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Abstract: Spatial heterodyne spectroscopy (SHS) based on prism dispersion is a novel
technique designed to overcome the limitations of traditional grating-based SHS, which is
affected by grating diffraction. However, there are still some challenges with this technique,
one of which is that the fringe localization plane (FLP) moves with changes in wavelength.
This paper proposes a prism-based tunable SHS where the FLP is fixed, utilizing prism–
bimirror–mirror structures. The theoretical spectral resolving power, based on an example,
is higher than 1300 in the spectral range from 10,000 cm−1 to 25,641 cm−1 and is approxi-
mately 27,595 at 25,641 cm−1. Furthermore, we propose solutions to simplify the motion
control system and address the problem of spectral aliasing.

Keywords: spatial heterodyne spectrometer; interferometers; Fourier transforms; spectroscopy

1. Introduction
In 1971, spatial heterodyne spectroscopy (SHS) was pioneered at Osaka University in

Japan [1]. SHS offers superior robustness and higher spectral resolving power compared
to traditional Fourier-transform spectroscopy, making it a focal point in spectroscopy
research [2]. Typically, SHS employs gratings as dispersion elements [3–15], but these
gratings can introduce several challenges. Firstly, multiple diffraction orders disperse
energy across different orders. To prevent inter-order disturbances, a baffling system needs
to be set and in some cases this baffling system can be only partially effective [16]. Secondly,
Matthias Lenzner et al. point out that an interferogram is formed by wave packets with
a titled energy front when diffracted from gratings, and this fact limits spectral resolving
power [17]. Thirdly, in tunable spatial heterodyne spectrometers (TSHSs) using blazed
gratings, adjusting the Littrow angle by tilting the gratings widens the spectral range but
reduces energy in interfering beams by deviating from the gratings’ blaze angle. Fourthly,
compared to prisms, gratings generally generate more diffuse light [18].

Due to the above limitations of grating-based SHSs, prism-based SHSs have increas-
ingly captured researchers’ interest in recent years. In 2019, Ye Song et al. proposed a
prism-based SHS, replacing the grating used in traditional SHSs with a prism–mirror
structure [19]. In 2021, Fabio Frassetto et al. experimentally demonstrated the beneficial
effects on the signal-to-noise ratio that the substitution of gratings with prisms produces in
a SHS [16]. In 2022, Li Yixuan et al. proposed an orthogonal TSHS, utilizing a Prism–Mirror
instead of a grating and designing an orthogonal configuration to simplify the motion
control system [20]. In 2024, Fabio Frassetto et al. designed a prism-based monolithic
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SHS by coating prisms with mirrors [18]. These prism-based SHS designs all leverage
prism–mirror structures.

Although prism-based SHS has a higher signal-to-noise ratio under certain conditions,
this technology is currently immature. The fact that prism dispersion is based on Snell’s
law and the nonlinear relationship between wavelength and refractive index limits the
instrument’s usable Field-of-View (FOV), especially in the direction of dispersion, and
spectral resolving power, especially at long wavelengths. There is still a lack of research
on the FOV and methods to improve the spectral resolving power of prism-based SHS.
In addition, the location of the fringe localization plane (FLP) varies with incident light
wavelength. The FLP is where the interference fringes can be viewed with maximum
clarity, so the fringes can be obtained at maximum contrast at this plane [5]. To observe
fringes, the FLP must be optically conjugated to the detector plane using an imaging
system. Therefore, if the incident light lacks spatially full coherence, the fringe contrast on
the detector degrades when the FLP is not precisely conjugated with the detector plane.
Fabio Frassetto et al. [18] also noted that the instrumental response changes as the FLP
location varies with wavelength. This paper focuses on the problem of the movement of
the FLP and proposes a design to address it.

2. Principles and Designs
2.1. Movement of the FLP in Prism-Based SHSs

The principle of prism-based SHSs and the phenomenon of the movement of the FLP
are briefly described using a typical prism-based SHS [19]. As shown in Figure 1, it is
based on a Michelson interferometer modified by replacing the mirror in each arm with a
prism–mirror assembly. Both mirrors are tilted at the same angle with respect to the prisms
in their respective arms. The collimated light enters the beam splitter and is divided into
two beams. The beam in each arm passes sequentially through the prism, mirror, prism
again, and then returns to the beam splitter. The beam with a certain wavelength, called
the Littrow wavelength, will incident perpendicular to the mirror and return parallel to the
optical axis. The wave fronts with the Littrow wavelength exiting from the interferometer
are perpendicular to the optical axis and produce an interferogram with zero frequency.
For a wavelength different from the Littrow wavelength, since the prism has different
refractive indices at different wavelengths, the wave fronts of the two outgoing beams
are no longer parallel, but tilt at the same angle relative to the optical axis in opposite
directions, equivalently producing fringes on the FLP. The FLP can be visualized as a plane
of recombination of the two backpropagating beams exiting from the interferometer and
should be imaged by the imaging system onto the detector plane.

For traditional grating-based SHSs, the location of the FLP is very intuitive as the
beam in each arm is diffracted by the grating only once, so the FLP intersects the center
of each grating. However, for the SHSs with a prism–mirror structure, the beam in each
arm is refracted more than once by the prism, so there is uncertainty in the location of the
recombination plane obtained by extending the outgoing rays from the two arms in the
reverse direction. For example, if the apex angle of the prism is set to 30◦, the height of
the prism is set to 25 mm, the material is set to N-LASF9, the length of the optical axis
between the prism and the mirror is set to 16.2 mm, and the Littrow wavelength is 650 nm,
the distances from the FLP to the entering surface of the prism if the wavelengths of the
incident ray are 400 nm, 600 nm, and 1000 nm are, respectively, about 73.6 mm, 83.5 mm,
and 88.6 mm. It can be seen that the location of the FLP is different for different wavelengths
of the incident ray, which is consistent with the phenomenon in the experiments done by
Fabio Frassetto et al. [18]: when focusing the imaging optics on a particular FLP distance,
a spectral response peaking was obtained at that corresponding wavelength. In fact, the
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FLP of a point source (ideally) is unlocalized, except that the size of the overlap region of
the beams from the two arms varies at different locations. However, even a laser is not an
ideal point source and the FLP is localized [5]. Maintaining a fixed FLP can eliminate the
need to calculate the FLP’s location and move the imaging device based on the predicted
wavelength of the incident light during use.
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Figure 1. Layout of the interferometer of a typical prism-based spatial heterodyne spectrometer
(SHS) [19]. A point source containing three wavelengths is set. Arrows of different colors represent
rays with different wavelengths.

2.2. Preliminary Optical Design

To keep the location of the FLP constant, we can make the optical axes of the two arms
be turned in opposite directions with respect to each other only once due to refraction.
This requires the beam in each arm to pass through the prism only once. After the beam
passes through the prism, it needs to return to the beam splitter without passing through
the prism again. Therefore, some form of optics is needed to reflect the beam and provide a
shift.

To realize this idea, we propose to use a prism–bimirror–mirror assembly instead of the
prism–mirror structure in each arm, as shown in Figure 2a, with the angle made by the two
planes of the bimirror being a right angle. The collimated light is split by a beam splitter and
is divided into two paths. Now we will describe only one of the paths. The beam is incident
vertically into a prism and refracted at its exiting surface. Then, the beam is incident to
one of the planes of the bimirror. The intersection line of the two planes of the bimirror
is perpendicular to the incoming axis of the bimirror and parallel to the side surfaces of
the prism. In terms of the direction of the beam, a right-angle bimirror is equivalent to a
mirror, except that the beam is shifted by an extra segment of the optical axis between the
incoming and outgoing axes, which staggers the incoming and outgoing beams.

To allow the beam to return to the beam splitter for recombination with another one, a
mirror is added behind the bimirror to change the direction of the optical axis. This mirror
is tilted at a proper angle so that its outgoing optical axis is perpendicular to the surface of
the cube beam splitter. The system is a TSHS in which the Littrow wavelength can be tuned
by tilting the bimirrors and the mirrors. The rotating spindle is located at the refracting
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surface of the prism, intersecting the center of the refracting surface, as well as at the mirror,
intersecting the center of the mirror. The bimirror and mirror share this spindle, where
the bimirror needs to be tilted twice as much as the mirror during the tuning process. The
prism–bimirror–mirror structures of the two arms are upside down with respect to each
other in order to ensure that the outgoing beams from the two arms are tilted in opposite
directions, as shown in Figure 2b.
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Figure 2. (a) Schematic diagram of the prism–bimirror–mirror structure. The angle between the two
mirrors of the bimirror is 90◦. (b) Layout of the tunable spatial heterodyne spectrometer (TSHS) using
a prism–bimirror–mirror structure.

If the wavelength of the incident light is not equal to the tuned Littrow wavelength, the
wave fronts of the beams of the two arms are tilted by the same angle relative to the optical
axis in opposite directions, equivalently producing the fringes on the FLP. The center of the
FLP overlaps with the center of the refracting surface of each prism. The distance from the
FLP to the imaging optics is equal to the length of the optical axis between the refracting
surface of each prism and the imaging optics. This length does not change, regardless
of the tuned Littrow wavelength and the wavelength of the incident light, solving the
problem of the FLP location varying with the wavelength that exists in current prism-based
SHS designs.

Besides diffused light, stray light can be generated by specular reflection on the sur-
faces of the cube beam splitter and prisms. Anti-reflection (AR) coatings are needed to
improve transmittance. In the arrangement shown in Figure 2, the splitting and recombina-
tion of the beams occur at different locations in the beam splitter, preventing the beams
from reaching the detector without passing through any arm. In addition, the prisms are
single- rather than double-passed, which may result in less chance for the beams to be
reflected by the prisms. Stray light analysis requires the consideration of many other factors
such as mechanical structure and still requires further research.

An added advantage of this system is that the outgoing beams in the two different
directions are not backtracking toward the source. The two outgoing beams can be detected
by two detectors to increase the luminous flux. This advantage remains if the prisms are
replaced by gratings, which is not discussed further in this paper.

2.3. Spectral Inversion

The parameters of the key components in the Zemax OpticStudio v.19.4 simulation are
provided here first. The glass of each prism used is N-LASF9 (SCHOTT Group Corporation,
Mainz, Germany) and the apex angle of each prism is 30◦. The half-width of the incident
light is 20 mm. The imaging system has a magnification of 0.5. The parameters of the
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detector refer to the SONY IMX 174 (Sony Group Corporation, Tokyo, Japan), which has a
pixel pitch of 5.86 µm and 1936 × 1216 pixels.

Assuming that the wavelength of the incident light is not equal to the tuned Littrow
wavelength, the equivalent fully transmissive optical system is shown in Figure 3a and
the wave fronts intersecting the centers of the refracting surfaces of the prisms of the
two arms are shown in Figure 3b. Assuming points A and B on the two wave fronts are
from any point on the light source, the two beams propagate in the directions AC and CB,
respectively. They are equivalent to intersecting at point C. Thus, the FLP intersects the
center of the refracting surface of each prism and is perpendicular to the outgoing optical
axis of each prism. The center of interference is always located at the center of the FLP and
the values of the optical path difference (OPD) at both ends of the FLP are the largest.
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Figure 3. (a) Schematic diagram of the equivalent fully transmissive model of the two arms of the
interferometer using a prism–bimirror–mirror structure. The red arrows and optics represent the
ray in one arm and the optics it passes through, while the green arrows and optics represent the ray
in the other arm and the optics it passes through. The blue optics represent the optics that the ray
in each of the two arms passes through. (b) Schematic diagram of the wave fronts intersecting the
centers of the refracting surfaces of the prisms of the two arms.

If the angle between each wave front and the FLP is β, then the OPD is

OPD = AC + CB = 2xsin β (1)

Then, the spatial frequency f of the interferogram is

f = 2σsin β (2)

where σ is the wavenumber of the incident light, which is the reciprocal of the wavelength
λ. Setting the Littrow wavelength as λ0, the angle β between the wave front and the FLP is

β = sin−1(n(λ0)sin(30◦))− sin−1(n(λ)sin(30◦)) (3)



Appl. Sci. 2025, 15, 598 6 of 13

The refractive index n versus wavelength λ equation for the N-LASF9 provided in the
Glass Catalog of ZEMAX is

n(λ)2 − 1 =
K1λ2

λ2 − L1
+

K2λ2

λ2 − L2
+

K3λ2

λ2 − L3
(4)

The coefficients of the formula are K1 = 2.00029547, L1 = 0.0121426017 µm2, K2 =
0.298926886, L2 = 0.0538736236 µm2, K3 = 1.80691843, and L3 = 156.530829 µm2. The
correspondence between the spatial frequency f of the interferogram on the FLP and the
wavelength λ of the incident light has been established up to this point. Compared to the
SHS with a prism–mirror structure, it has a much simpler inversion formula.

2.4. Performance Parameters

Now, we calculate the theoretical spectral resolving power of the system. Assuming
that the incident light with a wavenumber of σ1 produces 2N fringes, the maximum OPD
on the interferogram can be expressed as Nλ1. If the half-width of the light source is d0,
due to the small angle between the wave fronts of the two arms and the FLP, the half-width
d of the wave fronts of the two arms after passing through the refracting surfaces of the
prisms can be approximated as

d(σ0) =
d0

cos 30◦
× sin

(
90◦ − sin−1(sin(30◦)n(σ0))

)
(5)

Thus, the maximum OPD can also be expressed as

OPDmax = Nλ1 = 2d(σ0)sin β1 (6)

where β1 is the angle between each wave front and the FLP when the wavelength of the
incident light is λ1. Since β1 is small, substituting Equation (3) into Equation (6), we can
approximately get

N = 2d(σ0)σ1

(
sin−1(0.5n(σ0))− sin−1(0.5n(σ1))

)
(7)

Assuming that the number of fringes increases by one when the wavenumber of the
incident light changes to σ2, the same way we obtain

N + 0.5 = 2d(σ0)σ2

(
sin−1(0.5n(σ0))− sin−1(0.5n(σ2))

)
(8)

The difference between these two wavenumbers is the maximum spectral resolution.
When defining the function,

f (σ) = σ sin−1(0.5n(σ)) (9)

Combining Equation (7) and Equation (8), we can get

0.25 = d(σ0)
(
(σ2 − σ1)sin−1(0.5n(σ0))− ( f (σ2)− f (σ1))

)
(10)

Since the difference between σ1, σ2 and σ0 is small at a given tuning, the following
approximation can be made:

f (σ2)− f (σ1) = f ′(σ0)(σ2 − σ1) (11)
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where f ′(σ) denotes the derivative function of f (σ). Substituting Equation (11) into Equation
(10), we can get the maximum spectral resolution:

σ2 − σ1 =
1

4d(σ0)
(

sin−1(0.5n(σ0))− f ′(σ0)
) (12)

The theoretical spectral resolving power of the system at wavenumber σ can be
expressed by the following equation:

R =
σ

δσ
= 4σd(σ)

(
sin−1(0.5n(σ))− f ′(σ)

)
(13)

The variation of the theoretical spectral resolving power of the spectrometer is
shown in Figure 4. The theoretical spectral resolving power in the spectral range (10,000
cm−1~25,641 cm−1) is approximately 1381~27,595; that is, the highest spectral resolution
is approximately 0.014 nm/390 nm (0.93 cm−1/25,641 cm−1). In some applications, the
required spectral resolving power differs in different spectral ranges, allowing the selection
of the appropriate material and apex angle for the prisms accordingly.
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Next, consider the tuning angles of the system. According to the Nyquist–Shannon
theorem, spectral information can be recovered if a detector uniformly samples an inter-
ferogram at a frequency that exceeds the fringe frequency by at least a factor of two. The
spectral range of an arbitrary tuning is limited by the maximum fringe frequency of the
interferogram, which is determined by the pixel pitch of the detector. In the simulation in
this paper, six tuning steps are required to achieve detection in the range of 0.39 µm to 1
µm: the angles of the mirror tilt with respect to its outgoing optical axis are 20.99◦, 20.51◦,
20.01◦, 19.44◦, 18.78◦, and 18.19◦, respectively corresponding to Littrow wavelengths of
0.398 µm, 0.420 µm, 0.450 µm, 0.500 µm, 0.600 µm, and 0.800 µm. The bimirror is tilted
at twice the angle of the mirror to ensure that its outgoing optical axis is aligned with the
incoming optical axis of the mirror.

Finally, consider the usable FOV. In SHS, the limiting off-axis angles are reached when
the OPD at the edge of the fringe pattern changes by 1/2 wavelength. Since the usable
FOV is negatively correlated with the spectral resolving power, the usable FOV when
the incident light is at the wavelength with maximum spectral resolving power (0.39 µm)
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determines the usable FOV of the instrument. By setting the conditions to get a series of
solutions and fitting the relationship between ϕ and φ,

ϕ2

(0.06◦)2 +
φ2

(0.20◦)2 ≤ 1 (14)

where ϕ denotes the angle between the on-axis rays and the component of the off-axis
rays in the dispersion plane and φ denotes the angle between the off-axis rays and the
dispersion plane. The FOV of this system is comparable to that of the typical prism-based
SHS shown in Figure 1 in cases of equal spectral resolving power.

2.5. Simplification of the Motion Control System

Tuning the spectrometer with the structure shown in Figure 2 requires tilting four
optics: two bimirrors and two mirrors. The motion control system is more complex than
that of a grating-based TSHS, which requires tilting only two gratings. We drew on the
orthogonal interferometer based on a Michelson interferometer designed by Li Yixuan
et al. [20] and modified it into the form of a Mach–Zehnder interferometer. After simplifying
the motion control system, it allows tuning by tilting only two optics at the expense of a
larger spectrometer size. As shown in Figure 5a, the collimated light is divided by the beam
splitter into arm A and arm B. Arm A contains mirror 1 and arm B contains a bimirror.
The angle between the two mirrors of the bimirror is 90◦. The mirror 1 and bimirror, each
placed at 22.5◦, reflect the beams onto a right-angle prism coated with mirrors. Then the
two beams incident parallelly to prism 1 and prism 2, respectively. The bimirror acts like a
roof prism, deflecting the beam top-to-bottom.
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the motion control system. (b) Schematic diagram of the anti-aliasing prisms of the two arms. The
tilting angle of the half-surfaces is exaggerated in this diagram. As a comparison, the dashed lines
show the shape before modification.

When the beams of the two arms are incident into the prisms placed in the same
direction, the cross-section of the beam of arm B is upside down. Thus, while the two
beams are refracted by the prisms in a same outgoing direction, they are equivalent to
being tilted at the same angle relative to the optical axis in opposite directions. After this,
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the beams of the two arms pass through the bimirror assembly and mirror 2 and return
to the right-angle prism in turn. Then, the beam of arm A passes through mirror 1 again
and the beam of arm B passes through the bimirror again, being deflected bottom-to-top.
Finally, the two beams return to the beam splitter for recombination.

This modified structure assembles the two bimirrors of the two arms of the prism–
bimirror–mirror TSHS into a bimirror assembly by fixing them together and tilting them
synchronously. Similarly, the two mirrors of the two arms are combined into mirror 2.
Therefore, tuning can be performed by simply tilting the bimirror assembly and mirror 2
around the rotating spindle, simplifying the motion control system.

2.6. Anti-Aliasing Design

One of the major limitations of SHS is that the symmetry in achieved spectrum from
the Fourier transform duplicates all spectrum features at locations on either side of the
Littrow wavelength λ0, which is referred to as aliasing. If λ1 > λ0, the spatial frequency
f of the interferogram corresponds to λ1 one-to-one; if λ2 < λ0, f also corresponds to λ2

one-to-one. Therefore, a spatial frequency f corresponds to two wavelengths, λ1 and λ2.
We need an additional mechanism to tell the difference between λ1 and λ2.

For grating-based SHSs, each grating can be tilted by a small, constant angle around
the axis of symmetry which is perpendicular to the tuning spindle. This tilting produces
a constant frequency in a direction orthogonal to the interference fringes generated by
dispersion. However, in prism-based SHSs, if the mirrors are tilted, the FLP of the fringes
produced by dispersion is at a different location than the FLP of the fringes orthogonal to
the direction of dispersion. If the prisms are tilted, this will lead to a change in the refractive
angle, which may have an effect on the accuracy of the spectrum [20]. This is acceptable if
the resolution of the spectrometer is not very high.

We consider tilting only half of the areas of the refracting surfaces of the prisms of
both arms by a small angle (0.1◦) around their axes of symmetry which are perpendicular
to the tuning spindle, as shown in Figure 5b. This results in both a 1D interferogram and
a 2D interferogram on the FLP, where the 1D interferogram recovers the exact spectrum
and the 2D interferogram is used to differentiate between λ1 and λ2. Now, we describe the
principle of the 2D interferogram. The beams pass through half of the refracting surfaces
that are tilted and not only produce the angle β with the optical axis in the dispersion
plane, but also produce an angle γ with the optical axis in the direction orthogonal to the
dispersion plane. When the beams are recombined by the beam splitter, the angles become
+γ and -γ, because the beam from one arm is transmitted and the beam from the other arm
is reflected. The plus or minus sign of γ is determined by which arm the beam is coming
from and is independent of the wavelength, which makes the states of the outgoing beams
corresponding to λ1 and λ2 different. The interferograms are modulated in the direction
orthogonal to the dispersion plane. In the simulations in this paper, when λ1 > λ0, the
interferogram is deflected clockwise and the impact spectrum of the 2D power spectrum
is located in the first and third quadrants; when λ2 < λ0, the interferogram is deflected
counterclockwise and the impact spectrum is located in the second and fourth quadrants.

3. Simulation Experiments and Results
The system was simulated using ZEMAX. We used a structure that has a simplified

motion control system, as shown in Figure 5. The parameters of some components are
given in Section 2.3 and the dimensions of the optics of the interferometer are shown in
Table 1. A 40 mm × 10 mm rectangular light source with collimation characteristics is
selected, eliminating the setting of entrance optics. The imaging lenses are designed as
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object-space telecentric lenses. The aperture stop is set at the focal plane of the imaging
system to act as a band-pass filter.

Table 1. The geometrical dimensions of the optics of the interferometer in the simulation.

Components Dimensions

Cube beam splitter (50:50) 60 mm × 60 mm × 60 mm
Mirror 1 50 mm × 60 mm

Bimirror * 35 mm × 60 mm
Right-angle prism * 70 mm × 70 mm

Prisms 1 and 2 50 mm × 25 mm × 28.87 mm
Bimirror assembly * 40 mm × 40 mm

Mirror 2 44 mm × 74 mm
* These optics are sized for each reflecting surface.

First, the wavelength of the incident light is set to 390 nm and the Littrow wavelength
is set to 398 nm (the angle of mirror 2 tilt is set to 20.99◦ according to Section 2.4 and the
bimirror assembly is tilted at twice the angle of mirror 2). The interferogram received by the
detector, the 2D power spectrum obtained by 2D Fourier transform of the 2D interferogram,
and the 1D spectrum obtained by 1D Fourier transform of the 1D interferogram are shown
in Figure 6; the upper half of the interferogram is the 2D interferogram and the lower half
is the 1D interferogram. Since the impact spectrum of the 2D power spectrum is located
in the second and fourth quadrants, only the portion of the 1D spectrum that is smaller
than the Littrow wavelength is intercepted. From the 1D spectrum, the full width at half
maximum (FWHM) is about 0.019 nm, which is close to the theoretical maximum spectral
resolution of 0.014 nm calculated from Equation (12).
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Similarly, set the incident light wavelengths to 530 nm and 997 nm and repeat the
work above. The FWHM values are about 0.071 nm and 1.07 nm, respectively, while
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the corresponding theoretical maximum spectral resolutions are 0.061 nm and 0.72 nm,
respectively. The spectral resolving power obtained from the simulation is smaller than the
theoretical spectral resolving power, which is a normal phenomenon. This discrepancy is
mainly due to asynchronous sampling.

To verify the constancy of the FLP location, we can observe the patterns on the detector.
If the FLP is not optically conjugated to the detector plane, the beams from the two arms
do not completely overlap at the detector plane and there should be regions around
the interferogram where the irradiance is not zero that have no fringes. Therefore, the
interferograms in Figure 6 verify that the FLPs of different wavelengths are all precisely
located at the optical conjugate plane of the detector plane.

To verify the FOV, a 1D interferogram of the limiting off-axis rays is traced in ZEMAX.
The wavelength is set to 397 nm because the usable FOV at this wavelength is close to
that of the instrument and the interference curve is easy to observe. The angles of the
off-axis rays are calculated according to Equation (14); for example, ϕ = 0.052◦ and φ = 0.1◦.
Figure 7a shows the interference curves for the on-axis rays and the limiting off-axis rays.
The 0th pixel is the center of the detector. It shows that the OPD changes by about 1/2 of
the wavelength at the edge of the fringe pattern, which is consistent with the theoretical
result. To verify that the usable FOV of the instrument is applicable across the spectral
range, another wavelength of 825 nm is set, as shown in Figure 7b. The OPD changes less
than 1/2 of the wavelength. To verify that the usable FOV also applies to 2D interferograms,
the curves of a row of the 2D interferograms at 397 nm are shown in Figure 7c. The OPD
changes by about 1/2 of the wavelength.
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4. Conclusions
In this paper, we address the problem in current designs of prism-based SHSs: the

FLP moves with changes in wavelength. We propose a design of a prism-based TSHS
that maintains a constant FLP location and has a dual output system, utilizing a prism–
bimirror–mirror structure. The theoretical spectral resolving power is higher than 1300 in
the spectral range from 10,000 cm−1 to 25,641 cm−1 and higher than 10,000 in the spectral
range from 20,000 cm−1 to 25,641 cm−1, based on an example. Additionally, we design an
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orthogonal TSHS in the form of a Mach–Zehnder interferometer to simplify the motion
control system. Given its ability to retain the advantages of prism-based SHSs as well as to
eliminate the need to calculate the FLP location and move the imaging device based on the
predicted wavelength of incident light during use, this optical implementation shows good
potential for the further development and practical application of SHS, particularly when
a broadband spectrum is required. Moreover, methods to improve the FOV and spectral
resolving power of prism-based SHSs need further research.
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