
Academic Editor: Pedro Couto

Received: 4 October 2024

Revised: 22 December 2024

Accepted: 8 January 2025

Published: 10 January 2025

Citation: Clark, A.; Jouaneh, M.K. A

System for Robotic Extraction of

Fasteners. Appl. Sci. 2025, 15, 618.

https://doi.org/10.3390/

app15020618

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A System for Robotic Extraction of Fasteners
Austin Clark and Musa K. Jouaneh *

Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island,
Kingston, RI 02881, USA
* Correspondence: jouaneh@uri.edu

Abstract: Automating the extraction of mechanical fasteners from end-of-life (EOL) elec-
tronic waste is challenging due to unpredictable conditions and unknown fastener locations
relative to robotic coordinates. This study develops a system for extracting cross-recessed
screws using a Deep Convolutional Neural Network (DCNN) for screw detection, in-
tegrated with industrial robot simulation software. The simulation models the tooling,
camera, environment, and robot kinematics, enabling real-time control and feedback be-
tween the robot and the simulation environment. The system, tested on a robotic platform
with custom tooling, including force and torque sensors, aimed to optimize fastener re-
moval. Key performance indicators included the speed and success rate of screw extraction,
with success rates ranging from 78 to 89% on the first pass and 100% on the second. The
system uses a state-based program design for fastener extraction, with real-time control
via a web-socket interface. Despite its potential, the system faces limitations, such as
longer cycle times, with single fastener extraction taking over 30 s. These challenges can be
mitigated by refining the tooling, DCNN model, and control logic for improved efficiency.

Keywords: robotics; computer vision; DCNN; automation; disassembly

1. Introduction
There is a growing need for more intelligent and adaptive industrial robot capabilities

within robotic work cells in scenarios regarding servicing, managing EOL components,
and reclaiming e-waste materials in a non-destructive manner. A vast amount of prelim-
inary research into this field focuses on feasibility assessments of product disassembly
for component re-purposing or recovery by analyzing product waste streams and the
complexity of high-value component assemblies [1,2]. Other areas of focus are various non-
destructive or semi-destructive initiatives for reclaiming materials from EOL electric vehicle
waste streams [1,3,4]. Some methods proposed include variations in human–machine col-
laboration for EOL battery recycling where humans can handle non-trivial tasks while
collaborating robot platforms can manage high-volume repetitive taskings like removing
screws and bolts [4,5]. Other areas of automated disassembly focus on consumer products
like LCD screens [6,7], which, given the lack of predetermined knowledge of fastener
position, still rely on semi-destructive methods like using angle grinders and power drills
to separate components.

Mechanical fastener extraction constitutes approximately 40% of all disassembly op-
erations [8]. Several researchers have addressed the automated disassembly of fasteners.
DiFilippo and Jouaneh [9] developed a system to remove screws from the backs of laptops
automatically using non-AI vision algorithms. Li et al. [8] presented a device for automated
hexagonal-headed threaded fastener removal that used a spiral search strategy to overcome
uncertainties in the location of the fasteners. Chen et al. [10] introduced a method that

Appl. Sci. 2025, 15, 618 https://doi.org/10.3390/app15020618

https://doi.org/10.3390/app15020618
https://doi.org/10.3390/app15020618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5754-0364
https://doi.org/10.3390/app15020618
https://www.mdpi.com/article/10.3390/app15020618?type=check_update&version=1

Appl. Sci. 2025, 15, 618 2 of 17

utilized images of a screw to assist in aligning the screw–tool interaction, with torque
monitoring employed throughout the screw removal process.

With recent advances in vision-based AI in the classification and accurate identification
of mechanical components using varying region-based convolutional neural networks
(R-CNNs) and DCNN methods, many researchers [11–19] have reported on the use of
vision-based AI in screw detection. This makes it possible to integrate this technology
with robotic systems for applications such as reclaiming e-waste components. This task is
traditionally prohibitively expensive with human operators and needs to be more efficient
when relying on existing automated methods.

While there is a significant interest in the use of AI methods for screw detection, only a
few studies [20,21] have addressed the development of AI-based robotic screw disassembly
systems. This paper focuses on developing a robotic system capable of extracting cross-
recessed mechanical fasteners through an application programming interface (API) layer.
This system integrates a standalone DCNN vision system, explicitly trained to detect cross-
recessed screws, with robotic simulation software designed for industrial robot applications.
The system was tested on cross-recessed screw (CRS) targets with a 0.5-inch (12.7 mm)
diameter at camera ranges of 280–500 mm. It employs a stereoscopic camera system with an
RGB (red, green, blue) imager. The primary contribution of this work lies in the integration
of a DCNN vision-based system, simulation software, and robotic framework for screw
removal, as well as the development of a two-stage imaging process for screw disassembly.
Unlike previous work [20,21], which focused on the disassembly of hexagonal-headed
screws, this research explicitly targets CRS disassembly. Figure 1 illustrates the input
images used to train this study’s DCNN implemented for fastener detection.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 2 of 18

for automated hexagonal-headed threaded fastener removal that used a spiral search
strategy to overcome uncertainties in the location of the fasteners. Chen et al. [10]
introduced a method that utilized images of a screw to assist in aligning the screw–tool
interaction, with torque monitoring employed throughout the screw removal process.

With recent advances in vision-based AI in the classification and accurate
identification of mechanical components using varying region-based convolutional neural
networks (R-CNNs) and DCNN methods, many researchers [11–19] have reported on the
use of vision-based AI in screw detection. This makes it possible to integrate this
technology with robotic systems for applications such as reclaiming e-waste components.
This task is traditionally prohibitively expensive with human operators and needs to be
more efficient when relying on existing automated methods.

While there is a significant interest in the use of AI methods for screw detection, only
a few studies [20,21] have addressed the development of AI-based robotic screw
disassembly systems. This paper focuses on developing a robotic system capable of
extracting cross-recessed mechanical fasteners through an application programming
interface (API) layer. This system integrates a standalone DCNN vision system, explicitly
trained to detect cross-recessed screws, with robotic simulation software designed for
industrial robot applications. The system was tested on cross-recessed screw (CRS) targets
with a 0.5-inch (12.7 mm) diameter at camera ranges of 280–500 mm. It employs a
stereoscopic camera system with an RGB (red, green, blue) imager. The primary
contribution of this work lies in the integration of a DCNN vision-based system,
simulation software, and robotic framework for screw removal, as well as the
development of a two-stage imaging process for screw disassembly. Unlike previous
work [20,21], which focused on the disassembly of hexagonal-headed screws, this research
explicitly targets CRS disassembly. Figure 1 illustrates the input images used to train this
study’s DCNN implemented for fastener detection.

Figure 1. Training images for the classification of cross-recessed screws [12].

The remainder of this paper is organized as follows. Section 2 of this work focuses on
methodology, including introducing the simulation software, and how other software

Figure 1. Training images for the classification of cross-recessed screws [12].

The remainder of this paper is organized as follows. Section 2 of this work focuses
on methodology, including introducing the simulation software, and how other software
was integrated to provide detection and fastener removal capabilities. Section 3 provides
a system overview, which incorporates a discussion of the design of the hardware and
software components implemented and introduces some of the mathematical and robotics

Appl. Sci. 2025, 15, 618 3 of 17

concepts for the problem domain. Within Section 3, an introduction of two of the state-
machine-based extraction methods tested throughout the evaluation phase in this work is
provided. This is followed by a brief discussion of managing object detections and how
that pertained to the output of the DCNN predictions to the video stream provided by the
robot’s tooling. The evaluation in Section 4 provides a single sample extraction plot that
incorporates readings from the custom tooling integrated with current and force sensors,
a state sequence index plot, and readings from the robot position and camera detections.
Bulk run data against the testing artifact introduced later in this work are provided to give
a general sense of the system’s capability with respect to two of the extraction processes
designed and used in this paper. A conclusion is provided in Section 5 regarding the
evaluation and discussion of the aggregate data from bulk CRS extraction testing and what
was accomplished in this work.

2. Methodology
In this work, we used the RoboDK software (v5.5.2) as the simulator for our system.

RoboDK is software for simulating, programming, and implementing program logic for
industrial robots before deploying to physical hardware. This software platform allows
users to create and simulate robotic operations for various robot brands and applications,
and it also generates robot programs for the specified robots, thereby reducing downtime
and improving productivity. With its extensive library of robot models and post-processors,
RoboDK is easily adaptable via a standard API to different robot controllers and platforms,
with minimal changes to the source code necessary to retrofit.

RoboDK also supports online programming through its user interface, which allows
users to control their robots in real time, adapt to changing manufacturing requirements,
and troubleshoot any issues that may arise during functional testing. Leveraging the
online programming functionality and extensive API, users can stream the same code
used for offline testing in a physical simulation directly to the robot’s controller via one of
the software libraries of drivers. Figure 2 illustrates the two communication methods for
interfacing with physical robot hardware. The online programming method in the right
half of the figure is primarily employed throughout this work.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 3 of 18

was integrated to provide detection and fastener removal capabilities. Section 3 provides
a system overview, which incorporates a discussion of the design of the hardware and
software components implemented and introduces some of the mathematical and robotics
concepts for the problem domain. Within Section 3, an introduction of two of the state-
machine-based extraction methods tested throughout the evaluation phase in this work is
provided. This is followed by a brief discussion of managing object detections and how
that pertained to the output of the DCNN predictions to the video stream provided by the
robot’s tooling. The evaluation in Section 4 provides a single sample extraction plot that
incorporates readings from the custom tooling integrated with current and force sensors,
a state sequence index plot, and readings from the robot position and camera detections.
Bulk run data against the testing artifact introduced later in this work are provided to give
a general sense of the system’s capability with respect to two of the extraction processes
designed and used in this paper. A conclusion is provided in Section 5 regarding the
evaluation and discussion of the aggregate data from bulk CRS extraction testing and
what was accomplished in this work.

2. Methodology
In this work, we used the RoboDK software (v5.5.2) as the simulator for our system.

RoboDK is software for simulating, programming, and implementing program logic for
industrial robots before deploying to physical hardware. This software platform allows
users to create and simulate robotic operations for various robot brands and applications,
and it also generates robot programs for the specified robots, thereby reducing downtime
and improving productivity. With its extensive library of robot models and post-
processors, RoboDK is easily adaptable via a standard API to different robot controllers
and platforms, with minimal changes to the source code necessary to retrofit.

RoboDK also supports online programming through its user interface, which allows
users to control their robots in real time, adapt to changing manufacturing requirements,
and troubleshoot any issues that may arise during functional testing. Leveraging the
online programming functionality and extensive API, users can stream the same code
used for offline testing in a physical simulation directly to the robot’s controller via one of
the software libraries of drivers. Figure 2 illustrates the two communication methods for
interfacing with physical robot hardware. The online programming method in the right
half of the figure is primarily employed throughout this work.

Figure 2. RoboDK communication channels for executing robot programs on physical hardware. Figure 2. RoboDK communication channels for executing robot programs on physical hardware.

In this project, the simulated robot continuously received commands, such as inverse
kinematic endpoints, movement constraints (e.g., linear or joint move limits), tool change
commands, and speed commands, through the API. These commands were converted
in real time into driver calls, synchronizing the movements of the physical system. The

Appl. Sci. 2025, 15, 618 4 of 17

driver also provided feedback such as error states, driver status, and real-time data like the
actual robot position. This feedback integrated into the state logic, enabling the system to
queue commands (to prevent sending a new move command while others are pending) and
facilitate decision-making in the state-based program logic. For instance, the system can
avoid specific joint movements based on constraints set on the simulated robot’s joints to
prevent potential collisions. The primary functionalities that enable this simulation suite’s
capabilities are given below.

• Ease of use through extensive API (C#, Python (3.7.8), MATLAB (R2022a));
• Robotics tools (kinematic model, trajectory planning, pose transformations);
• Comprehensive post-processor system (offline programming);
• Extensive driver support for major brands of industrial and collaborative robots (online

programming).

The physical system to be simulated consisted of a UR5 robot equipped with task-
oriented tooling and stereoscopic camera equipment. Figure 3 shows the physical system
and its simulated version in RoboDK.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 4 of 18

In this project, the simulated robot continuously received commands, such as inverse
kinematic endpoints, movement constraints (e.g., linear or joint move limits), tool change
commands, and speed commands, through the API. These commands were converted in
real time into driver calls, synchronizing the movements of the physical system. The
driver also provided feedback such as error states, driver status, and real-time data like
the actual robot position. This feedback integrated into the state logic, enabling the system
to queue commands (to prevent sending a new move command while others are pending)
and facilitate decision-making in the state-based program logic. For instance, the system
can avoid specific joint movements based on constraints set on the simulated robot’s joints
to prevent potential collisions. The primary functionalities that enable this simulation
suite’s capabilities are given below.

• Ease of use through extensive API (C#, Python (3.7.8), MATLAB (R2022a));
• Robotics tools (kinematic model, trajectory planning, pose transformations);
• Comprehensive post-processor system (offline programming);
• Extensive driver support for major brands of industrial and collaborative robots

(online programming).
The physical system to be simulated consisted of a UR5 robot equipped with task-

oriented tooling and stereoscopic camera equipment. Figure 3 shows the physical system
and its simulated version in RoboDK.

(a) (b)

Figure 3. (a) RoboDK fastener extraction simulation. (b) UR5 fastener extraction platform.

The simulated variant of the UR5 is shown with collision detection boundaries,
which, when executing moves, would predetermine and halt the online robot if a collision
was estimated. Joint limits were implemented at the shoulder and wrist joints within the
simulation to provide only kinematic solutions that would not be obstructed by the robot’s
wrist-mounted electronics assembly or cable spine. In addition, the RoboDK simulation
suite employs the UR5’s Denavit–Hartenberg parameters for an accurate kinematic
model. These parameters are used for analytical kinematic solutions to the tool center
points (TCPs) defined on the tool carriage in the simulation within Figure 4.

Figure 3. (a) RoboDK fastener extraction simulation. (b) UR5 fastener extraction platform.

The simulated variant of the UR5 is shown with collision detection boundaries, which,
when executing moves, would predetermine and halt the online robot if a collision was
estimated. Joint limits were implemented at the shoulder and wrist joints within the
simulation to provide only kinematic solutions that would not be obstructed by the robot’s
wrist-mounted electronics assembly or cable spine. In addition, the RoboDK simulation
suite employs the UR5’s Denavit–Hartenberg parameters for an accurate kinematic model.
These parameters are used for analytical kinematic solutions to the tool center points (TCPs)
defined on the tool carriage in the simulation within Figure 4.

A tool assembly was designed to carry an electric screwdriver, a stereoscopic camera,
and a cross-profile laser and mount assembly. A compact suite of electronics (not shown)
was also implemented for ingesting incoming control signals, providing signals to the
motor and adjacent tools, and measuring compressive force and torque experienced by
the tool during operation to be returned to the control computer. A view of the completed
tool assembly is shown in Figure 5a, followed by an exploded assembly view in Figure 5b.
Figure 4 shows the tool frame definitions of the tool assembly in the RoboDK software.
Three frames were defined in the RoboDK simulation application with respect to the CAD

Appl. Sci. 2025, 15, 618 5 of 17

geometry. These were the laser, the electric screwdriver, and the camera frame. The frame
definition of the camera was placed with respect to the RGB imager origin (as defined by the
Intel RealSense D435 camera datasheet) and matched the camera coordinate system. The
pose of the camera imager frame was stored by the camera streaming script for deprojection
with each instance of recorded target positions in the camera frame.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 18

Figure 4. Simulation suite CAD-based TCP definitions of tools.

A tool assembly was designed to carry an electric screwdriver, a stereoscopic camera,
and a cross-profile laser and mount assembly. A compact suite of electronics (not shown)
was also implemented for ingesting incoming control signals, providing signals to the
motor and adjacent tools, and measuring compressive force and torque experienced by
the tool during operation to be returned to the control computer. A view of the completed
tool assembly is shown in Figure 5a, followed by an exploded assembly view in Figure
5b. Figure 4 shows the tool frame definitions of the tool assembly in the RoboDK software.
Three frames were defined in the RoboDK simulation application with respect to the CAD
geometry. These were the laser, the electric screwdriver, and the camera frame. The frame
definition of the camera was placed with respect to the RGB imager origin (as defined by
the Intel RealSense D435 camera datasheet) and matched the camera coordinate system.
The pose of the camera imager frame was stored by the camera streaming script for
deprojection with each instance of recorded target positions in the camera frame.

RoboDK was chosen as the foundation for the simulation software in this work. The
primary reasons for its selection include its support for online driver programming, built-
in driver support for the UR product line, extensive documentation of its Python API, and
a cost-effective licensing scheme suitable for academic applications. Similarly, the Intel
RealSense D435 was selected over various industry stereoscopic camera systems based on
several criteria: an easily implementable and open-source programming API, a calibration
suite, widespread academic use, extensive documentation, and a compact form factor. The
DCNN was employed within the tiny-yolo v2 framework using a model we previously
developed [12]. It was chosen for its compatibility with the existing Python version that
constituted most of the project’s code base rather than being retrained on a newer model.
The DCNN model we used yielded an average precision (AP) between 92.6% and 99.2%
for the different testing datasets. Further information on the DCNN model and the
training details are discussed in [12]. The UR5 robotic arm was utilized as an available
laboratory asset. Still, the project’s code base was designed to leverage RoboDK’s features,
enabling the substitution of the UR5 in the software suite with a different 6-axis robotic
arm, incorporating new geometry, drivers, and a kinematic model in the future.

Figure 4. Simulation suite CAD-based TCP definitions of tools.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 6 of 18

(a) (b)

Figure 5. (a) Isometric render of tool assembly. (b) Exploded view of tool assembly.

Additionally, tool assembly components, such as the laser assembly, electric
screwdriver, and controller electronics, were either custom-made or employed
educational-grade components (as opposed to industry-grade) for cost efficiency.
Hardware solutions for power conversion, force and torque sensing, switching, and
control were custom-implemented using consumer off-the-shelf components such as buck
converters, relays, a microcontroller, and a motor driver shield.

3. System Overview
3.1. Camera Relationships

As an integration project, this work focuses on digitizing and implementing existing
concepts to design a process and augment the automated CRS extraction system to
achieve desirable and consistent behavior. The discussion in this section uses
mathematical concepts described in various robotics modeling texts, such as the Siciliano
text [22]. Many of the mathematical concepts presented in this section were applied using
multiple software APIs such as the Intel RealSense pyrealsense2 package and RoboDK’s
robomath package.

In this work, OB represents the base coordinate frame for the robot, OC represents the
coordinate frame for the camera system, and OO represents the target coordinate frame.
In addition to these coordinate frames, a world frame, OW, exists in which all other
coordinate frames can be defined in absolute coordinates with respect to one another.
Note that the world frame exists at an arbitrary and stationary point in the environment
differing from the robot base frame. Figure 6 shows the pinhole camera model. This model
describes the mathematical relationship between the coordinates of a point in three-
dimensional space and its projection onto an image plane.

Figure 5. (a) Isometric render of tool assembly. (b) Exploded view of tool assembly.

RoboDK was chosen as the foundation for the simulation software in this work. The
primary reasons for its selection include its support for online driver programming, built-
in driver support for the UR product line, extensive documentation of its Python API,
and a cost-effective licensing scheme suitable for academic applications. Similarly, the
Intel RealSense D435 was selected over various industry stereoscopic camera systems
based on several criteria: an easily implementable and open-source programming API, a
calibration suite, widespread academic use, extensive documentation, and a compact form
factor. The DCNN was employed within the tiny-yolo v2 framework using a model we

Appl. Sci. 2025, 15, 618 6 of 17

previously developed [12]. It was chosen for its compatibility with the existing Python
version that constituted most of the project’s code base rather than being retrained on a
newer model. The DCNN model we used yielded an average precision (AP) between 92.6%
and 99.2% for the different testing datasets. Further information on the DCNN model and
the training details are discussed in [12]. The UR5 robotic arm was utilized as an available
laboratory asset. Still, the project’s code base was designed to leverage RoboDK’s features,
enabling the substitution of the UR5 in the software suite with a different 6-axis robotic
arm, incorporating new geometry, drivers, and a kinematic model in the future.

Additionally, tool assembly components, such as the laser assembly, electric screw-
driver, and controller electronics, were either custom-made or employed educational-
grade components (as opposed to industry-grade) for cost efficiency. Hardware solutions
for power conversion, force and torque sensing, switching, and control were custom-
implemented using consumer off-the-shelf components such as buck converters, relays, a
microcontroller, and a motor driver shield.

3. System Overview
3.1. Camera Relationships

As an integration project, this work focuses on digitizing and implementing existing
concepts to design a process and augment the automated CRS extraction system to achieve
desirable and consistent behavior. The discussion in this section uses mathematical concepts
described in various robotics modeling texts, such as the Siciliano text [22]. Many of the
mathematical concepts presented in this section were applied using multiple software APIs
such as the Intel RealSense pyrealsense2 package and RoboDK’s robomath package.

In this work, OB represents the base coordinate frame for the robot, OC represents the
coordinate frame for the camera system, and OO represents the target coordinate frame. In
addition to these coordinate frames, a world frame, OW, exists in which all other coordinate
frames can be defined in absolute coordinates with respect to one another. Note that the
world frame exists at an arbitrary and stationary point in the environment differing from
the robot base frame. Figure 6 shows the pinhole camera model. This model describes the
mathematical relationship between the coordinates of a point in three-dimensional space
and its projection onto an image plane.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 7 of 18

Figure 6. Frontal perspective pinhole camera model for coordinate deprojection.

This work focuses on inverting the generic pinhole camera model relationship and
deprojecting points from an image projection. Deprojection is the act of taking points from
a camera’s 2D image perspective and computing their location in 3D space using camera
properties, the image coordinates of said points (in pixels), and relative distance
measurements. 𝑝௫஼ = ሺ𝑋ூ − 𝑋ைሻ𝑝௭஼𝛼௫𝑓 (1)

𝑝௬஼ = ሺ𝑌ூ − 𝑌ைሻ𝑝௭஼𝛼௬𝑓 (2)

Equations (1) and (2) give the x and y coordinates, respectively, of an object in the
camera frame, given the focal length of the camera (f). αx and αy represent the pixel-to-
spatial sampling unit conversion (between pixels and millimeters) factors based on the
camera’s intrinsic properties. The size of the image (in pixels) and its relationship to the
center point of the image plane are given by the expressions 𝑋ூ − 𝑋ை and 𝑌ூ − 𝑌ை for the
x and y coordinates, respectively. Next, we form the 4 × 1 augmented target vector given
by Equation (3), in which 𝑝௫஼ and 𝑝௬஼ are obtained from deprojection methods, and 𝑝௭஼
is obtained from the camera stereoscopic sensors which define the object distance with
respect to the camera frame OC. To obtain the coordinates of the object in the world
reference frame, Equation (5) is used to multiply the 𝑃ை஼ vector by the 4 × 4 homogeneous
transformation matrix given by Equation (4), which describes the position and orientation
of the camera frame in the world frame.

𝑃ை஼ = ⎣⎢⎢
⎡𝑝௫஼ 𝑝௬஼𝑝௭஼1 ⎦⎥⎥

⎤
 (3)

𝑇஼ௐ = ൤ 𝑅஼ௐ 𝑃஼ௐ0 0 0 1 ൨ (4)

𝑃ைௐ = 𝑇஼ௐ𝑃ை஼ (5)𝑃ை஻ = 𝑇஻ௐିଵ𝑇஼ௐ𝑃ை஼ (6)

Figure 6. Frontal perspective pinhole camera model for coordinate deprojection.

This work focuses on inverting the generic pinhole camera model relationship and
deprojecting points from an image projection. Deprojection is the act of taking points from a

Appl. Sci. 2025, 15, 618 7 of 17

camera’s 2D image perspective and computing their location in 3D space using camera prop-
erties, the image coordinates of said points (in pixels), and relative distance measurements.

pC
x =

(XI − XO)pC
z

αx f
(1)

pC
y =

(YI − YO)pC
z

αy f
(2)

Equations (1) and (2) give the x and y coordinates, respectively, of an object in the
camera frame, given the focal length of the camera (f). αx and αy represent the pixel-to-
spatial sampling unit conversion (between pixels and millimeters) factors based on the
camera’s intrinsic properties. The size of the image (in pixels) and its relationship to the
center point of the image plane are given by the expressions XI − XO and YI − YO for the x
and y coordinates, respectively. Next, we form the 4 × 1 augmented target vector given
by Equation (3), in which pC

x and pC
y are obtained from deprojection methods, and pC

z is
obtained from the camera stereoscopic sensors which define the object distance with respect
to the camera frame OC. To obtain the coordinates of the object in the world reference frame,
Equation (5) is used to multiply the PC

O vector by the 4 × 4 homogeneous transformation
matrix given by Equation (4), which describes the position and orientation of the camera
frame in the world frame.

PC
O =


pC

x
pC

y

pC
z
1

 (3)

TW
C =

[
RW

C PW
C

0 0 0 1

]
(4)

PW
O = TW

C PC
O (5)

PB
O = TW

B
−1

TW
C PC

O (6)

Alternatively, Equation (6) can be used to represent the target PC
O with respect to the

base of the robot PB
O, where TW

B is the transformation matrix between the base frame and
the world frame. This representation of the coordinates is ideal in software and can be used
to issue open-loop move commands to an inverse kinematics endpoint.

3.2. Software Design

The deployment of this system required the development of a Python package capable
of interfacing with all incorporated hardware and software components. This Python
Package element consisted of numerous Python modules for any operational instance of
the system, as shown in Figure 7. For details, see [23]. The computer vision components
(OpenCV and the Intel RealSense python API) of this package interface with the external
CRS Detection package via the usage of the TFNet methods (which expose the frame predic-
tions of the tiny-yolo-v2 DCNN vision system). In addition, several robot development kit
(RDK) station files were developed to execute various capabilities and test cases within this
software package. Several batch scripts were created to streamline the process of launching
everything, as multiple Python processes are necessary at any given time when the system
is running. Lastly, a state-machine-based microcontroller program is stored within the
automated CRS extraction software package, which must be compiled and uploaded to
the microcontroller unit (MCU) before the system can operate. This system ultimately
relies upon the various RoboDK Python APIs to interface with the simulation environment

Appl. Sci. 2025, 15, 618 8 of 17

and communicate via the simulation software suite to the physical robot controller via a
robot driver.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 8 of 18

Alternatively, Equation (6) can be used to represent the target 𝑃ை஼ with respect to the
base of the robot 𝑃ை஻, where 𝑇஻ௐ is the transformation matrix between the base frame and
the world frame. This representation of the coordinates is ideal in software and can be
used to issue open-loop move commands to an inverse kinematics endpoint.

3.2. Software Design

The deployment of this system required the development of a Python package
capable of interfacing with all incorporated hardware and software components. This
Python Package element consisted of numerous Python modules for any operational
instance of the system, as shown in Figure 7. For details, see [23]. The computer vision
components (OpenCV and the Intel RealSense python API) of this package interface with
the external CRS Detection package via the usage of the TFNet methods (which expose
the frame predictions of the tiny-yolo-v2 DCNN vision system). In addition, several robot
development kit (RDK) station files were developed to execute various capabilities and
test cases within this software package. Several batch scripts were created to streamline
the process of launching everything, as multiple Python processes are necessary at any
given time when the system is running. Lastly, a state-machine-based microcontroller
program is stored within the automated CRS extraction software package, which must be
compiled and uploaded to the microcontroller unit (MCU) before the system can operate.
This system ultimately relies upon the various RoboDK Python APIs to interface with the
simulation environment and communicate via the simulation software suite to the
physical robot controller via a robot driver.

Figure 7. High-level software dependencies and architecture used to interface with robot hardware.

Once fully integrated with all hardware, several extraction methods were defined
and are outlined in this section using state-based behavioral diagrams. The methods vary
in how the images of the targets are acquired and handled throughout an extraction
attempt to provide the most accurate open-loop move commands for the tooling. Figure
8 depicts the primary state machine governing logic, which uses a two-stage imaging
process for target deprojection and globalization. Table 1 provides the complete non-
abbreviated state transition behavior. This process provided higher successful extraction
rates after rigorous stereoscopic camera deprojection testing and an initial single-stage
imaging and extraction process. The comparison between the more basic and two-stage
methods is outlined below, and a single sample extraction run is presented later in this
section.

Figure 7. High-level software dependencies and architecture used to interface with robot hardware.

Once fully integrated with all hardware, several extraction methods were defined and
are outlined in this section using state-based behavioral diagrams. The methods vary in
how the images of the targets are acquired and handled throughout an extraction attempt
to provide the most accurate open-loop move commands for the tooling. Figure 8 depicts
the primary state machine governing logic, which uses a two-stage imaging process for
target deprojection and globalization. Table 1 provides the complete non-abbreviated state
transition behavior. This process provided higher successful extraction rates after rigorous
stereoscopic camera deprojection testing and an initial single-stage imaging and extraction
process. The comparison between the more basic and two-stage methods is outlined below,
and a single sample extraction run is presented later in this section.

Table 1. State transitions corresponding to the callouts in Figure 8.

Condition Meaning

a Target(s) acquired

b All targets extracted (or attempted)

c The current pose does not equal the staging pose

e Laser position reached/robot driver not busy

f Electric screwdriver position reached/robot driver not busy

g Laser pose inaccurate (user interaction)

h Electric screwdriver position reached/robot driver not busy

i Incremental robot move completed/robot driver not busy

j Force-sensing resistor (FSR) conductance threshold reached or exceeded

k Current threshold (in the motor driver board) reached

l Tool commands sent/command timeout reached

m Tool ramp-up timer completed

n Current threshold has not been reached

p FSR conductance threshold not reached

q All incremental moves completed

r Electric screwdriver pose inaccurate (user interaction)

s New target coordinates acquired from NN

u Wait interval elapsed

Appl. Sci. 2025, 15, 618 9 of 17Appl. Sci. 2025, 15, x FOR PEER REVIEW 9 of 18

Figure 8. Method 2 state machine for guiding the UR5 to extract CRS targets.

Table 1. State transitions corresponding to the callouts in Figure 8.

Condition Meaning
a Target(s) acquired
b All targets extracted (or attempted)
c The current pose does not equal the staging pose
e Laser position reached/robot driver not busy
f Electric screwdriver position reached/robot driver not busy
g Laser pose inaccurate (user interaction)
h Electric screwdriver position reached/robot driver not busy

Figure 8. Method 2 state machine for guiding the UR5 to extract CRS targets.

The two methods used were as follows:

Method #1—Single-Shot High-Level Imaging with DCNN

• A single high-level image is used for all target acquisitions. The image is taken with
a stereoscopic RGB imager positioned further than 350 mm and roughly positioned
above the workpiece such that all cross-recessed screws are in the field of view (FOV).

Method #2—Two-Level Imaging with DCNN

Appl. Sci. 2025, 15, 618 10 of 17

• A first level of DCNN imaging is used initially for the approximate locations of targets
(from height > 350 mm). These coordinates center the camera package’s RGB imager
directly over the target.

• A second level of DCNN imaging is used with the RGB camera centered over the target.
The second imaging stage is used at a height of less than 320 mm and greater than
300 mm (as close as possible with stereoscopic sensors still functioning accurately).

A challenge encountered in this work was the need to manage object detections
accurately within the robot’s workspace. The DCNN provided a continuous stream of
object detections at a consistent update interval (every 3–5 s, depending on the operational
mode). It was essential to implement a logic that prevented the addition of redundant
target datasets for negligible changes in detected x, y, or z coordinates, as reported by the
camera sensors or model predictions. This issue became particularly pronounced when
the robot moved, requiring the recalculation of globalized coordinates based on the new
camera position. Figure 9 illustrates an example of DCNN detections and stereoscopic
camera coordinates.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 10 of 18

i Incremental robot move completed/robot driver not busy
j Force-sensing resistor (FSR) conductance threshold reached or exceeded
k Current threshold (in the motor driver board) reached
l Tool commands sent/command timeout reached

m Tool ramp-up timer completed
n Current threshold has not been reached
p FSR conductance threshold not reached
q All incremental moves completed
r Electric screwdriver pose inaccurate (user interaction)
s New target coordinates acquired from NN
u Wait interval elapsed

The two methods used were as follows:

Method #1—Single-Shot High-Level Imaging with DCNN

• A single high-level image is used for all target acquisitions. The image is taken with
a stereoscopic RGB imager positioned further than 350 mm and roughly positioned
above the workpiece such that all cross-recessed screws are in the field of view (FOV).

Method #2—Two-Level Imaging with DCNN

• A first level of DCNN imaging is used initially for the approximate locations of
targets (from height > 350 mm). These coordinates center the camera package’s RGB
imager directly over the target.

• A second level of DCNN imaging is used with the RGB camera centered over the
target. The second imaging stage is used at a height of less than 320 mm and greater
than 300 mm (as close as possible with stereoscopic sensors still functioning
accurately).
A challenge encountered in this work was the need to manage object detections

accurately within the robot’s workspace. The DCNN provided a continuous stream of
object detections at a consistent update interval (every 3–5 s, depending on the operational
mode). It was essential to implement a logic that prevented the addition of redundant
target datasets for negligible changes in detected x, y, or z coordinates, as reported by the
camera sensors or model predictions. This issue became particularly pronounced when
the robot moved, requiring the recalculation of globalized coordinates based on the new
camera position. Figure 9 illustrates an example of DCNN detections and stereoscopic
camera coordinates.

Figure 9. Sample of DCNN detections and stereoscopic camera coordinates. Figure 9. Sample of DCNN detections and stereoscopic camera coordinates.

To address this, a Python module was developed to interact with the existing system
used for reading and globalizing target coordinates from the camera streaming module.
This module interfaced with the RoboDK Python API to relay commands and defined a
tolerance region for each discrete detection. The tolerance region prevented redundant
entries by overwriting detections that were approximately located within the same region.
Only one set of unique coordinates was stored at any given time. The module also sup-
ported functionality to compute a rolling average of previous coordinate sets from the
intermediate file in which the Python streaming module stored detection data.

The tolerance region was implemented as a rectangular band, typically defined as
5–15 mm in the x and y dimensions, centered at the initial detection point of a unique object.
Any subsequent detections within this band were considered redundant and not added as
new targets. Detections falling outside the tolerance band were classified as new targets
and appended to an array of unique detections for further processing.

The approach proved effective for managing object detections in this application.
However, in other applications with a highly dynamic environment where targets fre-
quently change position or overlap, our approach may falter due to its reliance on fixed
tolerance bands and sequential processing. A possible solution for this issue would be
implementing adaptive tolerance bands that adjust based on environmental conditions or
object distribution.

Appl. Sci. 2025, 15, 618 11 of 17

4. Results and Discussion
Figure 10 shows a sample extraction run using method #2’s extraction process, which

correlates to a single execution of the state machine in Figure 8. This Figure gives time
series data for the force sensor, current sensor, active state, and TCP z-coordinate tools.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 11 of 18

To address this, a Python module was developed to interact with the existing system
used for reading and globalizing target coordinates from the camera streaming module.
This module interfaced with the RoboDK Python API to relay commands and defined a
tolerance region for each discrete detection. The tolerance region prevented redundant
entries by overwriting detections that were approximately located within the same region.
Only one set of unique coordinates was stored at any given time. The module also
supported functionality to compute a rolling average of previous coordinate sets from the
intermediate file in which the Python streaming module stored detection data.

The tolerance region was implemented as a rectangular band, typically defined as 5–
15 mm in the x and y dimensions, centered at the initial detection point of a unique object.
Any subsequent detections within this band were considered redundant and not added
as new targets. Detections falling outside the tolerance band were classified as new targets
and appended to an array of unique detections for further processing.

The approach proved effective for managing object detections in this application.
However, in other applications with a highly dynamic environment where targets
frequently change position or overlap, our approach may falter due to its reliance on fixed
tolerance bands and sequential processing. A possible solution for this issue would be
implementing adaptive tolerance bands that adjust based on environmental conditions or
object distribution.

4. Results and Discussion
Figure 10 shows a sample extraction run using method #2’s extraction process, which

correlates to a single execution of the state machine in Figure 8. This Figure gives time
series data for the force sensor, current sensor, active state, and TCP z-coordinate tools.

Figure 10. Extraction run data executed under the logic outlined in Figure 8.

In Figure 10, the top subplot illustrates the current data in milliamps (mA) as
recorded by the motor driver board during the fastener extraction process. Two distinct
peaks are visible. The first peak represents the initial current detection state, where a low

Figure 10. Extraction run data executed under the logic outlined in Figure 8.

In Figure 10, the top subplot illustrates the current data in milliamps (mA) as recorded
by the motor driver board during the fastener extraction process. Two distinct peaks are
visible. The first peak represents the initial current detection state, where a low RPM spin
is used as the tool lowers to the known position of the CRS to check for thread engagement.
This peak, reaching nearly 500 mA, indicates the tool’s recognition of engagement with
the fastener profile, triggering the screwdriver to shut down promptly. The second peak
illustrates the motor current fluctuations as the tool loosens and disengages the fastener
during the extraction phase. The second subplot displays the Force-Sensitive Resistor (FSR)
data, which measures force as the tool compresses and contacts the testing artifact. An
initial high peak at the 25 s mark indicates the first contact, followed by a slight decrease in
force and a plateau around the 27 s mark. This change occurs as the tool bit engages with
the screw threads, and slightly jogs upwards to reduce the force on the fastener. The sharp
decline and fluctuating readings between 30 and 40 s mark the extraction phase, where
the pressure is relieved as the tool unthreads the fastener and gradually ascends in the
z-axis. The third subplot shows the state index time series data, where individual integers
represent discrete states, as detailed in Table 2. The final subplot displays the z-position of
the active tool, as reported by the robot driver and the known TCP in the RoboDK software.
Here, the z-axis is oriented relative to the robot base and decreases to the second imaging
state z-coordinate, as defined in Table 3. The abrupt changes in the z-axis observed between
the ten- and twenty-second marks correspond to the software switching the active tool
between the laser, RGB camera, and electric screwdriver.

Appl. Sci. 2025, 15, 618 12 of 17

Table 2. State sequence index plot key.

State Sequence Key

1 Reimaging

2 MoveLaser

3 MoveEDriverStaging

4 MoveEDriver

5 MoveDetect

6 ForceDetect

7 CurrentDetect

8 WaitState

9 SecondaryWaitState

10 Extraction

Table 3. Sample target and run parameters associated with the run data in Figure 10.

Target Parameters x-Coord (mm) y-Coord (mm) z-Coord (mm) Confidence (%)

Initial Imaging State 571.32 −401.71 3.09 0.75

Second Imaging
State 570.15 −402.60 2.05 0.77

Run Parameters
Detection

Conductance
Threshold (S)

Detection Current
Threshold (mA)

Maximum Allowable
Current (mA)

Maximum Detected
Current (mA)

Run Values 0.5153 350 2000 909

The cycle time for the run shown in Figure 10 is 50.5 s, which is consistent for each run
(almost all runs took less than 55 s for each target). Roughly 40% of the time in this method
is used for re-imaging the desired target and traversing to and from the robot’s staging
position. This cycle time can be reduced in future iterations of this system by (a) using
higher robot speed during the traverse back and forth and screw extraction phases, as
the speed was conservatively kept low due to early-stage testing, (b) replacing the force-
sensing resistor with a force/torque sensor which gives more reliable force detection and a
faster response, and (c) deactivating the laser on the tool assembly which only provides
a visual queue of the intended target and its accuracy but is not used in the logic for the
extraction process.

As previously defined, Table 2 represents the states on the y-axis of the State Sequence
Run Data subplot in Figure 10. While the logic for the state program controlling the
robots’ actions is continuously re-executing, the time series data of which state the robot
is currently in are continuously aggregated for status monitoring. Table 3 represents
additional operational parameters collected on each CRS extraction attempt. These data
include the relative current and conductance thresholds while the physical tooling executes,
the initial and re-acquired target x, y, and z globalized coordinates, and the DCNN detection
confidence threshold.

Figure 11 shows the nine targets on the testing artifact used in this work. Experiments
were conducted with one type of fastener material to minimize possible surface reflection
effects on detection. Table 4 gives a sample single run for single-shot high-level imaging of
all targets within the robot’s workspace. Three failures were measured from this sample
extraction process, which, unlike the process outlined in Figure 8, omitted any form of
camera repositioning for more optimized target deprojection. Targets 1, 2, and 9 were noted

Appl. Sci. 2025, 15, 618 13 of 17

as failing due to general inaccuracy, causing threads to not engage during the CurrentDetect
state in which the tool attempts to tighten the CRS to detect thread engagement and properly
seat the TCP if necessary. The overall first-pass yield for this sample run was 66.67%.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 14 of 18

Second 388.12 −402.58 10.62 0.88

3 X
First 359.59 −462.72 −0.39 0.82

Second 357.83 −463.26 1.03 0.79

4 X
First 356.65 −372.46 11.23 0.55

Second 357.01 −373.06 12.78 0.63

5 X
First 357.51 −401.24 22.72 0.80

Second 358.85 −402.51 20.53 0.36

6 X
First 358.90 −432.23 11.51 0.56

Second 358.89 −432.25 11.51 0.56

7 X
First 328.15 −402.30 11.62 0.61

Second 328.12 −401.88 10.69 0.88

8 X
First 297.11 −403.26 0.14 0.47

Second 298.83 −402.65 3.63 0.76

9 X
First 358.31 −340.42 3.49 0.32

Second 358.27 −340.37 3.49 0.32

Figure 11. The nine (9)-target symmetrical stepped testing artifact for CRS extraction.

The two sets of coordinates for each target represent the globalized coordinates from
the initial workspace staging state and the re-imaging state for the first and second image
numbers, respectively. These coordinates are for the extraction that succeeded, so if it
failed on the first pass, both sets of coordinates are for the second pass. The “X” in the
Successful Extract columns indicates that the cross-recessed screw extraction was
successful on that pass. Success is defined as the CRS threads fully disengaging from the
heat-set threaded inserts on the testing artifact.

The FP and SP columns indicate “first pass” and “second pass” exclusively, referring
to Table 5. The total FPY (first-pass yield) ranges from 78% to 89%, and the total SPY
(second-pass yield) is 100% in all three instances. An interesting trend that can be observed
from all method #2 bulk run data and in Table 5 is that of the confidence interval generally
increasing or staying the same with the second pass, which coincides with the camera and
DCNN system overall performing better (more consistent deprojection behavior) when
the RGB imager is directly in line with the target. This is evident with targets 1, 2, 4, 6, and
8.

Table 6 compares the results obtained from this work with robotic screw disassembly
systems reported in the literature. Note that references [20,21] address the removal of
hexagonal-headed screws, while our work targets CRSs. All the works in the table have
some form of force or torque sensing to help the tool engage with the screw. In reference
[20], a 100% extraction accuracy rate is attributed to the combined use of a deep learning

Figure 11. The nine (9)-target symmetrical stepped testing artifact for CRS extraction.

Table 4. Bulk run data using single-stage imaging with DCNN.

Target
Number

Successful
Extract FP

Image
Number

Coordinates (mm) Confidence
(0.00–1.00)x y z

1 First 566.79 −402.16 4.94 0.85

2 First 537.34 −401.78 13.92 0.89

3 X First 507.56 −431.97 13.94 0.70

4 X First 477.83 −402.49 10.94 0.86

5 X First 447.79 −403.41 0.00 0.84

6 X First 508.70 −463.84 −0.04 0.80

7 X First 507.64 −402.19 23.94 0.84

8 X First 507.22 −344.28 2.91 0.47

9 First 507.21 −372.43 11.92 0.70

Table 5 presents a sample of a bulk testing run within the robot’s workspace. The
sample extraction data are given for the nine targets on two extraction passes. After
attempting each target, if the vision system detects the remaining targets, it will execute
another extraction attempt on them. It should also be noted that targets 1–9 are not in any
order (left to right or top to bottom) for the sample extraction run. This is because each
coordinate was set initially at random until all targets were detected, and the vision system
updated the targets according to a predefined global tolerance.

The two sets of coordinates for each target represent the globalized coordinates from
the initial workspace staging state and the re-imaging state for the first and second image
numbers, respectively. These coordinates are for the extraction that succeeded, so if it failed
on the first pass, both sets of coordinates are for the second pass. The “X” in the Successful
Extract columns indicates that the cross-recessed screw extraction was successful on that
pass. Success is defined as the CRS threads fully disengaging from the heat-set threaded
inserts on the testing artifact.

The FP and SP columns indicate “first pass” and “second pass” exclusively, referring
to Table 5. The total FPY (first-pass yield) ranges from 78% to 89%, and the total SPY
(second-pass yield) is 100% in all three instances. An interesting trend that can be observed
from all method #2 bulk run data and in Table 5 is that of the confidence interval generally

Appl. Sci. 2025, 15, 618 14 of 17

increasing or staying the same with the second pass, which coincides with the camera and
DCNN system overall performing better (more consistent deprojection behavior) when the
RGB imager is directly in line with the target. This is evident with targets 1, 2, 4, 6, and 8.

Table 5. Bulk run data using two-stage imaging with DCNN.

Target
Number

Successful
Extract FP

Successful
Extract SP

Image
Number

Coordinates (mm) Confidence
(0.00–1.00)x y z

1 X
First 418.38 −402.66 2.63 0.28

Second 417.48 −402.96 2.07 0.53

2 X
First 387.57 −403.15 10.12 0.85

Second 388.12 −402.58 10.62 0.88

3 X
First 359.59 −462.72 −0.39 0.82

Second 357.83 −463.26 1.03 0.79

4 X
First 356.65 −372.46 11.23 0.55

Second 357.01 −373.06 12.78 0.63

5 X
First 357.51 −401.24 22.72 0.80

Second 358.85 −402.51 20.53 0.36

6 X
First 358.90 −432.23 11.51 0.56

Second 358.89 −432.25 11.51 0.56

7 X
First 328.15 −402.30 11.62 0.61

Second 328.12 −401.88 10.69 0.88

8 X
First 297.11 −403.26 0.14 0.47

Second 298.83 −402.65 3.63 0.76

9 X
First 358.31 −340.42 3.49 0.32

Second 358.27 −340.37 3.49 0.32

Table 6 compares the results obtained from this work with robotic screw disassem-
bly systems reported in the literature. Note that references [20,21] address the removal
of hexagonal-headed screws, while our work targets CRSs. All the works in the table
have some form of force or torque sensing to help the tool engage with the screw. In
reference [20], a 100% extraction accuracy rate is attributed to the combined use of a deep
learning model, a force/torque-based analytical model for the tool–screw interaction, and
an optimization algorithm.

Table 6. Comparison of robotic screw disassembly systems.

Reference Type of Fastener Sensing Methods Extraction Accuracy

Peng et al. [20] Hexagonal bolts Camera and Force/Torque sensor 100%

Zhang et al.
[21] Hexagonal bolts Camera and built-in torque

sensing in the UR robot

Not reported, but they reported a
100% success rate in the

vision-based pose estimation

This work Cross-recessed screws Camera, FSR, and current sensing 100% when using the two-stage
imaging method with a second pass

It should be noted that the failures and inconsistencies observed in this work are
mainly due to limitations in the imaging system’s accuracy and the tolerances within the
tooling assembly. The most prevalent failure mode in the automated screw disassembly is

Appl. Sci. 2025, 15, 618 15 of 17

the screwdriver slipping away from the center of the cross-recessed screw when attempting
to spin into the correct orientation after the force sensor detects contact with the part. This
is related to inaccuracy with the deprojection system, as trying to seat the driver off-center
would make the screwdriver re-orientation process more likely to slip. These limitations
combined to prevent the testing and extraction of smaller-diameter cross-recessed fasten-
ers. The stereoscopic camera’s vision system introduced errors in its deprojection model,
attributable to an inherent 2% depth sensing error specified by the manufacturer and the
inability to image objects closer than approximately 280 mm. An empirical compensation
method was applied to enhance target positioning accuracy. Testing was conducted to
derive a 3D calibration curve, which compensated for the X and Y distances (relative to the
camera imagers) as a function of deprojection distance. This curve was developed for the
camera system’s valid operational range (280–500 mm), where the DCNN model demon-
strated reasonable target detection confidence. The calibration curve was constructed using
three targets arranged vertically on a placard with known dimensions. The placard was
evaluated at six positions across four depths relative to the RGB imager. Data were collected
for 15 min at each position to capture a broad range of discrete detection coordinates.

The variability in the position of the tool center point defined on the electric screw-
driver was estimated to be between 0.5 and 1.0 mm, which limited the overall process
testing to the larger CRS targets discussed in this work. The inconsistency introduced
as the tool changes orientation would necessitate a screwdriver with less variability in
the chuck design, which secures the bit. This issue warrants further investigation for a
more robust tooling design. Overall, the failures introduced by the prototype tooling and
imaging system could be mitigated through a process design incorporating an iterative
imaging technique, albeit at the expense of higher cycle times and lower first-pass yield.

5. Conclusions
This article describes a novel integration effort to combine an advanced DCNN vision

system with robotic simulation software (RoboDK) that emulates a physical robot. The
robot is equipped with a tool suite designed specifically for extracting cross-recessed screws.
An innovative software package was developed that interfaces with all the physical compo-
nents, including the tooling, camera system, UR5 robot, robot controller, and simulation
software that communicates with the physical UR5. The custom-built modular software
package can run the DCNN, interface with the RoboDK simulation software, and manage
the physical tooling through serial communication.

The system was tested extensively, and the results are presented in the results and
evaluation section from the camera’s perspective, as well as the DCNN operation and
functionality of the simulation software. The software suite, which bridges the state-
based control of the robot to the control of all other pieces of equipment, was able to
convert API calls received and issue driver commands to the robot while synchronously
providing real-time feedback. Additionally, a substantial amount of work went into driving
several evolutions of state-based logic to formulate an overall process for CRS extraction.
Ultimately, it was proven that the system could consistently extract most 12.7 mm diameter
cross-recessed screws from a test artifact with high consistency after a single cycle of
extraction process execution. Using method #1, which incorporated only a single imaging
stage for all targets without adjusting the camera position, a first-pass yield typically
ranging between 44 and 67% was achieved. When utilizing method #2, which allowed the
system to reimage the targets on the stepped artifact from multiple positions, a first-pass
yield of 78–89% and a second-pass yield of 100% was achieved.

This work encountered several limitations and identified opportunities for more
refined study, particularly regarding equipment, software implementation, and testing

Appl. Sci. 2025, 15, 618 16 of 17

constraints. Using consumer off-the-shelf components, like the motor controller, screw-
driver, and force-sensing resistor (FSR), while cost-effective and easy to implement, led to
inconsistent readings. This inconsistency required the state-based logic to rely on trend
observation rather than individual readings for real-time decision-making. The DCNN was
trained on a limited dataset of approximately 1000 images and three sets of cross-recessed
fasteners. This restricted the vision system’s confidence and versatility, especially for larger
targets and perpendicular viewing angles. Adding more pictures, especially ones taken
at distances corresponding to the 300–500 mm detection range of the stereoscopic camera
systems, would improve the detection accuracy of the DCNN model. Adding a higher-
precision camera and more precise positioning methods would also enhance the detection
accuracy. Analyzing the potential impact of different materials and surface treatments on
detection is also essential to consider in future work. Given the project’s scope and the
extensive integration effort, several calibration methods, like ChArUco calibration for the
stereoscopic camera, were only moderately explored. Implementing these could refine
the TCP in the robotic simulation software, improving target deprojection and fastener
localization in the robot’s workspace.

Author Contributions: Conceptualization, M.K.J. and A.C.; methodology, M.K.J. and A.C.; soft-
ware, A.C.; validation, A.C. and M.K.J.; formal analysis, A.C. and M.K.J.; investigation, A.C. and
M.K.J.; resources, M.K.J.; data curation, A.C.; writing—original draft preparation, A.C. and M.K.J.;
writing—review and editing, A.C. and M.K.J.; visualization, A.C.; supervision, M.K.J.; project admin-
istration, M.K.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in this
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wegener, K.; Andrew, S.; Raatz, A.; Droder, K.; Herrmann, C. Disassembly of electric vehicle batteries using the example of the

Audi Q5 hybrid system. Procedia CIRP 2014, 23, 155–160. [CrossRef]
2. Duflou, J.R.; Seliger, G.; Kara, S.; Umeda, Y.; Ometto, A.; Willems, B. Efficiency and feasibility of product disassembly: A

case-based study. CIRP Ann. 2008, 57, 583–600. [CrossRef]
3. Li, J.; Barwood, M.; Rahimifard, S. Robotic disassembly for increased recovery of strategically important materials from electrical

vehicles. Robot. Comput.-Integr. Manuf. 2018, 50, 203–212. [CrossRef]
4. Wegener, K.; Chen, W.H.; Dietrich, F.; Droder, K.; Kara, S. Robot assisted disassembly for the recycling of electric vehicle batteries.

Procedia CIRP 2015, 29, 716–721. [CrossRef]
5. Kristensen, C.B.; Sorensen, F.A.; Nielsen, H.B.; Andersen, M.S.; Bendtsen, S.P.; Bogh, S. Towards a robot simulation framework for

e-waste disassembly using reinforcement learning. Procedia Manuf. 2019, 38, 225–332. [CrossRef]
6. Chen, W.H.; Foo, G.; Kara, S.; Pagnucco, M. Application of a multi-head tool for robotic disassembly. Procedia CIRP 2020, 90,

630–635. [CrossRef]
7. Vongbunyong, S.; Kara, S.; Pagnucco, M. Application of cognitive robotics in disassembly of products. CIRP Ann. 2013, 62, 31–34.

[CrossRef]
8. Li, R.; Pham, D.T.; Huang, J.; Tan, Y.; Qu, M.; Wang, Y.; Kerin, M.; Jiang, K.; Su, S.; Ji, C.; et al. Unfastening of hexagonal headed

screws by a collaborative robot. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1455–1468. [CrossRef]
9. DiFilippo, N.M.; Jouaneh, M.K. A system combining force and vision sensing for automated screw removal on laptops. IEEE

Trans. Autom. Sci. Eng. 2017, 15, 887–895. [CrossRef]
10. Chen, J.; Liu, Z.; Xu, J.; Yang, C.; Chu, H.; Cheng, Q. A Novel Disassembly Strategy of Hexagonal Screws Based on Robot Vision

and Robot-Tool Cooperated Motion. Appl. Sci. 2023, 13, 251. [CrossRef]

https://doi.org/10.1016/j.procir.2014.10.098
https://doi.org/10.1016/j.cirp.2008.09.009
https://doi.org/10.1016/j.rcim.2017.09.013
https://doi.org/10.1016/j.procir.2015.02.051
https://doi.org/10.1016/j.promfg.2020.01.030
https://doi.org/10.1016/j.procir.2020.02.047
https://doi.org/10.1016/j.cirp.2013.03.037
https://doi.org/10.1109/TASE.2019.2958712
https://doi.org/10.1109/TASE.2017.2679720
https://doi.org/10.3390/app13010251

Appl. Sci. 2025, 15, 618 17 of 17

11. Yildiz, E.; Wörgötter, F. DCNN-based screw detection for automated disassembly processes. In Proceedings of the 2019 15th
International Conference on Signal-Image Technology & Internet-Based Systems, Sorrento, Italy, 26–29 November 2019; IEEE:
Sorrento, Italy, 2019; pp. 187–192. [CrossRef]

12. Brogan, D.P.; DiFilippo, N.M.; Jouaneh, M.K. Deep learning computer vision for robotic disassembly and servicing applications.
Array 2021, 12, 100094. [CrossRef]

13. Karthikeyan, M.; Subashini, S.T. Automated object detection of mechanical fasteners using faster region based convolutional
neural networks. Int. J. Electr. Comput. Eng. IJECE 2021, 11, 5430–5437. [CrossRef]

14. Foo, G.; Kara, S.; Pagnucco, M. Screw detection for disassembly of electronic waste using reasoning and re-training of a deep
learning model. Procedia CIRP 2021, 98, 666–671. [CrossRef]

15. Mangold, S.; Steiner, C.; Friedmann, M.; Fleischer, J. Vision-based screw head detection for automated disassembly for remanufac-
turing. Procedia CIRP 2022, 105, 1–6. [CrossRef]

16. Zhang, X.; Eltouny, K.; Liang, X.; Behdad, S. Automatic Screw Detection and Tool Recommendation System for Robotic
Disassembly. J. Manuf. Sci. Eng. 2023, 145, 031008. [CrossRef]

17. DiFilippo, N.M.; Jouaneh, M.K.; Jedson, A.D. Optimizing Automated Detection of Cross-Recessed Screws in Laptops Using a
Neural Network. Appl. Sci. 2024, 14, 6301. [CrossRef]

18. Karbouj, B.; Topalian-Rivas, G.; Krüger, J. Comparative Performance Evaluation of One-Stage and Two-Stage Object Detectors for
Screw Head Detection and Classification in Disassembly Processes. Procedia CIRP 2024, 122, 527–532. [CrossRef]

19. Zhu, C.; Zhang, J.; Xiao, J. Designing of an intelligent robotic system for disassembling screw connections of electric vehicle
batteries based on the improved YOLOV5 algorithm. In Proceedings of the 2024 3rd International Symposium on Control
Engineering and Robotics (ISCER’24), Changsha, China, 24–26 May 2024; Association for Computing Machinery: New York, NY,
USA, 2024; pp. 1–6.

20. Peng, Y.; Li, W.; Liang, Y.; Pham, D. Robotic disassembly of screws for end-of-life product remanufacturing enabled by deep
reinforcement learning. J. Clean. Prod. 2024, 439, 140863. [CrossRef]

21. Zhang, Y.; Zhang, H.; Wang, Z.; Zhang, S.; Li, H.; Chen, M. Development of an Autonomous, Explainable, Robust Robotic
System for Electric Vehicle Battery Disassembly. In Proceedings of the 2023 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), Seattle, WA, USA, 28–30 June 2023; pp. 409–414. [CrossRef]

22. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics Modeling, Planning, and Control; Springer: Berlin/Heidelberg,
Germany, 2009.

23. Clark, A. Automated Extraction of Fasteners Using Digital Twin Robotics Software and DCNN Vision System. Master’s Thesis,
University of Rhode Island, Kingston, RI, USA, 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/SITIS.2019.00040
https://doi.org/10.1016/j.array.2021.100094
https://doi.org/10.11591/ijece.v11i6.pp5430-5437
https://doi.org/10.1016/j.procir.2021.01.172
https://doi.org/10.1016/j.procir.2022.02.001
https://doi.org/10.1115/1.4056074
https://doi.org/10.3390/app14146301
https://doi.org/10.1016/j.procir.2024.01.077
https://doi.org/10.1016/j.jclepro.2024.140863
https://doi.org/10.1109/AIM46323.2023.10196256
https://doi.org/10.23860/thesis-clark-austin-2022

	Introduction
	Methodology
	System Overview
	Camera Relationships
	Software Design

	Results and Discussion
	Conclusions
	References

