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Abstract: The merging behavior of vehicles at entry ramps and the speed differences
between ramps and mainline traffic cause merging traffic bottlenecks. Current research,
primarily focusing on single traffic control strategies, fails to achieve the desired outcomes.
To address this issue, this paper explores an integrated control strategy combining Variable
Speed Limits (VSL) and Lane Change Control (LCC) to optimize traffic efficiency in ramp
merging areas. For scenarios involving multiple ramp merges, a multi-agent reinforcement
learning approach is introduced to optimize control strategies in these areas. An integrated
control system based on the Factored Multi-Agent Centralized Policy Gradients (FACMAC)
algorithm is developed. By transforming the control framework into a Decentralized
Partially Observable Markov Decision Process (Dec-POMDP), state and action spaces for
heterogeneous agents are designed. These agents dynamically adjust control strategies
and control area lengths based on real-time traffic conditions, adapting to the changing
traffic environment. The proposed Factored Multi-Agent Centralized Policy Gradients for
Integrated Traffic Control in Dynamic Areas (FM-ITC-Darea) control strategy is simulated
and tested on a multi-ramp scenario built on a multi-lane Cell Transmission Model (CTM)
simulation platform. Comparisons are made with no control and Factored Multi-Agent
Centralized Policy Gradients for Integrated Traffic Control (FM-ITC) strategies, demon-
strating the effectiveness of the proposed integrated control strategy in alleviating highway
ramp merging bottlenecks.

Keywords: variable speed limits; lane change control; multi-agent reinforcement learning;
highway merging bottlenecks; integrated control strategy

1. Introduction
Highways serve as the core of modern transportation networks, significantly impacting

China’s transportation system and regional economic development. However, the current
construction and operation of highway infrastructure fail to effectively meet growing
regional traffic demands, leading to frequent congestion and accidents. Consequently, road
efficiency decreases, driving safety is compromised, and travel times are extended. Traffic
bottlenecks frequently occur at the merging points of mainline and entrance ramp lanes due
to lane reductions and vehicle lane changes, severely impacting vehicle speeds. Frequent
deceleration, acceleration, or stoppages in these bottleneck areas result in significant delays
and congestion [1].
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To address the imbalance between highway traffic demand and supply, a compre-
hensive approach [2] that integrates technological measures, infrastructure improvements,
and demand-side optimization is employed. Technological measures, such as Intelligent
Transportation Systems (ITS), are used to enhance traffic operational efficiency. Infrastruc-
ture improvements, including overall network planning [3], roundabout intersections [4],
and ramp optimization designs [5], are implemented to increase capacity. Demand-side
optimization, through regional traffic diversion, public travel behavior guidance, and
demand substitution, effectively mitigates peak traffic pressure.

Among these, Intelligent Transportation Systems (ITS) are crucial for resolving high-
way traffic demand conflicts by providing control instructions to vehicles based on traffic
flow data patterns. This approach achieves control objectives for specific road segments.
For instance, Variable Speed Limit (VSL) control optimizes traffic efficiency by adjusting up-
stream speed limits to reduce spatiotemporal variations in traffic speed, thereby improving
bottlenecks and preventing further deterioration. This method enhances traffic perfor-
mance, safety, and mobility. However, vehicle weaving caused by lane changes in merging
areas, aside from increasingly saturated traffic demand, also contributes significantly to
bottleneck issues. Lane Change Control (LCC) calculates congestion levels in different lanes
and issues mandatory lane change instructions to vehicles upstream of merging bottlenecks,
optimizing lane density distribution and alleviating bottlenecks caused by vehicle weaving.
VSL and LCC are complementary and synergistic methods. Implementing LCC requires
that the road segment is not overly saturated; otherwise, vehicles may not respond to lane
change instructions. VSL can mitigate this issue. Therefore, integrating VSL and LCC
effectively addresses ramp merging bottlenecks.

Numerous studies have integrated VSL and LCC to alleviate ramp merging bottle-
necks. For example, Zhang et al. [6] found that integrating VSL and LCC stabilizes upstream
vehicle density and homogenizes traffic flow, reducing frequent lane changes near bottle-
necks. Additionally, LCC provides lane change recommendations for vehicles away from
bottlenecks, mitigating capacity drop issues. However, previous research limited control
areas to fixed and unchanging ranges, resulting in inflexible control strategies. Furthermore,
when multiple entrance ramps are present, local control by different controllers impacts
overall traffic due to the upstream and downstream propagation characteristics of traffic
flow. Integrated control research on multiple entrance ramps is necessary to alleviate merg-
ing bottlenecks in large-scale road networks effectively. This approach mitigates congestion
at each ramp and maintains the stability of overall network traffic operations.

Based on the current analysis of research on highway ramp merging, this paper’s main
contribution lies in the combination of controllers and their integration with reinforcement
learning. The specific contributions are as follows:

• To address the difficulty in coordinating traffic operations among multiple ramps in
large-scale road networks using integrated control methods, this paper applies collab-
orative Multi-Agent Reinforcement Learning (MARL) to optimize traffic control strate-
gies for multiple ramp merges. By transforming the integration of VSL and LCC into a
Decentralized Partially Observable Markov Decision Process (Dec-POMDP), a ramp
merging integrated control strategy framework based on the Factored Multi-Agent
Centralized policy gradients (FACMAC) algorithm, termed FM-ITC, is proposed.

• On this basis, the FM-ITC strategy framework is expanded by incorporating the agents’
actions. The improved strategy framework, FM-ITC-Darea, evaluates the impact of
control area configuration changes on traffic flow optimization, providing a novel
solution for traffic optimization in large-scale complex road networks.
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• The proposed integrated control strategy is simulated and tested on a multi-ramp
scenario built on a multi-lane Cell Transmission Model (CTM) simulation platform,
demonstrating its effectiveness in alleviating highway ramp merging bottlenecks.

2. Related Works
2.1. VSL and LCC Traffic Control Methods

VSL systems are primarily categorized into open-loop and closed-loop control. Ini-
tially, open-loop control was favored for its simple structure and ease of maintenance, as it
operates based on feedforward characteristics. For instance, Lee et al. [7] proposed a VSL
method using a collision prediction model to evaluate highway collision risks, demonstrat-
ing that variable speed limits significantly reduce overall collision probability compared to
fixed speed limits. Optimal control is a typical open-loop method designed for dynamic
systems. Miao et al. [8] proposed an optimal VSL strategy for connected and automated ve-
hicles using optimal control methods, showing significant improvements in traffic efficiency
and emission reductions in simulations. However, due to the lack of feedback in open-loop
control, systems are highly susceptible to disturbances and exhibit poor stability. Therefore,
many researchers have shifted toward closed-loop control. Papamichail et al. [9] employed
a proportional–integral feedback regulator for highway traffic control, validated with real
road data from Germany, showing substantial improvements in performance metrics.

Model Predictive Control (MPC) methods represent another control category, pre-
dicting traffic flow trends to enable preemptive congestion control. Hegyi et al. [10] first
applied MPC to VSL, with subsequent research expanding this approach. New MPC types
and hierarchical control methods based on discrete LWR models have been developed
and validated in microsimulation environments to effectively mitigate highway congestion
waves [11]. Han et al. [12] introduced a fast MPC method for VSL coordination, address-
ing highway congestion waves by considering the linear properties of classical discrete
first-order models and congestion wave propagation characteristics.

VSL research in traffic operations focuses on enhancing road traffic efficiency and
safety. Studies indicate that VSL can boost traffic efficiency by 10% to 40% [13], especially
when optimizing total travel time. However, recent studies on VSL effectiveness present
mixed results [14], questioning VSL’s impact on traffic efficiency under high-demand
conditions. This disparity is attributed to highly disordered and randomly changing traffic
flows at congestion bottlenecks.

To address VSL’s limitations in traffic efficiency improvement, research has increas-
ingly integrated VSL with other active control methods. Current studies on ramp control
often integrate VSL with Ramp Metering (RM) [15,16]. While VSL-RM strategies enhance
traffic efficiency and safety more than VSL alone, ramp queue lengths can overflow when
mainline traffic is heavy.

With advancements in vehicle-to-everything (V2X) technology and intelligent trans-
portation systems, integrated control of connected vehicles can be achieved through spatial
management, combining lane change control. Guo et al. [17] proposed an integrated VSL
and LCC method using an MPC framework in heterogeneous multi-lane CTM, optimizing
the weighted sum of TTS and TTD in each control cycle. This method maximizes traffic
efficiency by determining lane change numbers and speed limits while considering their
interactions. Markantonakis et al. [18] applied MTFC as a VSL strategy at lane-drop bottle-
necks, treating lane change as a linear quadratic optimal control problem and implementing
results every 10 s in an Aimsun microsimulation model.
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2.2. Application of Reinforcement Learning in VSL and LCC

In traffic control, feedback control and MPC control face challenges, such as frequent
strategy adjustments leading to secondary congestion, system oscillation instability, poor
convergence in complex traffic environments, and occasional failure to converge [19].
To address these issues, more flexible and intelligent control strategies are introduced.
Reinforcement learning (RL) can learn optimal strategies directly from interactions with
the environment without pre-modeling the system. This adaptability allows RL to better
handle complex and dynamic traffic environments, providing robust responses to system
changes and uncertainties [20].

Reinforcement learning, a popular intelligent control method in automatic control,
has achieved notable results in previous traffic control studies [21–24]. However, most RL-
based traffic control research has focused on small-scale road networks, mainly targeting
single-point ramp control. Recently, researchers have turned to more realistic multi-ramp
coordinated control. Applying RL to multiple ramp traffic networks presents challenges,
as agents typically react to environmental changes individually, without considering co-
ordination among agents (e.g., VSL controllers). This lack of coordination can result in
suboptimal overall behavior [25]. To maximize regional traffic efficiency, more studies
combine traffic control systems with collaborative Multi-agent Reinforcement Learning
(MARL) algorithms to achieve cooperative control among multiple ramps [26].

Wang et al. [27] were the first to transform the VSL problem into a MARL problem,
considering a distributed MARL system in a V2I environment. The system comprises
multiple ramp control agents that communicate and cooperate to maximize highway traffic
flow and safety benefits. To address non-stationarity issues among multiple traffic control
agents, Zheng et al. [28] employed the Centralized Training and Decentralized Execution
(CTDE) paradigm with the MADDPG algorithm to optimize large-scale VSL control for
continuous traffic bottlenecks. Compared to traditional independent agent or feedback-
based VSL control strategies, their method effectively improves overall highway network
flow and safety by coordinating cooperation among multiple VSL controllers.

Research combining RL with multiple traffic control strategies is relatively sparse,
likely due to significant coordination challenges: determining the mutual influence of
different control methods, setting control cycles for different controllers, and accurately
and efficiently controlling multiple traffic controllers [29]. Schmidt-Dumon et al. [30]
proposed a decentralized reinforcement learning method for highway traffic control in
South Africa. They simultaneously applied RM and VSL, using decentralized RL to solve
control problems online. Their study claims to be the first to apply MARL methods to
real traffic control scenarios, particularly in handling concurrent RM and VSL issues. Ko
et al. [31] proposed a method combining speed harmonization and lane merging control to
improve traffic flow and fuel efficiency by controlling CAVs. CAVs adjust speed based on
sensor data, optimizing vehicle-following speeds and prioritizing merging in bottleneck
areas to enhance traffic efficiency. In their study, speed harmonization and merging control
are treated as a homogeneous group, using a single neural network for training and taking
coordinated control actions based on the same network. The results indicate significant
benefits in fuel consumption and traffic congestion reduction from the synergy between
speed harmonization and merging control. Peng and Xu [32] proposed a control strategy
combining VSL and lane change guidance to enhance highway traffic safety and efficiency
through distributed deep reinforcement learning. Their study simultaneously employs
VSL and LCC to address complex traffic scenarios that could lead to secondary collisions.
Simulation experiments demonstrate that the combined controller outperforms single
sub-controllers in reducing traffic accidents and increasing road capacity, showcasing the
complementary benefits of VSL and LCC.
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Although existing research has made progress in the field of traffic control, several
issues and challenges remain. First, the synergy between different control methods is
difficult to achieve, and determining their interactions and control cycles is a pressing
issue. Second, while decentralized reinforcement learning is theoretically feasible, its
effectiveness in practical applications requires further empirical validation. Moreover,
single neural networks may have limitations in handling the complexity and variability
of traffic environments, restricting their potential in practical traffic control scenarios.
Finally, despite the theoretical appeal of joint control strategies, their practical application
is highly complex, requiring significant advancements in computational capability and
execution efficiency.

3. Construction of Integrated Control Problems Based on
Heterogeneous FACMAC

The multi-agent integrated control framework in this study is based on the FACMAC
algorithm, which computes continuous actions using a model-free approach. Continuous
actions offer greater flexibility when transitioning into VSL and LCC strategies.

3.1. Collaborative Multi-Agent Reinforcement Learning

In real-world scenarios, larger-scale highways are often influenced by multiple ramps
and controllers, a situation that can be depicted using MARL. Unlike single-agent reinforce-
ment learning, multi-agent systems, composed of numerous agents, form complex systems
where accurately perceiving the global state of the environment is exceedingly difficult.
Instead, agents can only access partial and local information, referred to as observations
o ∈ O. Consequently, the environment in MARL is influenced not solely by the actions
of a single agent but by the interactions among multiple agents and their respective local
environments. Additionally, direct or indirect interactions between agents lead to changes
in the overall environment, influenced by the behavior strategies of different agents [33].
The rewards for all agents depend on the strategies of other agents. In MARL, each agent
aims to learn the optimal Q-value or strategy, but the environment transition and reward
function depend on the actions of all agents, making the environment appear unstable from
the perspective of any single agent [34].

This situation violates the Markov process assumption that agents have full observ-
ability of the environment. In the real world, due to sensor limitations, decisions are
made based on limited or noise-interfered observations. In MARL, this is referred to as
partial observability, leading to state uncertainty and interaction uncertainty among agents
during the learning process. For example, even though traffic controllers on different road
sections may share a common goal, limited communication capabilities prevent them from
providing accurate traffic information to other agents. Additionally, coordinating respec-
tive traffic control signals can lead to mutual influences, making overall traffic complex
and unpredictable. For this reason, training in partially observable MARL scenarios is
conducted through a distributed partially observable Markov decision process.

Dec-POMDP considers that agents in the environment cannot fully observe the state
of the environment and face state uncertainty induced by noise. Dec-POMDP is defined as
MDecP = ⟨I, S, A, R, T, O, o, γ⟩. Here, I represents a finite set of agents; S denotes the set of
environmental states; A indicates the set of joint action spaces, which includes each agent’s
individual actions Ai; R denotes the reward function for all agents; and T represents the
joint state transition probability function that describes the probability of transitioning
to a new state given the current state and joint actions. In this paper, this function is
modeled using macroscopic traffic simulation to obtain realistic information. The function’s
probability is regarded as 1, O represents the set of observations, with o indicating the joint
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observation set, where oi represents the local observations of the corresponding agent; γ

represents the discount factor reflecting the parameter of reward change over time.
In Dec-POMDP, agents cannot obtain the true state of the entire environment and can

only take actions based on their current local observations, without sharing observational
information with other agents. Under these conditions, the goal of Dec-POMDP is to
achieve effective cooperation among agents, finding a set of optimal strategies to maximize
the total expected cumulative return for agents in the environment:

Qπ
tot(st, at) = E

[
∞

∑
t=0

γtR(st, at)|s0 = s, a0 = a

]
, (1)

3.2. Heterogeneous FACMAC Algorithm

The FACMAC algorithm is a MARL algorithm that follows the CTDE paradigm. In
FACMAC, a multi-agent actor–critic framework is employed, where a centralized critic
is trained by considering the joint actions of all agents. The joint action value function is
optimized by decomposing it across individual agents, utilizing a weighted distribution
trained with a mixer network. This distribution more accurately reflects the true traffic
environment changes in the global Qµ

tot. In the actor, decentralized execution of individual
actions is achieved through deep deterministic policy gradient learning. The process of the
FACMAC algorithm is illustrated in Figure 1.

Figure 1. FACMAC algorithm diagram.

Specifically, FACMAC recognizes the challenge of learning in a centralized critic due
to the large number of agents or action spaces. Therefore, the global action value function
is decomposed into individual agents, which not only reduces training difficulty but also
preserves the decentralized execution of the algorithm.

Qµ
tot(τ, a, s; ϕ, ψ) = gψ

(
s,
{

Qµi
i (τi, ai; ϕi)

}n

i=1

)
, (2)

In Equation (2), the global action value function Qµ
tot depends on the joint action-

observation history τ, joint action a, and global state s. Here, ϕ represents the parameters
of the agent’s policy network. Each agent has its own critic with an action value network
Qµi

i , which is used to evaluate the performance of its policy. The individual action value Qµi
i

can be computed using the nonlinear monotonic function gψ as part of Qµ
tot. The parameters
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ψ are computed using a mixer network. The loss function in Equation (3) is used to train
Qµ

tot centrally:

L(ϕ, ψ) = ED [(ytot − Qµ
tot(τ, a, s; ϕ, ψ))

2
], (3)

where ytot = r + γQµ
tot

(
τ’, µ

(
τ’; θ−

)
, s’; ϕ−, ψ−) and the parameters θ−, ϕ−, ψ− represent

the target actor, critic, and mixer network parameters, respectively.
To address the issues arising from agents’ dependence on other agents’ policy es-

timates, FACMAC centralizes the policy gradient update across the entire joint action
space. This centralization corrects strategy errors and inaccurate evaluations during the
learning process:

∇θ J(µ) = ED
[
∇θµ∇µQµ

tot(τ, µ1(τ1), . . . , µn(τn), s)
]
, (4)

where all agents use a unified centralized actor policy network. When estimating the global
action value function Qµ

tot, the current policies of all agents, µ = µ1(τ1), . . . , µn(τn), are
sampled to obtain joint actions, and the overall joint action space is optimized through
gradient ascent.

This updating method is particularly important for optimizing the overall efficiency
of highway traffic control. For a highway traffic system involving multiple entrance and
exit ramps, traffic integration control points are generally set in merging and diverging
areas prone to bottlenecks. Due to the continuity of the highway system and the fluidity of
vehicles, decisions made in a single traffic integration control area affect not only the traffic
flow near the ramp but also the entire system, especially downstream areas. The FACMAC
algorithm can optimize across the entire joint action space rather than being limited to a
single control point.

However, considering that the FACMAC algorithm primarily addresses control issues
in homogeneous cooperative multi-agent environments where all agents share the same
policy network, this requires that all agents in the network have identical environmental
perceptions and behavior strategies. This means the input and output dimensions of all
agents’ control processes are fixed. This approach limits the integrated control of the
VSL and LCC controllers in single entry ramp merging areas, as it fails to account for
differences between various traffic controllers. In this paper’s highway environment, the
two controllers are heterogeneous agent controllers because the traffic states they need to
obtain and their control methods differ. Thus, the FACMAC algorithm cannot be directly
applied to train and provide effective control strategies in such a multi-agent environment.

To solve this problem, this paper draws on the concept of classes used in the object-
oriented distributed reinforcement learning method by Da Silva et al. [35], constructing
heterogeneous agents into different classes through object-oriented principles. Specifically,
in this paper, when considering the optimization problem of traffic flow in the highway
merging area within a multi-agent system, an effective method is to model the VSL con-
troller and the lane LCC controller in the ramp merging area as independent class objects.
The integrated control is then achieved by integrating the state inputs and action outputs
of these entities.

In this design, each type of controller is considered an independent agent class AC,
with its unique properties and behaviors. The VSL agent class ACVSL determines speed
limits based on traffic density and flow information within the ramp merging area. Its input
state dimension is denoted as Dvsl

s . The LCC agent class ACLCC focuses on the density
differences between different lanes in the merging area, with its input state dimension
represented as Dvsl

s . By concatenating the state inputs of these two agent types, the overall
input dimension becomes Dvsl

s + Dlcc
s . Unnecessary state dimensions for different agent

types are filled with null values to maintain data consistency. Furthermore, since the control
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methods of the two agent types vary, the action output dimensions also differ. Thus, the
output dimension of the policy network is designed to match the maximum action output
dimensions among the agent classes. Agents with fewer action output dimensions extract
only the required dimensions for their actions.

The two controllers in an integrated control group belong to class objects of different
intelligences, each having its own critic and actor networks. These controllers differ from
other agent classes only in terms of input and output dimensions, while agents of the
same class within different integrated control groups share network parameters. This
design leverages similar observation spaces and behavior strategies, enabling the sharing
of network parameters among homogeneous agents.

This approach effectively addresses the failure of the FACMAC algorithm in heteroge-
neous intelligent body environments. Although the approach may encounter dimensional-
ity issues due to the presence of multiple agent classes in a heterogeneous environment, it
remains applicable for the highway merging bottleneck control problem discussed in this
paper. Prior studies on traffic active control strategies have focused on variable speed limit
control, ramp control, and lane change control.

3.3. FACMAC-Based Combined VSL and LCC Controller

Consider two controllers, VSL and LCC, for each entrance ramp area, and call such
an integrated entrance ramp controller involving VSL controllers and LCC controllers an
integrated control group. As shown in Figure 2a, the data fusion process integrates key
information from the highway environment. The integrated control group monitors real-
time traffic speed and density near the entrance ramp. Centralized training simultaneously
provides speed limit information and lane change information to alleviate bottlenecks in
the merging area. Interaction between the two controllers within the integrated control
group and between different integrated control groups impacts the overall system.

Figure 2. Architecture diagram of FACMAC-based ramp merge integration control system, where
(a) depicts the data fusion process, which integrates crucial information from the surrounding
highway environment, and (b) represents the integrated control framework designed for the merging
area in this study.



Appl. Sci. 2025, 15, 836 9 of 27

Consider two controllers, the VSL and LCC, for each entrance ramp area. These
controllers form an integrated control group that observes traffic speed and density related
to the entrance ramp. Centralized training simultaneously provides speed limit and lane
change information to alleviate bottlenecks in the merging area. The interaction between
the controllers within the integrated control group and across different integrated control
groups impacts the overall system performance.

Figure 2b illustrates the merging area integrated control framework designed in this
study. Each controller agent has a value network and a policy network, which are trained
with data (s, s′ , r, a) collected during interactions with the traffic environment and stored
in a replay buffer. The output value of each policy network serves as the input to the mixer
network. The detailed pseudocode is provided in Algorithm 1.

Each agent’s actor network is designed using a three-layer fully connected architecture
to map states to actions, with two hidden layers following ReLU activation functions to
introduce nonlinearity. The output layer uses the tanh function to constrain the action
output to the range [−1, 1], matching continuous action requirements. The critic network
uses a fully connected layer to evaluate state-action values, combining ReLU-activated
hidden layers for processing, and directly outputs the estimated value, supporting the
optimization of agent policies.

For the mixer network, two super networks are employed to calculate and generate its
parameters. Each super network consists of a linear layer and an absolute value activation
function. These two super networks calculate the weights for the first layer neurons w1 and
the hidden layer to output the global Qtot weights w2 by receiving the global state s. Similar
network configurations are used to generate biases for the two-layer network, ultimately
forming the nonlinear mixer network.

In the policy gradient optimization process of reinforcement learning, the high nonlin-
earity and dimensionality of the objective function often result in multiple local optima.
To address this, we adopt the ε-greedy strategy to balance exploration and exploitation.
By dynamically adjusting the intensity of exploration, this strategy ensures that the agent
extensively explores diverse policy spaces during the early stages and gradually converges
to the optimal policy in the later stages of training. Additionally, Ornstein–Uhlenbeck (OU)
noise is introduced to further enhance exploration diversity. In continuous action spaces,
OU noise helps prevent premature convergence to local optima. In traffic system control
tasks, it effectively balances exploration and exploitation, avoids abrupt action jumps, and
strengthens the diversity and robustness of policy exploration. Its temporal correlation and
smoothness not only meet practical control requirements but also significantly improve the
algorithm’s global optimization performance in complex nonlinear environments.

The following details the key elements of converting the integrated controller into a
DEC-POMDP process.

3.3.1. Agents

In different merging areas of the highway, the VSL agent class ACVSL and the LCC
agent class ACLCC are constructed with instance objects BNvsl

i and BNlcc
i , where i represents

the location number of the entrance ramp merging area. BNvsl
i mainly observes and

estimates the traffic conditions in the speed control area upstream of the ramp merging
bottleneck and adjusts the speed limits accordingly. This adjustment aims to alleviate
congestion caused by excessive traffic density in the merging area. BNlcc

i , on the other
hand, adjusts the traffic flow on different lanes within the current ramp merging area to
optimize lane density distribution. The integrated control group Gi = BNvsl

i + BNlcc
i for

ramp Gi is responsible for the integrated control of the entire merging bottleneck, enabling
vehicles from both the mainline and the ramp to merge more efficiently.
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Algorithm 1 FACMAC-based combined control of VSL and LCC

1: Initialize policy networks πθ (actor), value networks Qϕ (critic), and mixer network M (centralized Q computation)
2: Initialize target networks πθ′ , Qϕ′ and M′ by copying parameters from πθ , Qϕ and M
3: Initialize replay buffer D and hyperparameters (learning rates αactor , αcritic, discount factor γ , and soft update factor τ)

4: while training steps < maximum training steps do
5: Reset the environment, initialize state s0

6: Reset exploration noise
7: for t = 1 to T do
8: for each agent i = 1 to N do
9: Observe state si

t (local observation and history)
10: Generate action ai

t= πθ

(
si

t
)

+ noise
11: end for
12: Execute joint actions at =

{
a1

t , ..., aN
t
}

, receive reward γt, next state st+1, and done flag dt

13: Store (st, at, γt, st+1, dt ) in replay buffer D
14: end for
15: if D.size ≥ bacth_size then
16: Sample a batch of transitions from D
17: Compute target Q − values using target networks πθ′ , Qϕ′ and M′

18: Update critic networks Qϕ and mixer network M using Adam optimizer to minimize the TD error
19: Update actor networks πθ using Adam optimizer to maximize the expected return
20: Perform soft updates for target networks πθ′ , Qϕ′ and M′

21: end if
22: end while

3.3.2. Joint State Space

In macroscopic traffic flow theory, traffic conditions are usually described by a series
of macroscopic variables such as traffic speed v, density ρ, and flow q. According to the
fundamental diagram (FD), these variables exhibit significant nonlinear characteristics.
This is mainly because for a given traffic flow value, there can be two distinctly different
traffic states: one is a stable free-flow state below the critical density ρcr, and the other is
an unstable flowing state at low speeds above ρcr. This phenomenon indicates that simply
using the flow q to represent the traffic conditions perceived by agents can easily lead to
perceptual confusion. Therefore, when constructing the Dec-POMDP, both the density ρ

and flow q are comprehensively considered as macroscopic traffic states.
For an integrated ramp control group i, there is a local observation ovsl

i for the VSL
agent and a local observation olcc

i for the LCC agent. Considering that ovsl
i and olcc

i belong to
the same integrated control group, information sharing exists during the training process.
Specifically, at ramp i, the local observation considers the following traffic characteristics:

1. Bottleneck density ρBN
i and flow qBN

i : Typically, when traffic congestion occurs at
a highway ramp merging bottleneck, there is significant traffic pressure and high
traffic density at the bottleneck location due to inconsistent flow rates caused by
vehicles merging into lanes. According to the definition, the bottleneck traffic state is
represented by the lane cells at the entrance ramp.

2. Upstream traffic density ρ
upstream
i and flow qupstream

i : Due to the strong state correlation
between upstream and downstream highway traffic, understanding the upstream
traffic state is essential for controlling ramp traffic bottlenecks. Considering that too
many state variables increase the difficulty of training, traffic information within
1.5 km upstream is used as the current observation, with this information averaged as
ρ̄

upstream
i and q̄upstream

i .



Appl. Sci. 2025, 15, 836 11 of 27

3. Ramp traffic density ρr
i and flow qr

i : Similarly, it is crucial to understand the traffic
information related to the ramp, which is especially critical for the LCC agent, as it
optimizes the lane density distribution based on these differences.

4. LCC control area lane transfer flow qtrans_stat
i : Here, we define an information

coefficient qtrans_stat

i,j,
∼
j

that reflects the amount of traffic that can be shifted from

a lane to a neighbouring lane when a lateral lane change is performed, where

qtrans_stat

i,j,
∼
j

= max{Nvehi,j, l ∗ ρi,j/T
}

, and, in most cases, qtrans_stat

i,j,
∼
j

is determined by

the shifted traffic Nvehi,j.

Based on the above state information, the VSL agent’s observation ovsl
i in the integrated

ramp control group i is defined as ovsl
i ∈ ρBN

i + qBN
i + ρ̄

upstream
i + q̄upstream

i + ρr
i + qr

i , which
is acquired through sensors such as roadside detectors to capture the current traffic state at
ramp i. The LCC agent’s observation olcc

i includes lane transfer flow information and is
defined as olcc

i ∈ ρBN
i + qBN

i + ρ̄
upstream
i + q̄upstream

i + ρr
i + qr

i + qtrans_stat

i,j,
∼
j

.

3.3.3. Joint Action Space

At each time step t, the actions performed by different agent classes based on the
current environment are not consistent. For an integrated ramp control group, the joint
action ut =

{
avsl

1,t , alcc
1,t , avsl

2,t , alcc
2,t ..., avsl

rampi ,t
, alcc

rampi ,t

}
represents the set of actions taken by the

VSL agent avsl
rampi ,t

and the LCC agent alcc
rampi ,t

for each ramp rampi.

The action of the VSL agent for each ramp avsl
ri ,t is represented by l + 1 continuous

variables (where l is the number of lanes) as

avsl
rampi ,t =

{
v1, v2, . . . , vl , posrampi ,vsl

}
, (5)

where posrampi ,vsl in Equation (5) represents the position of the VSL dynamic control area,
serving as a unified decision variable for the control lengths of all lanes before the ramp.
To maintain the consistency of continuous decision variables, all variables are set within
the range of [−1, 1]. Considering the efficiency and safety of highway traffic, VSLs are
generally used to issue advisory speeds to vehicles in different lanes. The speed limit is
defined as follows:

1. To prevent the speed limit from being too low and causing vehicles to fail to move
smoothly, the speed limit should not be lower than the minimum highway speed,
Vsl ≥ Vmin.

2. To ensure the effectiveness of speed limit control, the speed limit should not exceed
the free flow speed, Vsl ≤ Vf ree.

3. To maintain traffic flow smoothness and continuity, the speed limit change between

consecutive control periods should be within a certain range, i.e.,
∣∣∣avsl

rampi ,t
− avsl

rampi ,t−1

∣∣∣
≤ m. This avoids drastic changes in traffic speed due to speed limit control, thereby
reducing congestion and accident risks.

4. The speed limit should be a multiple of 5, i.e., the speed limit value should be adjusted
to the nearest multiple of 5.

Based on the above constraints, the lane speed limit can be calculated using
Equation (6):

Vsl
rampi ,j,t = clip[avsl

rampi ,j,t ∗ m, vmin, vmax], (6)



Appl. Sci. 2025, 15, 836 12 of 27

The posrampi ,vsl in Equation (5) is converted to the corresponding length range in CTM
by Equation (7):

posrampi ,vsl = (posrampi ,vsl + 1)/2 ∗ (posvsl
max − posvsl

min) + 1, (7)

where posvsl
max and posvsl

min represent the farthest and nearest cell positions in the VSL control
area from the merging zone, respectively. The difference posvsl

max − posvsl
min ensures that the

VSL dynamic control area remains within a limited range. Finally, the length of posrampi ,vsl

is increased by 1 to ensure that the minimum control range of the dynamic speed limit area
is one cell length. Figure 3 illustrates the variation of dynamic control areas on a single
entry ramp. It is worth noting that the range of dynamic control areas for VSL and LCC at
different entry ramps is influenced by their respective strategies.

Figure 3. Dynamic control zones in integrated control strategies.

For the LCC agent action alcc
rampi ,t

, considering the multi-lane CTM model where the

transferable vehicle number qtrans_stat

i,j,
∼
j

is primarily determined by the density difference

between two adjacent lane cells, we use the lane transfer coefficient Ts
rampi ,j→

∼
j
. This

controls the proportion of vehicle flow transfer between lanes based on density rather than
judging from a high-density lane to a low-density lane. This approach effectively manages
the flow distribution between lanes. Therefore, the LCC agent action alcc

rampi ,t
at each ramp

is expressed as Equation (8):

alcc
rampi ,t =

{
Tsrampi ,1→2, Tsrampi ,2→1, Tsrampi ,2→3, Tsrampi ,3→2, posrampi ,lcc

}
, (8)

For a three-lane highway, within the LCC control area, vehicles on the inner and outer
lanes can only transfer to one adjacent lane, while the middle lane has the ability to transfer
vehicles to both sides. Therefore, alcc

rampi ,t
for the control section contains four continu-

ous variables representing the number of transferable vehicles between lanes Ts
rampi ,j→

∼
j
.

The LCC agent’s control range variable posrampi ,lcc is also determined. Considering the
constraints of the transferable vehicle number qtrans_stat

i,j,
∼
j

during lane changes between

adjacent lanes, the LCC agent action Ts
rampi ,j→

∼
j

is converted into lateral flow through

Equations (9) and (10):
Tsrampi ,j→ j̃ = (Tsrampi ,j→ j̃ + 1)/2, (9)

f̂i,j→ j̃ = qtrans_stat
i ∗ Tsrampi ,j→ j̃, (10)

Since the output variables of the strategy network in this study are set in the range of
[−1, 1], and considering that the lane transfer coefficient Ts

rampi ,j→
∼
j

cannot be negative, it
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is scaled to [0, 1] using Equation (9). When Ts
rampi ,j→

∼
j
= 0, it means the transfer power to

adjacent lanes is completely closed, and Ts
rampi ,j→

∼
j
= 1 means optimizing the traffic effi-

ciency for lane transfer. Thus, Equation (10) directly controls the lateral flow of transferable
vehicles between adjacent lanes.

3.3.4. Reward

In Dec-POMDP problems, cooperative multi-agent systems typically share a global
reward function. This means that all agents aim to maximize the overall performance of
the entire system when making decisions, rather than just their individual performance.
This emphasizes the importance of teamwork and collective goals.

In the multi-agent merging bottleneck integrated control model discussed in this
paper, local integrated control groups optimize traffic flow efficiency and alleviate high
lane density at specific ramps through VSL and LCC control. Considering the upstream
and downstream interactions in the global traffic integrated control system, the integrated
control agents at different ramps influence each other’s traffic conditions, creating a chain
reaction. The propagation of traffic flow can impact the broader highway network globally.

Previous studies aimed at mitigating merging traffic bottlenecks often focused on
reducing the total travel spend (TTS) within the entire road network system, which includes
the total travel time within the study area and the queuing time upon entry [27,36]. This
approach is somewhat effective in simplified single-agent scenarios or with single traffic
control measures. However, using TTS in multi-agent integrated control can lead to
unnecessary confusion among agents.

Considering the distinction between VSL and LCC control, as well as the relation-
ship between the global and local levels, this paper proposes a mixed reward function.
Specifically, based on the objective of integrated control, we aim to maximize the traffic
efficiency BNe f f ect in the merging bottleneck area. Although the traffic flow FBN is a direct
indicator of traffic efficiency, the nonlinear relationship between flow and density in the
fundamental diagram better represents road traffic conditions. The FD reveals that as road
density approaches the critical density ρcr, the traffic flow increases, but it sharply decreases
when exceeding ρcr. Therefore, maintaining road density near the critical density BNe f f ect

is crucial for improving traffic efficiency. For outer lanes, the density ρr of the ramp lane
is also considered due to the impact of merging traffic. The reward function is defined by
Equations (11)–(13):

rBN
i,j =


ρ2

i,j

ρ2
cr

, ρi,j ≤ ρcr

max
{

0,
ρ2

cr−(ρi,j−ρcr)
2

ρ2
cr

}
, ρi,j > ρcr

, (11)

rBN
i,out =


ρ2

i,out
ρ2

wish
, ρi,out ≤ ρwish

max
{

0, ρ2
wish−(ρi,out−ρwish)

2

ρ2
wish

}
, ρi,out > ρwish

, (12)

rupstream
i,j = −

ρ2
i,j

ρ2
cr

, (13)

At time step t, the system receives an overall reward rt, which is determined by the
density of the merging bottleneck area and the upstream region. In Equation (11), the inner
lane reward rBN

i,j of the merging bottleneck area is designed to optimize traffic flow when
the density ρi,j is below the critical density ρcr, ensuring maximum traffic throughput. We
also aim to avoid a rapid decrease in capacity when ρi,j exceeds ρcr.
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Similar to Equation (11), the density ρi,out of the outer lane in the merging bottleneck
area is significantly influenced by the merging traffic at the entry ramp. Therefore, the
reward rBN

i,out,out for the outer lane in the merging bottleneck area is defined in Equation (12).
The desired lane density ρwish = ρcr − ρr, where ρr is the ramp lane density, indicates that
the outer lane should transfer more excess traffic to the inner lanes via the LCC to obtain a
higher reward.

For Equation (13), during traffic control, especially speed limit control, there is often a
tendency to lower the speed limit on upstream control sections to alleviate traffic pressure
at merging points. While this approach mitigates traffic pressure at the bottleneck, it can
also cause overall system congestion, reducing overall traffic efficiency. Thus, rupstream

i,j
represents the reward for the upstream section affected negatively by the VSL.

The global reward function rt, in conjunction with Equations (11)–(13), considers both
the overall traffic efficiency and the mitigation of local traffic pressure. The parameter
c reflects the desired improvement in overall traffic capacity when control measures are
implemented to alleviate traffic congestion at specific ramp bottlenecks:

rt =
BN

∑
i

l

∑
j ̸=out

rBN
i,j +

BN

∑
i

rBN
i,out + c ·

upstream

∑
i

l

∑
j

rupstream
i,j , (14)

4. Multi-Lane CTM Simulation Model
This study performs simulation experiments on the proposed integrated control based

on the multi-lane CTM model. In CTM, the road is divided into several equal-length
cells along the direction of traffic flow. In the multi-lane CTM model, the highway con-
sists of n segments (i = 1, 2, . . . n) of length l. Each segment i is subdivided into m lanes
(j = 1, 2, . . . , m). A lane cell can be indexed as (i, j). In this paper, the initial segment is
defined as i = 1, and the outermost lane is defined as j = 1. As shown in Figure 4, the
traffic density of a three-lane highway model is updated using the density conservation
formula in Equation (15):

ρi,j(k + 1) = ρi,j(k) +
T
l
[
qi−1,j(k) + ri,j(k)− qi,j(k) + fi,j+1,j(k) + fi,j−1,j(k)− fi,j,j−1(k)− fi,j,j+1(k)

]
(15)

Figure 4. Freeway multi-lane traffic flow model.

Here, k represents the discrete time step; T is the aggregation period; qi,j(k) and
ri,j(k) denote the flow rates of the mainline cell and the on-ramp cell, respectively; and
f (k) represents the lateral flow between lane cells. To adapt the multi-lane CTM for the
purposes of this study, corresponding improvements have been made. For more detailed
information, interested readers can refer to [37].

To facilitate the effective integration of the multi-lane CTM with the heterogeneous
FACMAC algorithm, a ctm_sim class is developed in Python 3.9.13. This class encom-
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passes modules for basic parameter configuration and initialization, simulation execution,
traffic demand generation, traffic state retrieval, and reward calculation. Among these,
model initialization is critical to the accuracy and reliability of the simulation. Therefore,
prior to each simulation, the scenario must be confirmed, and model parameters must be
appropriately configured. In this study, the downward direction of the Jialiu section on
the G15 Shenhai Expressway in Shanghai is selected as the research focus (indicated by
the red arrow). A satellite image of the road is presented in Figure 5. The research scope
includes two interchanges: Jialiu Interchange and Jiaxi Interchange. The Jialiu Interchange
contains an entry ramp, while the Jiaxi Interchange includes both an entry ramp and an
exit ramp. The two entry ramps are approximately 4.3 km in length. The mainline of the
expressway primarily consists of three lanes, whereas the ramps typically feature one lane.
Additionally, five pavement detectors are installed at specific stake points (highlighted in
yellow) along the study segment.

Figure 5. Satellite picture of G15 Jialiu section.

The construction and calibration of the multi-lane CTM are determined by two key
factors: the road’s geometric characteristics and the model’s traffic parameters. For this
study, the basic model parameters are set as follows: road length l = 0.5km, number of
lanes m = 3, and simulation time step k, aggregated over an interval of T = 15s. The
calibration of the traffic parameters is conducted using a flow-density scatter plot at the
bottleneck upstream of the entry ramp (KX1262350) (Figure 6). Initially, the critical density
ρcr is determined by observing that it is smaller than a specific density threshold ρa. Sample
points satisfying ρa are identified, sorted in descending order of flow, and the top 3% of
these points are selected. The mean density of the selected points is defined as the critical
density ρcr = 21 veh/km/lane, while their mean flow is defined as the road capacity
Qmax = 1950 veh/lane. Subsequently, all sample points are divided into two sets, a left set
and a right set, based on ρcr. Linear regression using the least squares method is applied to
both sets. The left set’s regression line represents the free-flow speed v f ree while the right
set’s regression line represents the congested flow density ρcr = 21 veh/km/lane. Finally,
ρjam is used to calculate the capacity drop coefficient qdrop = 12%.
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Figure 6. Traffic flow density scatter diagram.

5. Results and Discussion
To evaluate the effectiveness of the proposed FM-ITC-Darea strategy, benchmark

schemes were established, including no control, the SPSC-LCC integrated control strategy
based on the simple proportional speed controller (SPSC) algorithm, and the FM-ITC strat-
egy using multi-agent reinforcement learning for static control areas. These benchmarks
illustrate the advantages of the FM-ITC-Darea strategy with dynamic control areas. Below,
the basic experimental setup is introduced, and the training process of FM-ITC-Darea
is analyzed.

5.1. Algorithm Training Settings

In the experimental traffic flow settings, considering that highway traffic flow origi-
nates from the upstream mainline and on-ramps, the mainline traffic demand generally
ranges from 3000 to 7000 vehicles per hour (veh/h), while the ramp demand generally
ranges from 500 to 1200 veh/h. To simulate real-world traffic conditions, the simulation
environment is set to a medium flow scenario, with a total traffic demand of 5100 veh/h.

Considering that real-world traffic demand typically undergoes a stochastic variation
process, random noise is defined as fluctuations around the traffic demand that do not
exceed 10% of the maximum traffic demand. During the first 100 time steps of the simu-
lation, the mainline traffic demand continuously increases, eventually stabilizing around
1700 veh/h/lane. The demands at both on-ramps are set to be the same, fluctuating around
800 veh/h/lane.

The experiment sets the maximum training epochs for the RL algorithm to 1000. The
algorithm terminates training when it reaches the maximum number of training rounds
or a convergence condition. During each training epoch, the simulation steps in the CTM
simulation environment include an environment warm-up period and a formal training
period. At the beginning of each training session, the CTM initializes the simulation
environment and warms up the traffic operation environment within 20 simulation steps.
Then, over the following 600 simulation steps, agents interact with the stable CTM model
environment to obtain observational information. In the traffic control system, the control
cycle is set to 3 min, with the integrated controller updating the speed limits and lane
change transition coefficients for each lane every 3 min.

Additionally, by comparing the effects of different experiments, the parameters related
to OU noise were selected as θ = 0.15, µ = 0, σ = 0.4.

In Table 1, the settings for the algorithm-related parameters are provided:
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Table 1. Parameter list of FACMAC-based ramp merge integration control methods.

Parameter Value

Number of agents 4
Training epochs 1000
Testing epochs 10

Simulation steps 620
Effective simulation duration 7200 s

Experience replay buffer capacity 4000
Network training batch size 64

Discount factor 0.99
Actor learning rate 0.0003
Critic learning rate 0.003

Soft update parameter 0.01

5.2. Training Process

Below, the training process of the FM-ITC-Darea algorithm is analyzed, and its con-
vergence is evaluated. The simulation experiments, running 1000 training epochs on a
computer with an AMD Ryzen 5600X six-core 3.7 GHz processor and an NVIDIA 1660S
graphics card, take approximately 20 to 30 min. The training process is illustrated in
Figure 7.

Figure 7. Reward curves for FM-ITC-Darea training processes.

For comparison, this paper also considers the scenario without control in the current
simulation environment, where the reward value is calculated to be −150, as indicated by
the yellow line in Figure 7. From the training of the agent in the FM-ITC-Darea strategy, it
can be observed that during the first 200 training episodes, the agent continuously learns
from the environment. Due to the randomness of the environment, there are significant
oscillations during this period. After sufficient exploration, the agent shows an upward
trend after 200 episodes and converges around −100. The final reward of the strategy
shows an improvement compared to the no-control scenario.

To further demonstrate the effectiveness of the strategy, Figure 8 shows the variation
of TTS during the training process. Compared to the initial stages of training, the FM-ITC-
Darea strategy, after training, reduced the TTS by approximately 9.0%, indicating that the
strategy can, overall, improve traffic efficiency.
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Figure 8. TTS convergence curves for FM-ITC-Darea training processes.

5.3. Comparison of Traffic Conditions in the Merge Bottleneck Area

In the study, the primary cause of road congestion is the emergence of bottlenecks
at the on-ramp merge points, which subsequently spread to upstream areas. Therefore, a
comparative analysis of the traffic conditions for the overall road and the bottleneck areas
was conducted.

Figure 9 shows the spatiotemporal density variation of the overall mainline traffic,
where Lane 1 represents the lane adjacent to the on-ramp. It can be observed that in the
no-control scenario, the convergence of traffic from the on-ramp leads to congestion before
the on-ramp, which then spreads to the upstream road sections and adjacent lanes. Under
the SPSC-LCC strategy, the congestion in the control area before on-ramps is significantly
alleviated; however, some congestion still occurs in the upstream area.

In contrast, under the FM-ITC and FM-ITC-Darea control strategies, the integrated
control method imposes speed limits on the upstream traffic flow and directs vehicles
within the control area to move preferentially toward the inner lanes. This reduces the
density of the outer lanes and increases the utilization of the inner two lanes. Overall,
the spatiotemporal impact of traffic congestion caused by the bottleneck spread is signifi-
cantly reduced.

Figures 10 and 11 provide a more detailed analysis of the bottleneck traffic conditions
at two on-ramps (i.e., cells 7 and 14). Due to the convergence of traffic from the on-ramps,
the density of the outer lanes (i.e., Lane 1) at both on-ramps exceeds the critical density in
the no control scenario, affecting the downstream traffic flow. The traffic fluctuations are
more pronounced at cell 14 due to the presence of upstream on-ramps. By observing the
simulation results of the three control strategies, it is evident that integrated control tends
to eliminate traffic bottlenecks in the outer lanes. Although this increases the traffic load
on the inner lanes (particularly Lane 2) by directing lane changes, the local objectives are
achieved. This approach mitigates the negative impact of merging traffic to some extent
and stabilizes the fluctuating traffic flow at cell 14. Given these observations, it can be seen
that the SPSC-LCC strictly adheres to its logical settings, aiming to regulate each lane within
the control range to the desired density and flow state. However, this setting sometimes
has adverse effects on roads outside the control range (e.g., causing new traffic congestion).
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Figure 9. Overall spatial–temporal density of each lane of the mainline under different strategies,
where (a) denotes the no control scenario, (b) denotes the SPSC-LCC strategy scenario, (c) denotes
the FM-ITC strategy scenario, and (d) denotes the FM-ITC-Darea strategy scenario.
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Figure 10. Changes in mainline density in ramp merging areas under different integrated control
strategies, where (a) denotes the no-control scenario, (b) denotes the SPSC-LCC strategy scenario,
(c) denotes the FM-ITC strategy scenario, and (d) denotes the FM-ITC-Darea strategy scenario.

Compared to the SPSC-LCC strategy, the FM-ITC and FM-ITC-Darea control strategies
have a more flexible perception of road traffic conditions, enhancing the effectiveness of
control commands and reducing traffic fluctuations caused by control commands lagging
behind actual traffic conditions. FM-ITC-Darea exhibits similar effects to FM-ITC in control-
ling local traffic, but has the added advantage of determining the control area. This means
it is not limited to achieving control objectives for the outer lanes but is more inclined to
optimize traffic conditions within the entire effective bottleneck range of the on-ramps.
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Figure 11. Changes of mainline flow in ramp merging areas under different integrated control
strategies, where (a) denotes the no-control scenario, (b) denotes the SPSC-LCC strategy scenario,
(c) denotes the FM-ITC strategy scenario, and (d) denotes the FM-ITC-Darea strategy scenario.

Table 2 presents the overall evaluation metrics under different control strategies.
According to the simulation results, compared to the no-control scenario, the SPSC-LCC
strategy is less effective in alleviating congestion. This is because SPSC-LCC only monitors
flow in the local on-ramp merge areas and controls traffic at the merge bottlenecks only after
congestion occurs, resulting in poorer performance on overall metrics. On the other hand,
the FM-ITC and FM-ITC-Darea control strategies show improvements in both TTS and
total vehicle turnover (TVT) metrics. Compared to integrated control in a static control area,
the FM-ITC-Darea strategy, by dynamically adjusting the control area, can more effectively
reduce the overall traffic travel time.



Appl. Sci. 2025, 15, 836 22 of 27

Table 2. Comparison of traffic performance indicators for different control strategies.

Control Strategy
Simulation Results Improvement

TTS (s) TVT (veh) TTS (%) TVT (%)

No control 1070 70,862 - -
SPSC-LCC 1098 71,768 −2.6 1.3

FM-ITC 990 72,493 7.5 2.3
FM-ITC-Darea 960 72,759 10.3 2.7

5.4. Comparison of Integrated Controller Actions

To better compare the differences in strategy selection between the FM-ITC and
FM-ITC-Darea algorithm frameworks, the changes in speed limit values, lane-changing
coefficients, and control region lengths under two strategies are, respectively, shown in
Figure 12. It can be observed that both control strategies tend to impose lower speed limits
on the outer lane (Lane 1) to reduce the bottleneck caused by merging. These speed limits
are often set at the minimum speed limit, indicating that under higher traffic demand
conditions, the FM-ITC with a fixed control region may not be able to achieve the most
effective control (i.e., the traffic speed within the speed limit area can even be lower than
the speed limit value). In response to different traffic scenarios, the FM-ITC-Darea can
avoid this issue by dynamically adjusting the length of the control region. It is evident that
an integrated control system using a dynamic control region can adopt more lenient speed
limits, thereby reducing the interference of speed limits on overall traffic.

Figure 12. Variation of speed limit values for different integrated control strategies, where (a) and
(b) correspond to FM-ITC speed limit changes at entrance ramps 1 and 2, respectively, and (c) and
(d) correspond to FM-ITC-Darea speed limit changes at entrance ramps 1 and 2, respectively.

Figure 13 shows the lane transfer coefficients of the cells before the two on-ramps
under the FM-ITC and FM-ITC-Darea strategies. It can be observed that before Ramp
1, both strategies tend to close the possibility of flow from the inner lanes to the outer
lanes. By adjusting the flow from the outer lanes to the inner lanes, they alleviate the traffic
conflicts between the outer lanes and the on-ramps. Before Ramp 2, the LCC agent in the
FM-ITC-Darea strategy allows some flow from Lane 3 to Lane 2. This is because the LCC
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agent’s control range expands under dynamic control areas (see Figure 14b), preventing
more severe bottlenecks in Lane 3.

Figure 13. Variation of lane transfer factor for different integrated control strategies, where
(a–d) denote the lane transfer coefficients of the two entrance ramp merge pre-cells under the FM-ITC
strategy, and (e,f) denote the lane transfer coefficients of the two entrance ramp merge pre-cells under
the FM-ITC-Darea strategy.

Figure 14. Variation of dynamic control area length for different integrated control strategies.
where, (a) represents the variation in the control length of VSL agents at different bottlenecks, and
(b) represents the variation in the control length of LCC agents at different bottlenecks.

By observing the changes in the dynamic control range actions of the VSL (a) and
LCC (b) agents in Figure 14, it can be seen that under the current demand level, the
integrated control strategy often prioritizes the adjustment of vehicle transfers and control
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ranges of the outer lanes. This not only alleviates the formation of traffic bottlenecks in the
outer lanes but also, to some extent, avoids the VSL speed limits from affecting the overall
traffic efficiency.

In our experiments, both the VSL agent and the LCC agent in the integrated control
strategy framework have the ability to dynamically adjust their control ranges. For the
VSL agent, this ability helps avoid the failure of speed limits due to excessive congestion
within a limited control range. For the LCC agent, it allows prioritizing the extension of the
control range length to better optimize the congested traffic flow in the ramp merge areas.
The experimental results support this hypothesis: under medium traffic demand, the speed
limits set by the VSL agent generally do not reach the minimum speed limit of 40 km/h,
thereby avoiding secondary congestion. When traffic demand changes, dynamically con-
figuring the control area range enables the algorithm to flexibly decide whether to activate
alternative control areas to optimize speed limits or lane transfer coefficients. This flexible
control strategy is difficult to achieve with traditional traffic control strategies like those
primarily based on SPSC.

However, deciding whether to adjust a larger control area or set more extreme control
commands presents a challenge for the agents. When the number of training iterations is
insufficient, or the training falls into a suboptimal solution, the agents in FM-ITC-Darea
might issue less effective control commands compared to the static control area strategy,
FM-ITC. Additionally, although using MARL-based integrated control strategies in multi-
ramp merging scenarios can effectively handle randomly changing traffic conditions, it
sometimes struggles to balance the optimization of local ramp areas with overall traffic
flow. Determining the control priorities of the agents can also be challenging, potentially
affecting the convergence of training. To address these shortcomings, future research could
further explore the trade-offs between integrated control strategies for overall and local
traffic optimization and the feasibility of implementing dynamic control areas.

6. Conclusions
This paper improves the FACMAC algorithm by converting the VSL and LCC inte-

grated control strategies into a distributed partially observable Markov decision process.
Heterogeneous VSL and LCC agents were designed, and a multi-ramp merging integrated
control framework based on FACMAC was proposed. The study considers the introduction
of the dynamic control area concept under the premise of a vehicular network environment.
By granting VSL and LCC agents the ability to configure spatially, control issues such as
speed limit failures are avoided, enhancing the adaptability of control strategies to different
traffic environments. Testing the proposed integrated control strategy in a multi-ramp sce-
nario demonstrated its effectiveness in solving merging bottleneck problems and verified
the significant effect of dynamic control areas in alleviating traffic pressure, proving the po-
tential and effectiveness of the improved integrated control scheme. To further demonstrate
the practicality of the proposed control framework, Figure A1 in Appendix A presents
a schematic diagram detailing the framework’s process and implementation plan. This
diagram encompasses the entire workflow, ranging from real-world data acquisition and
simulation environment construction to agent training and testing, as well as the validation
of control strategies.

In conclusion, this paper not only provides an effective intelligent traffic integrated
control solution for the highway ramp merging bottleneck problem but also introduces
the innovative concepts of MARL algorithms and dynamic traffic control areas into the
control system. This offers valuable theoretical and practical guidance for the design of
future intelligent traffic systems and traffic flow management.
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ITS Intelligent Transportation Systems.
VSL Variable Speed Limits.
LCC Lane Change Control.
Dec-POMDP Decentralized Partially Observable Markov Decision Process.
CTM Cell Transmission Model.
MARL Multi-Agent Reinforcement Learning.
FACMAC Factored Multi-Agent Centralized Policy Gradients.

FM-ITC
Factored Multi-Agent Centralized Policy Gradients for Integrated Traffic
Control.

FM-ITC-Darea
Factored Multi-Agent Centralized Policy Gradients for Integrated Traffic
Control in Dynamic Areas.

MPC Model Predictive Control.
RM Ramp Metering.
VSL-RM Variable Speed Limits with Ramp Metering.
V2X Vehicle-to-Everything.
RL Reinforcement Learning.
CTDE Centralized Training and Decentralized Execution.
MADDPG Multi-Agent Deep Deterministic Policy Gradient.
OU Ornstein–Uhlenbeck.
TTS Total Travel Spend.
SPSC Simple Proportional Speed Controller.
TVT Total Vehicle Turnover.

Appendix A

Figure A1. Flowchart of the proposed integrated control framework for application in real-world scenarios.



Appl. Sci. 2025, 15, 836 26 of 27

References
1. Oh, S.; Yeo, H. Estimation of Capacity Drop in Highway Merging Sections. Transp. Res. Rec. 2012, 2286, 111–121. [CrossRef]
2. Zhang, J.; Wang, F.-Y.; Wang, K.; Lin, W.-H.; Xu, X.; Chen, C. Data-Driven Intelligent Transportation Systems: A Survey. IEEE

Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. [CrossRef]
3. Farahani, R.Z.; Miandoabchi, E.; Szeto, W.Y.; Rashidi, H. A review of urban transportation network design problems. Eur. J. Oper.

Res. 2013, 229, 281–302. [CrossRef]
4. Gkyrtis, K.; Kokkalis, A. An Overview of the Efficiency of Roundabouts: Design Aspects and Contribution toward Safer Vehicle

Movement. Vehicles 2024, 6, 433–449. [CrossRef]
5. Papageorgiou, M.; Kotsialos, A. Freeway ramp metering: An overview. IEEE Trans. Intell. Transp. Syst. 2002, 3, 271–281.

[CrossRef]
6. Zhang, Y.; Ioannou, P.A. Combined Variable Speed Limit and Lane Change Control for Highway Traffic. IEEE Trans. Intell. Transp.

Syst. 2017, 18, 1812–1823. [CrossRef]
7. Lee, C.; Hellinga, B.; Saccomanno, F. Assessing Safety Benefits of Variable Speed Limits. Transp. Res. Rec. 2004, 1897, 183–190.

[CrossRef]
8. Yu, M.; Fan, W. “David” Optimal Variable Speed Limit Control in Connected Autonomous Vehicle Environment for Relieving

Freeway Congestion. J. Transp. Eng. Part Syst. 2019, 145, 04019007. [CrossRef]
9. Papamichail, I.; Papageorgiou, M.; Stamatakis, I. Feedback Traffic Control at Highway Work Zones using Variable Speed Limits.

IFAC-Pap. 2018, 51, 329–336. [CrossRef]
10. Hegyi, A.; Schutter, B.D.; Hellendoorn, J. Optimal coordination of variable speed limits to suppress shock waves. IEEE Trans.

Intell. Transp. Syst. 2005, 6, 102–112. [CrossRef]
11. Han, Y.; Wang, M.; He, Z.; Li, Z.; Wang, H.; Liu, P. A linear Lagrangian model predictive controller of macro- and micro- variable

speed limits to eliminate freeway jam waves. Transp. Res. Part C Emerg. Technol. 2021, 128, 103121. [CrossRef]
12. Han, Y.; Hegyi, A.; Yuan, Y.; Hoogendoorn, S.; Papageorgiou, M.; Roncoli, C. Resolving freeway jam waves by discrete first-order

model-based predictive control of variable speed limits. Transp. Res. Part C Emerg. Technol. 2017, 77, 405–420. [CrossRef]
13. Carlson, R.C.; Papamichail, I.; Papageorgiou, M.; Messmer, A. Optimal mainstream traffic flow control of large-scale motorway

networks. Transp. Res. Part C Emerg. Technol. 2010, 18, 193–212. [CrossRef]
14. Soriguera, F.; Martínez, I.; Sala, M.; Menéndez, M. Effects of low speed limits on freeway traffic flow. Transp. Res. Part C Emerg.

Technol. 2017, 77, 257–274. [CrossRef]
15. Ma, M.; Yang, Q.; Liang, S.; Li, Z. Integrated Variable Speed Limits Control and Ramp Metering for Bottleneck Regions on

Freeway. Math. Probl. Eng. 2015, 2015, e313089. [CrossRef]
16. Fang, J.; Hadiuzzaman, M.; Yin, E.; Qiu, T.Z. DynaTAM: An online algorithm for performing simultaneously optimized proactive

traffic control for freeways. Can. J. Civ. Eng. 2014, 41, 315–322. [CrossRef]
17. Guo, Y.; Xu, H.; Zhang, Y.; Yao, D. Integrated Variable Speed Limits and Lane-Changing Control for Freeway Lane-Drop

Bottlenecks. IEEE Access 2020, 8, 54710–54721. [CrossRef]
18. Markantonakis, V.; Skoufoulas, D.I.; Papamichail, I.; Papageorgiou, M. Integrated Traffic Control for Freeways using Variable

Speed Limits and Lane Change Control Actions. Transp. Res. Rec. 2019, 2673, 602–613. [CrossRef]
19. Kattan, L.; Khondaker, B.; Derushkina, O.; Poosarla, E. A Probe-Based Variable Speed Limit System. J. Intell. Transp. Syst. 2015, 19,

339–354. [CrossRef]
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