. This
study uses 206 hyperspectral soil samples from the state-owned Yachang and Huangmian
Forest Farms in Guangxi, using the SPXY algorithm to partition the dataset in a 4:1 ratio,
to provide an effective spectral data preprocessing method and a novel SOM content
prediction model for the study area and similar regions. Three denoising methods (no
denoising, Savitzky–Golay filter denoising, and discrete wavelet transform denoising)
were combined with nine mathematical transformations (original spectral reflectance (R),
first-order differential (1DR), second-order differential (2DR), MSC, SNV, logR, (logR)′,
1/R, ((1/R)′) to form 27 combinations. Through Pearson heatmap analysis and modeling
accuracy comparison, the SG-1DR preprocessing combination was found to effectively
highlight spectral data features. A CNN-SVM model based on the Black Kite Algorithm
(BKA) is proposed. This model leverages the powerful parameter tuning capabilities of
BKA, uses CNN for feature extraction, and uses SVM for classification and regression,
further improving the accuracy of SOM prediction. The model results are RMSE = 3.042,
R2 = 0.93, MAE = 4.601, MARE = 0.1, MBE = 0.89, and PRIQ = 1.436.

Keywords: optimization algorithm; organic matter content; spectral data processing; forest
soil; Guangxi

1. Introduction
Soil Organic Matter (SOM) refers to a complex mixture of organic compounds at vari-

ous stages of decomposition, including plant residues, microbial products, and rhizosphere
inputs [1]. It also contains fixed proportions of nitrogen (N), phosphorus (P), and sulfur
(S) [2]. SOM plays multiple roles, such as storing water, retaining nutrients, improving
soil physical properties, and reducing pollution, making it an important indicator of soil
fertility [3]. Rapid and accurate determination of SOM content and monitoring its dynamic
changes are crucial for the development of forestry and agriculture.

However, traditional SOM measurement methods are costly, time-consuming, and
complex, making it difficult to accurately reflect soil changes [4,5]. Additionally, the use of
large amounts of chemical solvents and analytical reagents poses risks to personnel and
the environment [6]. In contrast, using hyperspectral reflectance in the visible (350–700 nm)
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and near-infrared (700–2500 nm) ranges to predict SOM content offers advantages such as
shorter cycles, cost-effectiveness, and no pollution [7,8]. This method has been applied to
measure various soil parameters and is widely used in ecology, agriculture, medicine, and
food fields [9–11].

Hyperspectral technology has demonstrated its broad effectiveness in monitoring Soil
Organic Matter (SOM) content. The vast amount of spectral band information enriches
the dimensions and information content of soil spectral data, providing a solid foundation
for precise analysis [8]. However, this also brings challenges in data processing, including
increased information redundancy and the emergence of multicollinearity issues [12].
These phenomena increase the complexity of data processing and analysis. To effectively
utilize this data for predicting soil properties, it is crucial to identify appropriate data
preprocessing and modeling methods [13,14].

The main goal of data preprocessing is to improve the accuracy and robustness of
models. Common mathematical transformations, Savitzky–Golay (SG) smoothing, Dis-
crete Wavelet Transform (DWT) smoothing, Multiplicative Scatter Correction (MSC), and
Standard Normal Variate (SNV), can effectively improve prediction models [15–17]. Math-
ematical transformations can effectively highlight characteristic bands of the spectrum,
smoothing operations can suppress spectral noise and reduce random noise impact, MSC
adjusts spectral skew by correcting scattering effects, and SNV reduces scattering effects
caused by sample surface irregularities and particle size differences [18–20]. For example,
Bao et al. used a wavelet transform combined with nine mathematical transformations in
Xinjiang to establish a Random Forest (RF) model, effectively enhancing spectral band fea-
tures and reducing noise interference [21]. Zhang et al. found that SG denoising combined
with first-order differential transformation effectively extracted the spectral characteristics
of sandy loam soil in the experimental area [22]. Carvalho et al. used Standard Normal
Variate (SNV) preprocessing to establish an SVM model to predict SOM content in southern
Brazil [23].

In terms of modeling, more and more researchers are using machine learning (ML)
and deep learning (DL) techniques to explore the relationship between hyperspectral
data and SOM. PLSR [24], RF [21], and SVM [25] are still robust prediction models in
this field. With the improvement of computing power, DL is gradually being applied in
various fields. DL can reveal complex nonlinear relationships between spectra and soil
properties and has been proven to outperform geostatistics and other existing traditional
ML algorithms [26–28]. For example, Haghi et al. used Scottish soil spectral data to predict
multiple soil contents and found that CNN performed better than PLSR and SVM [29]. Hao
et al. used a dual-branch CNN network for modeling, effectively extracting spectral data
features [30].

Differences in soil physical properties lead to changes in spectral data characteristics.
These differences also cause complex multicollinearity issues among spectral bands [31–33].
Therefore, targeted complex feature extraction is necessary. This study employs a com-
bination of three widely used denoising methods and nine mathematical transformation
methods for preprocessing. We then conduct modeling using SVM, PLSR, BPNN, and
CNN to compare their performance and determine the optimal preprocessing method for
the spectral data in the study area.

In recent years, research has found that integrating different types of modeling meth-
ods provides richer feature representations, significantly enhancing model performance
and developing many application scenarios [34,35]. Combining CNN component con-
struction with hyperparameter tuning can significantly advance the application of CNN
in soil spectral modeling [15,36]. Based on these points, this study proposes a CNN-SVM
prediction model optimized by the Black Kite algorithm. This model leverages the powerful
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feature extraction capabilities of CNN and the classification and regression abilities of SVM,
combined with the strong optimization ability of BKA, aiming to develop a new method
for measuring SOM content in forest soils in Guangxi and similar regions.

2. Materials and Methods
2.1. Study Area
2.1.1. Overview of the Study Area

The study area is located in the state-owned Yachang Forest Farm and Huangmian
Forest Farm in Guangxi, both of which belong to the subtropical climate zone. Detailed
information is shown in Table 1. The mainland type in this area is forest land, with
mountainous soil being the predominant soil type. The planting structure is relatively
simple, primarily consisting of eucalyptus, Chinese fir, and pine trees. Due to the lack of
effective soil nutrient detection methods, it is not possible to scientifically apply fertilizers.
Additionally, unreasonable human planting practices have led to a decline in soil fertility,
which in turn affects the overall health of the forest.

Table 1. Tree farm information.

Name Yachang Forest Farm Huangmian Forest Farm

Latitude and Longitude 106◦08′–106◦26′ E,
24◦37′–25◦00′ N

109◦43′–109◦58′ E,
24◦37′–24◦52′ N

Annual Average Rainfall 1058 mm 1750 mm
Annual Average

Evaporation 1484.7 mm 1426 mm

Annual Average
Temperature 16.8 ◦C 19 ◦C

2.1.2. Soil Sample Collection

Soil samples were collected using the S-shaped sampling method in Tianlin County
and Luzhai County, Guangxi Zhuang Autonomous Region, with the distribution of sam-
pling points shown in Figure 1. All collected samples were naturally air-dried and finely
ground in the laboratory. Some samples were filtered through a 0.2 mm soil sieve, and their
Soil Organic Carbon (SOC) content was accurately measured using the potassium dichro-
mate oxidation method. The SOC content was then multiplied by a coefficient of 1.724 to
obtain the SOM content. Another portion of the samples was filtered through a 0.149 mm
sieve, and detailed spectral data from the visible to near-infrared region (350–2500 nm)
were captured using an ASD FieldSpec1 4 Hi-Res (Purchased by Beijing LICA United
Technology Limited from Analytical Spectral Devices in Boulder, CO, USA) ground object
spectrometer. To enhance the accuracy of the spectral data, each sample’s spectral data
were collected 10 times, and the arithmetic mean was taken as the final spectral data.
Additionally, to eliminate noise caused by external factors during the operation, the noisy
edge bands of 350–399 nm and 2401–2500 nm were removed.
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Figure 1. Distribution of sampling points in the study area. (a) is Yachang Forest Farm. (b) is
Huangmian Forest Farm.
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2.2. Experimental Design

In this study, spectral measurements were conducted on 206 samples from the study
area. Three denoising methods were used: no denoising (N), S-G filter denoising (SG), and
discrete wavelet transform denoising (DWT). Nine mathematical transformation methods
were applied: original spectral reflectance (R), first-order differential (1DR), second-order
differential (2DR), multiplicative scatter correction (MSC), standard normal variate trans-
formation (SNV), logarithmic transformation (logR), first-order differential of logarithmic
transformation ((LogR)’), reciprocal transformation (1/R), and first-order differential of recip-
rocal transformation ((1/R)’). These combinations resulted in 27 preprocessing combinations.

The Pearson correlation coefficient was used to preliminary screen the preprocessing
combinations that were more effective in extracting spectral data features. Seven modeling
methods were then selected for modeling: Support Vector Machine (SVM), Partial Least
Squares Regression (PLSR), Backpropagation Neural Network (BP), Convolutional Neural
Network (CNN), CNN-SVM, CNN network improved by the Black-winged Kite Algorithm
(BKA-CNN), and CNN-SVM network improved by the Black-winged Kite Algorithm (BKA-
CNN-SVM). The optimal preprocessing combination and the best modeling method were
selected. The methodological flow of this study is shown in Figure 2.
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2.3. Spectral Preprocessing
2.3.1. Savitzky–Golay Filter

The SG (Savitzky–Golay) filter is widely used for smoothing and denoising spectral
data, effectively handling data in most experimental areas [37,38]. It eliminates noise while
preserving the width and shape of the signal. This filter is based on local polynomials
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and uses a weighted moving average through a convolution window to achieve the least
squares method to fit the curve. The formula is shown in Equation (1).

ŷj =
∑m

i=−m CiXj+i

n
(1)

where ŷj is the smoothed data, Xj+i is the data to be processed, Ci is the smoothing
coefficient, m is the window size, and (n = 2m + 1). In this study, the smoothing coefficient
is set to 3, and the window size is set to 21.

2.3.2. DWT Denoising

Discrete Wavelet Transform (DWT) achieves wavelet denoising by decomposing and
filtering high-frequency noise layer by layer [21]. Data processed through DWT not only
reduces noise interference but also enhances feature expression to a certain extent [39]. The
steps of wavelet denoising include discrete wavelet decomposition, threshold processing,
and wavelet reconstruction. Threshold processing involves filtering the detail coefficients
decomposed at each layer, while wavelet reconstruction involves adding the approximate
coefficients of the last layer and the detail coefficients processed by the threshold at each
layer to reconstruct a one-dimensional signal. This study uses the Donoho denoising
method [40], with the threshold formula shown in Equation (2).

threshold = σ
√

2loge M (2)

where σ is the predicted standard deviation of the wavelet coefficients, and M is the total
number of sample wavelet coefficients. In this study, the threshold is set to half of the
threshold value, and the wavelet function used is db4.

2.4. SPXY Algorithm

The SPXY algorithm, developed from the Kennard-Stone (KS) algorithm, is a
statistically-based sample partitioning method widely used in spectral data partition-
ing [41,42]. Compared to the KS algorithm, it can simultaneously consider two
variables—in this case, spectral reflectance and SOM content. By using these two variables
to calculate the Euclidean distance, the SPXY algorithm ensures the maximum retention
of sample distribution, effectively covering the multidimensional vector space to enhance
model stability. The distance calculation formula is given by Equations (3)–(5).

dx(p, q) =

√√√√ N

∑
j=1

[
xp(j)− xq(j)

]2, (p, q ∈ [1, N]) (3)

dy(p, q) =
∣∣yp − yq

∣∣, (p, q ∈ [1, N]) (4)

dxy(p, q) =
dx(p, q)

maxdx(p, q)
−

dy(p, q)
maxdy(p, q)

, (p, q ∈ [1, N]) (5)

where j represents the bands in the spectrum, and xp(j) and xq(j) denote the spectral
reflectance of samples p and q at band j, respectively. N is the total number of samples.
dx(p, q) represents the Euclidean distance between two samples in the spectral feature
space. dxy(p, q) is an upgraded version of dx(p, q) in the KS algorithm, ensuring that the
sample data have equal weights in both the x and y spaces.
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2.5. Black-Winged Kite Algorithm
2.5.1. Algorithm Overview

The Black-winged Kite Algorithm (BKA) is an optimization algorithm proposed by
Wang et al. in March 2024 [43]. It is inspired by the high adaptability and intelligent
behavior exhibited by black-winged kites in nature, particularly during their attacks, migra-
tions, and hunting processes. These unique biological characteristics inspired researchers
to develop a new swarm intelligence optimization algorithm aimed at better handling
complex problems. The algorithm not only captures the flight and hunting behaviors of
black-winged kites but also deeply simulates their high adaptability to environmental
changes and target locations. This endows the algorithm with strong evolutionary ca-
pabilities, fast search speed, and excellent ability to find optimal solutions. The unique
bio-inspired features of this algorithm provide it with robust dynamic search capabilities,
enabling it to effectively cope with constantly changing optimization environments. The
pseudocode of the algorithm is shown in Algorithm 1 (BKA Algorithm Pseudocode).

Algorithm 1 Black-winged kite algorithm

Input: The population size p, maximum number of iterations T, and variable dimension d.
Output: The optimal solution to the problem to be solved is obtained through BKA.
1. Initialize the position of each bk and select the population leader YL.
2. While (t < T)do
3. if p < r
4. bi,j

t+1 = bi,j
t + n(1 + sin(r))× bi,j

t
5. else if do
6. bi,j

t+1 = bi,j
t + n × (2r − 1)× bi,j

t
7. end if
8. if Fi < Frido
9. bi,j

t+1 = bi,j
t + C(0, 1)×

(
bi,j

t − Lj
t

)
10. else if do
11. bi,j

t+1 = bi,j
t + C(0, 1)×

(
Lj

t − m × bi,j
t

)
12. end if
13. if bi,j

t+1 < Lj
t

14. YL = bi,j
t+1, Fbest = f

(
bi,j

t+1

)
15. else if do
16. YL = Lj

t, Fbest = f
(

Lj
t

)
17. end if
18. end while
19. ReturnYL and Fbest

2.5.2. Population Initialization

In the BKA, an initial set of random solutions is generated, with each Black-winged
Kite (BK) positioned as described in Equation (6).

BK =


BK1,1

BK2,1

BK1,2

BK2,2
· · · BK1,d

BK2,d
...

. . .
...

BKp,1 BKp,2 · · · BKp,d

 (6)
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where p represents the number of potential solutions and d denotes the dimensionality
of the problem. Subsequently, each Black-winged Kite (BK) is uniformly distributed as
described in Equation (7).

Yi = BKlb + rand(BKub − BKlb) (7)

where i is an integer between 1 and p, lb and ub represent the algorithm’s lower and upper
bounds, respectively, and rand is a random value between 0 and 1. During initialization,
the BKA selects the best fitness value as the population leader YL. The expression for YL,
using the minimum value as an example, is provided in Equations (8) and (9).

fbest = min( f (Yi)) (8)

YL = Y( f ind( fbest == f (Yi))) (9)

2.5.3. Aggressive Behavior

As predators of small mammals and insects on the grasslands, BK adjust their wing
and tail angles according to wind speed during flight. They hover to observe their prey
before diving to attack. This process includes various attack patterns for prey search, as
described in Equations (10) and (11).

bi,j
t+1 =

{
bi,j

t + n(1 + sin(r))× bi,j
t , p < r

bi,j
t + n × (2r − 1)× bi,j

t , else
(10)

n = 0.05e−2( t
T )

2
(11)

where bi,j
t represents the position of the i-th BK in the j-th dimension at the t-th iteration, r

is a random number between 0 and 1, p is a constant set to 0.9, and (T) is the number of
iterations completed so far.

2.5.4. Migration Behavior

Bird migration is a complex behavior influenced by seasonal changes, climate, and
food availability, typically led by a population leader. When the current population’s fitness
is lower than that of a random population, the leader relinquishes leadership and joins
the migration queue. Conversely, if the current population’s fitness is higher, the leader
continues to guide the population to the destination. This dynamic leader selection strategy
ensures successful migration, as mathematically modeled in Equations (12) and (13).

bi,j
t+1 =

 bi,j
t + C(0, 1)×

(
bi,j

t − Lj
t

)
, Fi < Fri

bi,j
t + C(0, 1)×

(
Lj

t − m × bi,j
t

)
, else

(12)

m = 2 × sin
(

r +
π

2

)
(13)

where Lj
t represents the leader of the j-th dimension for the t-th iteration, and Fi denotes

the fitness of any BK in the j-th dimension at the t-th iteration. C(0, 1) refers to the Cauchy
mutation. The one-dimensional Cauchy distribution is a continuous probability distribution
with two parameters. When δ = 1 and µ = 0, it converts to the standard form of the
probability density function, as shown in Equation (14).

f (x, δ, µ) =
1
π

δ

δ2 + (x − µ)2 =
1
π

1
x2 + 1

,−∞ < x < ∞ (14)
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2.6. CNN-SVM Network Enhanced by the Black-Winged Kite Algorithm

Convolutional Neural Networks (CNNs) are a crucial architecture in the field of deep
learning. Their basic structure typically includes an input layer, convolutional layers,
activation functions, pooling layers, fully connected layers, and an output layer, along with
regularization techniques to prevent overfitting.

Support Vector Machines (SVMs) are a significant algorithm in machine learning,
widely used for classification and regression tasks. They effectively handle both linearly
separable and non-linearly separable data, constructing optimal decision boundaries in
high-dimensional spaces.

The CNN-SVM approach combines the strengths of deep learning and machine learn-
ing [44]. CNN acts as feature extractors, learning high-level feature representations from
spectral data, which are then classified by SVMs. The overall workflow is illustrated in
Figure 3. SVMs offer excellent generalization and robustness, effectively handling high-
dimensional feature spaces with numerous spectral bands. This approach avoids the
excessive parameters and overfitting issues associated with traditional CNN fully con-
nected layers. For spectral data, CNN can extract features from both global and local regions
through convolution operations, preserving the spatial structure of spectral bands. SVM
kernel functions then map these features to high-dimensional spaces, capturing nonlinear
relationships more effectively and simplifying computations in the original feature space.
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Optimization is performed using the BKA, leveraging its robust search capabilities
and balance between local and global optima to find the optimal parameters. A model
is then constructed based on these optimal results, and the data are trained to obtain
feature parameters. These extracted feature parameters are input into the SVM network to
complete the prediction, as illustrated in Figure 4.
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2.7. Evaluation Metrics

The study employs six evaluation metrics to assess model performance: the coefficient
of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean
absolute relative error (MARE), mean bias error (MBE), and the ratio of performance to
interquartile range (RPIQ).

R2, RMSE, MAE, MARE, and MBE are widely used evaluation metrics in the fields
of soil spectral data prediction and artificial intelligence [45]. R2 reflects the correlation
between the actual soil SOM content and the model’s predicted values. The closer R2

is to 1, the higher the model’s accuracy, as shown in Equation (16). RMSE indicates the
deviation between the actual soil SOM content and the model’s predicted values. It is
negatively correlated with model stability, as shown in Equation (17). MAE measures the
accuracy of the predictive model. The smaller the MAE, the higher the model’s accuracy,
as shown in Equation (18). MBE measures the tendency to overestimate or underestimate
parameter values. A positive bias means the error is overestimated, while a negative bias
means the error is underestimated. This metric quantifies overall bias and captures the
average deviation in predictions, as shown in Equation (19). MARE measures the degree of
deviation between the predicted and actual values by calculating the relative error between
them and taking the average of their absolute values, as shown in Equation (20).

The Relative Percent Difference (RPD) reflects both the reliability and accuracy of a
model, and it is widely used by many soil researchers [46,47]. However, there is no con-
sensus on the threshold values based on statistical studies. For example, Lei et al. defined
the RPD threshold for evaluating SOM prediction models as follows: RPD < 2 indicates
that the model does not meet prediction requirements, while RPD > 3 indicates that the
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model performs excellently [48]. In contrast, Shi et al. defined the two thresholds as 1.4 and
2 [49]. Additionally, the standard deviation (SD) used in RPD cannot accurately describe the
distribution range of a population in a skewed distribution. Spectral data are influenced by
various physicochemical properties of the sampling points, and ideal normal distribution
conditions are rare, further affecting the evaluation of models using the RPD metric. RPD
is shown in Equation (20).

Bellon Maurel et al. [50] proposed a new evaluation metric based on quartiles: the Ratio
of Performance to Interquartile Distance (RPIQ), which better describes the distribution of
a population regardless of its shape. Quartiles play a key role in population distribution:
Q1 indicates that 25% of the samples are below this value, while Q3 indicates that 75% of
the samples are below this value. The interquartile range (IQ) is calculated as Q3 minus Q1,
representing the span of the middle 50% of the population around the median. Compared
to RPD, RPIQ is not affected by the SD and addresses the existing limitations of using
near-infrared spectroscopy for soil characterization. RPIQ is shown in Equation (21).

R2 = 1 −
n

∑
i=1

(xi − x̂i)
2

(xi − xi)
2 (15)

RMSE =

√
∑n

i=1(xi − x̂i)
2

n
(16)

MAE =
∑n

i=1|xi − x̂i|
n

(17)

MARE =
1
n

n

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (18)

MBE =
∑n

i=1(xi − x̂i)

n
(19)

RPD =
SD

RMSE
(20)

RPIQ =
Q3 − Q1
RMSE

(21)

where n represents the total number of samples. xi, x̂i, and xi denote the actual value,
predicted value, and mean value of the soil SOM content for the i-th sample, respectively.

3. Results
3.1. Statistical Characteristics of Soil Organic Matter Content

In this study, we collected 206 samples according to the method described in
Section 2.1. The SPXY algorithm was used to divide the dataset into training and vali-
dation sets, resulting in 164 training samples and 42 validation samples in a 4:1 ratio. The
statistical characteristics of soil organic matter content are shown in Table 2. The coefficient
of variation, calculated from the standard deviation and mean, reflects the degree of data
dispersion. The coefficients of variation for the three types of samples indicate moder-
ate dispersion, suggesting the need for appropriate preprocessing methods to enhance
model performance.
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Table 2. Statistics on the characteristics of soil organic matter content.

Sample
Classification Sample Size Mean

(g·kg−1)

Minimum
Value

(g·kg−1)

Maximum
Value

(g·kg−1)

Standard
Deviation
(g·kg−1)

Coefficient of
Variation

(%)

Total Samples 206 25.72 4.26 80.04 13.57 52.75
Training Set 164 26.03 4.26 80.04 14.04 53.95

Validation Set 42 24.50 8.23 71.15 11.59 47.30

The spectral reflectance corresponding to different organic matter contents measured
in this study is shown in Figure 5. The overall reflectance trends for different SOM contents
are generally similar, with reflectance inversely related to SOM content. In the 400–800 nm
visible light range, SOM exhibits strong absorption, while in the 800–2400 nm near-infrared
range, SOM shows strong reflectance. An absorption valley influenced by iron oxide
appears at a wavelength of 950 nm, and absorption valleys influenced by moisture appear
at wavelengths of 1500 nm, 1900 nm, and 2350 nm.
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3.2. Impact of Different Preprocessing Methods on Data and Model Accuracy
3.2.1. Impact of Different Preprocessing Methods on Data

Extracting spectral feature bands is fundamental to model construction, as it accurately
reflects spectral characteristics closely related to soil organic matter (SOM). The prepro-
cessing process highlights spectral information characteristic of SOM, effectively removing
redundant information and enhancing the correlation between data and SOM. This strat-
egy simplifies data processing complexity, strengthens the model’s ability to invert SOM
content, and consequently improves prediction accuracy and reliability [51]. This study
employed three denoising methods: no denoising (N), Savitzky–Golay filter denoising
(SG), and discrete wavelet transform denoising (DWT). Additionally, nine mathematical
transformation methods were used: raw spectral reflectance (R), first derivative (1DR),
second derivative (2DR), multiplicative scatter correction (MSC), standard normal variate
transformation (SNV), logarithmic transformation (logR), first derivative of the logarithm
((LogR)’), reciprocal transformation (1/R), and first derivative of the reciprocal ((1/R)’).
The combinations are shown in Table 3.
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Table 3. Different pretreatment combinations.

Denoising Methods N SG DWT

Mathematical
Transformations

R N-R SG-R DWT-R
1DR N-1DR SG-1DR DWT-1DR
2DR N-2DR SG-2DR DWT-2DR
MSC N-MSC SG-MSC DWT-MSC
SNV N-SNV SG-SNV DWT-SNV
LogR N-LogR SG-LogR DWT-LogR

(LogR)’ N-(LogR)’ SG-(LogR)’ DWT-(LogR)’
1/R N-1/R SG-1/R DWT-1/R

(1/R)’ N-(1/R)’ SG-(1/R)’ DWT-(1/R)’

Correlation analysis is a statistical method used to explore the degree of association
between two or more variables [52]. The Pearson correlation coefficient, as an indicator
of correlation analysis, reflects the relationship between adjacent spectral bands and soil
organic matter (SOM) content. Based on this, a correlation heatmap is constructed to reveal
the relationship and degree of influence between band reflectance and SOM content under
different preprocessing methods. Using the data preprocessed according to the combina-
tions in Table 3, a Pearson correlation coefficient heatmap of spectral band reflectance and
SOM content is shown in Figure 6. In the heatmap, Pearson correlation coefficients are
represented by different colors. The heatmaps for the mathematical transformations R,
logR, and 1/R show relatively uniform correlation changes. In contrast, MSC and SNV
exhibit diverse correlation changes, but their color distribution is concentrated, indicating
less noticeable changes in individual spectral data. Observations reveal that the heatmaps
for the four mathematical transformations 1DR, 2DR, (LogR)’, and (1/R)’ show more di-
verse correlation changes and more uniform color distribution. Data based on these four
transformations effectively present the correlation characteristics between spectral band
reflectance and SOM content, providing valuable insights for subsequent modeling.
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3.2.2. Impact of Different Preprocessing Methods on Model Accuracy

By comparing the heatmaps, it was found that the preprocessing methods for the four
mathematical transformations 1DR, 2DR, (LogR)’, and (1/R)’ were superior. Next, we will
compare the modeling results of these four mathematical transformations under different
denoising methods. This study employs two machine learning methods, SVM and PLSR,
and two deep learning methods, BP and CNN, for modeling. The modeling results are
shown in Table 4.
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Table 4. Different preprocessing modeling results.

Preprocessing Methods
Modeling
Methods

Validation Set

RMSE R2 MAE MARE MBE RPIQ

N-

1DR

SVM 5.247 0.790 4.167 0.182 1.035 3.904
PLSR 5.768 0.746 4.938 0.215 0.247 4.035

BP 5.991 0.726 4.779 0.211 0.786 4.514
CNN 5.736 0.749 4.633 0.221 1.103 5.338

2DR

SVM 6.427 0.685 4.948 0.216 1.918 5.203
PLSR 6.670 0.661 5.541 0.263 1.412 4.069

BP 7.052 0.621 5.628 0.279 1.936 5.161
CNN 6.286 0.699 4.983 0.236 1.181 4.647

(LogR)’

SVM 4.426 0.851 3.535 0.172 1.558 3.866
PLSR 4.490 0.846 3.644 0.174 1.095 3.034

BP 5.575 0.747 4.637 0.205 1.678 4.318
CNN 5.652 0.756 4.745 0.235 2.215 3.782

(1/R)’

SVM 4.281 0.860 3.448 0.159 0.613 3.290
PLSR 4.181 0.867 3.467 0.151 0.580 3.719

BP 5.860 0.738 4.535 0.233 1.809 3.831
CNN 5.791 0.744 4.609 0.214 0.890 5.210

SG-

1DR

SVM 5.165 0.797 4.161 0.183 0.469 4.255
PLSR 6.221 0.705 5.080 0.268 0.354 3.478

BP 4.471 0.848 3.574 0.159 0.130 2.401
CNN 5.191 0.794 4.096 0.195 0.447 3.697

2DR

SVM 4.100 0.809 4.135 0.190 0.832 4.583
PLSR 5.472 0.772 4.408 0.226 0.488 3.617

BP 5.887 0.736 4.946 0.226 0.637 4.804
CNN 5.779 0.745 4.848 0.245 1.049 3.384

(LogR)’

SVM 4.800 0.825 4.000 0.192 1.149 4.284
PLSR 6.485 0.679 5.316 0.271 1.259 5.709

BP 5.693 0.753 4.302 0.190 0.451 3.708
CNN 5.482 0.771 4.449 0.202 1.540 4.598

(1/R)’

SVM 4.745 0.828 3.729 0.172 0.480 4.620
PLSR 5.447 0.774 4.439 0.210 0.535 3.199

BP 4.887 0.818 3.826 0.183 1.154 3.790
CNN 5.578 0.763 4.096 0.195 1.236 4.615

DWT-

1DR

SVM 5.034 0.806 3.945 0.170 0.444 4.310
PLSR 5.834 0.740 4.445 0.242 0.565 5.071

BP 5.290 0.787 4.187 0.215 1.407 4.475
CNN 5.396 0.778 4.468 0.222 1.595 4.246

2DR

SVM 5.365 0.780 4.169 0.184 1.407 5.302
PLSR 6.618 0.666 5.371 0.293 1.379 4.121

BP 6.327 0.695 4.894 0.240 2.949 4.638
CNN 6.197 0.707 5.158 0.241 2.960 4.690

(LogR)’

SVM 4.886 0.818 4.012 0.195 1.323 3.416
PLSR 5.227 0.792 4.174 0.203 1.267 4.083

BP 6.164 0.710 4.757 0.206 0.311 5.208
CNN 5.573 0.763 4.428 0.205 1.259 3.611

(1/R)’

SVM 4.792 0.825 3.984 0.182 0.131 3.858
PLSR 4.995 0.810 3.840 0.189 1.267 4.334

BP 5.601 0.761 4.520 0.205 2.239 3.953
CNN 5.713 0.751 4.288 0.199 1.268 4.946



Appl. Sci. 2025, 15, 503 16 of 24

Among the 16 combinations of four mathematical transformations and four modeling
methods, the combinations with SG denoising outperformed the other two denoising
methods in several metrics: RMSE was lower in 9 out of 16 cases, R2 was higher in 10 out
of 16 cases, MAE was lower in 8 out of 16 cases, MARE was lower in 8 out of 16 cases, MBE
was closer to 0 in 9 out of 16 cases, and RPIQ was lower in 10 out of 16 cases. Therefore,
for the soil spectral data in the experimental area, SG denoising is superior to N and DWT
denoising methods. The comparison of the four mathematical transformations and four
modeling methods after SG denoising is shown in Figure 7. Among these, 1DR-BP achieved
the best results in R2, MAE, MARE, MBE, and RPIQ. Other 1DR preprocessing results
were also excellent, such as 1DR-CNN, which performed best in RMSE, MAE, MARE,
MBE, and RPIQ among the four mathematical transformations using CNN modeling, and
1DR-SVM, which performed best in MARE, MBE, and RPIQ among the four mathematical
transformations using SVM modeling. This indicates that 1DR preprocessing effectively
reflects spectral data characteristics. The experimental results on the impact of different
preprocessing methods on data and model accuracy show that SG-1DR preprocessing is
the best preprocessing method. This conclusion is consistent with the findings of Nan Feng
et al. [53] and Zhang et al. [25], as well as with Chen et al. [54], who found the optimal
preprocessing method for soils in the northwestern part of Yunnan Province, which is close
to the experimental area. This effectively highlights the correlation between spectral data
and SOM content and improves model generalization ability.
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3.3. CNN-SVM Prediction Model Improved by the Black-Winged Kite Algorithm
3.3.1. Training Process

This study employs the BKA for optimization, leveraging its robust search capabilities
and balance between local and global optima. The BKA iterates within the CNN-SVM
network to identify three optimal parameters: the best mini-batch size (best1), the best
initial learning rate (best2), and the best learning rate decay factor (best3) [55]. The BKA
iterates according to the parameters in Table 5, with the loss function recording the match
between predicted and actual values. As shown in Figure 8, the loss fluctuates significantly
in the early stages but generally decreases, stabilizing after the 60th generation, indicating
that the model converges to the true values.



Appl. Sci. 2025, 15, 503 17 of 24

Table 5. BKA detailed parameters.

Definition Parameters

Population Size 60
Maximum Iterations 250

Dimension 3

Upper Bound
best1 512
best2 5 × 10−2

best3 1 × 10−1

Lower Bound
best1 128
best2 1 × 10−3

best3 1 × 10−4
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After the BKA iterations, the optimal parameters selected were best1 = 164, best2 = 0.0720,
and best3 = 0.0026. These three parameters were incorporated into the CNN network training.
The CNN was set with a maximum of 800 training iterations, a mini-batch size of best1, an
initial learning rate of best2, a learning rate decay factor of best3, and an L2 regularization
coefficient of 0.1. The training set was shuffled for each training session. The specific network
structure is detailed in Table 6.

Table 6. CNN structure settings.

Definition Parameters

Input 199, 1 × 1
Conv1 16, 3 × 1
BN1 -

Relu1 -
Maxpool1 2 × 1

Conv2 32, 3 × 1
BN2 -

Relu2 -
Maxpool2 2 × 1
Dropout 0.5

Fc 1

The optimal parameters were obtained by traversing the values of the penalty factor
(c) and the Gamma function (g) using the grid search cross-validation method. The initial
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value of the penalty factor (c) for the SVM model was set to 0.5 with a step size of 0.1; the
initial value of the Gamma function (g) was set to 0.05 with a step size of 0.01, and the
SG-1DR data were trained. As shown in Figure 9, the model results were optimal when
(c) was 1.1 and (g) was 0.11. The final SVM parameter settings were based on the optimal
(c) and (g) values and the commonly used parameters for SVM modeling of soil spectral
data [22,23]. The SVM type selected was e-SVR, with a penalty factor (c) of 1.1 and a loss
function (p) of 0.01; the kernel function was the RBF function, and the Gamma function in
the kernel function was set to 0.11.
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Figure 9. SVM parameter optimization process. (a) shows the optimization situation of parameter c.
(b) shows the optimization situation of parameter g.

3.3.2. Model Performance Comparison

To validate the effectiveness of the model optimization results, we uniformly used the
training and test samples obtained through SG-1DR preprocessing as divided in Table 2.
This study selected five modeling methods—CNN, SVM, CNN-SVM, BKA-CNN, and BKA-
CNN-SVM—to compare the prediction accuracy of SOM content. The modeling results are
shown in Table 7. To visually understand the differences between the predicted and actual
values for each model, regression scatter plots of the predicted and actual values for each
model’s test set were drawn, as shown in Figure 10. The closer the fitted regression line is to
the 1:1 line, the more accurate the model’s predictions. The BKA-CNN-SVM model was the
best in all four evaluation metrics, with its scatter points more evenly distributed around
the 1:1 line. The RMSE of the validation set was 3.042, which decreased by 2.022, 2.123,
1.599, and 1.702 compared to other models. The R2 was 0.930, which increased by 12.3%,
13.3%, 9.2%, and 9.9% compared to other models. The MAE was 2.254, which decreased
by 1.716, 2.137, 1.487, and 1.221 compared to other models. The MARE was 0.1, which
decreased by 0.077, 0.083, 0.078, and 0.063 compared to other models. The RPIQ was 1.436,
which decreased by 3.560, 2.819, 2.316, and 0.876 compared to other models. It can be
seen that the BKA-CNN-SVM model has a high degree of matching between predicted
and actual values, indicating that the addition of SVM improves the generalization ability
of regression predictions. The Black-winged Kite Algorithm significantly enhances the
accuracy of the CNN-SVM network, showing a more significant and positive impact on
the effective management of forest soil in the study area and enhancing the scientific and
practical effectiveness of soil improvement strategies.
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Table 7. Modeling results based on SG-1DR preprocessed data.

Modeling Methods
Training Set Validation Set

RMSE R2 MAE MARE MBE RPIQ RMSE R2 MAE MARE MBE RPIQ

CNN 2.148 0.976 1.605 0.073 0.073 1.776 5.064 0.807 3.970 0.177 0.229 4.996
SVM 3.505 0.937 0.713 0.079 0.005 0.655 5.165 0.797 4.391 0.183 0.469 4.255

CNN-SVM 2.307 0.973 1.327 0.062 0.305 0.350 4.641 0.838 3.741 0.178 1.372 3.752
BKA-CNN 1.756 0.984 1.279 0.069 0.347 0.366 4.744 0.831 3.475 0.163 1.036 2.312

BKA-CNN-SVM 1.609 0.987 1.287 0.066 0.348 0.836 3.042 0.930 2.254 0.100 0.890 1.436
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method in the experimental area. It also constructed a CNN-SVM model optimized by
the Black-winged Kite Algorithm for SOM prediction. This achievement provides an
important reference for SOM determination in this area and offers a new method for forest
soil monitoring.

In terms of preprocessing, due to different natural conditions, the research results
only represent the optimal preprocessing effect in the experimental area and provide a
reference method for similar regions. Secondly, although a wide variety of mathematical
transformations and models were used in the experiment, it is still possible that not
all potentially effective methods were covered, leaving room for the discovery of better
combinations. Due to the high difficulty of sample collection, most researchers used a
limited number of samples from the experimental area [56,57]. Although it is not yet
concluded whether sample size is a key factor affecting experimental results [58], with
sufficient sample size, it is possible to try using multivariate feature selection [59,60] and the
method of concatenating original and preprocessed bands to form a new dataset [61]. More
experiments can explore additional possibilities for the optimal preprocessing methods for
the experimental area data.

Regarding predictive models, the results show that CNN can effectively extract rich fea-
ture information from spectral data, and SVM can handle the emergence of multicollinearity
issues contained in the data processed by CNN. Currently, many researchers use traditional
machine learning methods alone, which may struggle to extract effective spectral features
when faced with redundant soil spectral data in the experimental area [30,62]. The complex-
ity and high dimensionality of such data often require more advanced and sophisticated
methods, such as the combination of CNN and SVM used in this study or the establishment
of more diverse model structures like stacked machine-learning methods [45]. Additionally,
some researchers have deployed predictive models in remote sensing to achieve real-time
SOM content prediction [63,64]. This approach has great potential as it allows for large-scale
and continuous monitoring of soil conditions, providing valuable information for timely
decision-making in agriculture and forestry. There are also studies that combine remote
sensing images with field measurement data for model training, yielding good results [65].
Combining spectral data with image data can improve the model’s generalization ability,
but due to the differences in the forms of these two types of data, feature extraction may
not be optimal, requiring further experiments tailored to the specific conditions of the
experimental area [66].

5. Conclusions
The conclusions of this study are as follows:

1. Among the 27 preprocessing combinations used in this study, the SG-1DR method
effectively extracts data features and reduces noise interference. The heatmaps for
the four mathematical transformations—1DR, 2DR, (LogR)’, and (1/R)’—exhibit
rich correlation variations and relatively uniform color distributions. Data based on
these four transformations effectively present the correlation characteristics between
spectral band reflectance and SOM content. Through modeling comparisons, it was
found that the first derivative transformation after SG denoising yielded the best
results, demonstrating the highest feature expression capability for spectral data.

2. In the preprocessing and modeling comparison experiments, it was found that deep
learning methods have a superior ability to extract spectral data features compared to
machine learning methods.

3. After combining CNN with SVM, the evaluation metrics improved compared to
using CNN alone. Specifically, RMSE decreased by 0.423, R2 increased by 3.1%, MAE
decreased by 0.229, MARE differed by only 0.001, and RPIQ decreased by 1.244. This
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indicates that for predicting SOM, it is feasible to use CNN for feature extraction
followed by SVM for classification and regression.

4. The CNN-SVM network improved by the Black-winged Kite Algorithm showed sig-
nificant enhancements compared to the original CNN-SVM network: RMSE decreased
by 1.599, R2 increased by 9.2%, MAE decreased by 1.487, MARE decreased by 0.078,
MBE decreased by 0.482, and RPIQ decreased by 2.316. This makes it the best among
the five compared networks. Therefore, the BKA-CNN-SVM model is highly effective
in predicting the SOM content of soil in Guangxi forest farms.
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