
Academic Editors: Luis Javier

García Villalba and Ana

Lucila Sandoval Orozco

Received: 14 December 2024

Revised: 3 January 2025

Accepted: 16 January 2025

Published: 20 January 2025

Citation: Kim, J.; Lee, K.; Jeong, H.

Real-Time Mouse Data Protection

Method Using GANs for Image-Based

User Authentication Based on

GetCursorPos() and SetCursorPos()

Functions. Appl. Sci. 2025, 15, 977.

https://doi.org/10.3390/

app15020977

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Real-Time Mouse Data Protection Method Using GANs for
Image-Based User Authentication Based on GetCursorPos() and
SetCursorPos() Functions
Jinwook Kim 1, Kyungroul Lee 2 and Hanjo Jeong 3,*

1 Interdisciplinary Program of Information & Protection, Mokpo National University,
Muan 58554, Republic of Korea; wlsdnr0816@mokpo.ac.kr

2 Department of Information Security Engineering, Mokpo National University,
Muan 58554, Republic of Korea; carpedm@mnu.ac.kr

3 Department of Software Convergence Engineering, Mokpo National University,
Muan 58554, Republic of Korea

* Correspondence: hanjojeong@mnu.ac.kr; Tel.: +82-61-450-2773

Abstract: In online services, password-based authentication, a prevalent method for user
verification, is inherently vulnerable to keyboard input data attacks. To mitigate these
vulnerabilities, image-based authentication methods have been introduced. However,
these approaches also face significant security challenges due to the potential exposure
of mouse input data. To address these threats, a protective technique that leverages the
SetCursorPos() function to generate artificial mouse input data has been developed, thereby
concealing genuine user inputs. Nevertheless, adversaries employing advanced machine
learning techniques can distinguish between authentic and synthetic mouse data, leaving
the security of mouse input data insufficiently robust. This study proposes an enhanced
countermeasure utilizing Generative Adversarial Networks (GANs) to produce synthetic
mouse data that closely emulate real user input. This approach effectively reduces the
efficacy of machine learning-based adversarial attacks. Furthermore, to counteract real-time
threats, the proposed method dynamically generates synthetic data based on historical
user mouse sequences and integrates it with real-time inputs. Experimental evaluations
demonstrate that the proposed method reduces the classification accuracy of mouse input
data by adversaries to approximately 62%, thereby validating its efficacy in strengthening
the security of mouse data.

Keywords: image-based authentication; mouse data; SetCursorPos() function; generative
adversarial network(GANs); machine learning

1. Introduction
With the advent of the digital age, user authentication technologies have become indis-

pensable for accessing online services [1]. While offline identity verification often relies on
tangible credentials such as Social Security Numbers (SSN), online environments necessitate
remote and contactless authentication methods due to the absence of direct verification
mechanisms. Among these, password-based authentication remains the most widely em-
ployed technique due to its ease of implementation [2,3]. In this framework, users create their
passwords during registration, and authentication is performed by matching the entered
password with the stored credentials. Typically, passwords are entered via keyboard input,
rendering keyboard data a critical asset that must be securely protected [4].

Appl. Sci. 2025, 15, 977 https://doi.org/10.3390/app15020977

https://doi.org/10.3390/app15020977
https://doi.org/10.3390/app15020977
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app15020977
https://www.mdpi.com/article/10.3390/app15020977?type=check_update&version=1

Appl. Sci. 2025, 15, 977 2 of 14

Despite its prevalence, password-based authentication is vulnerable to keyboard data
attacks aimed at intercepting credentials. Attackers have successfully intercepted keyboard
data using C/D-bit weakness and the RESEND command, leveraging the fact that PS/2
and USB interface keyboards were designed without robust security considerations [5].
As a result, these devices remain susceptible to hardware-level attacks. Additionally,
attackers deploy a range of strategies across application, operating system, and hardware
layers, complicating comprehensive defensive measures. Consequently, password-based
authentication exhibits fundamental limitations in maintaining security, prompting the
exploration of alternative approaches such as image-based authentication [6,7].

Image-based authentication technologies enable users to input passwords by interacting
with graphical images displayed on the screen, circumventing the need for keyboard input
and thus mitigating risks associated with keyboard data attacks. However, these systems
are not immune to exploitation. Specifically, if screen and mouse data are inadequately
protected, attackers can extract authentication-related information. A notable vulnerabil-
ity lies in the operating system’s mouse position management, where attackers can track
cursor movements by repeatedly invoking the GetCursorPos() function [8]. This highlights
a significant security gap in image-based authentication systems. To address this vulnera-
bility, defensive techniques utilizing the SetCursorPos() function [9] have been developed
to generate synthetic mouse data, thereby obfuscating real input and confusing attackers.
However, recent advancements in machine learning-based attack methods have enabled
attackers to distinguish between real and synthetic mouse data by identifying patterns within
the generated inputs, achieving classification accuracies of up to 99% [10,11].

This paper proposes a novel approach to enhance the protection of mouse data in image-
based authentication systems by leveraging Generative Adversarial Networks (GANs) [12].
The proposed method generates synthetic mouse data that closely resemble authentic user
input, thereby diminishing the effectiveness of machine learning-based attacks. Furthermore,
the system dynamically generates fake data in real time by training GANs on historical user
mouse movement data and blending the synthetic data with live inputs. Experimental results
demonstrate that the proposed technique reduces the classification accuracy of adversarial
attacks from 99% to approximately 62%, thereby validating its effectiveness in securing
mouse data. The contributions of this study are as follows:

• The proposed technique addresses the shortcomings of existing mouse data protection
methods, thus improving the security of image-based authentication systems by
significantly reducing the success rates of machine learning-based attacks.

• A dataset of real mouse movement data was constructed to facilitate the generation of
realistic synthetic data using GANs. This dataset can be continuously updated with
additional user data, enabling the production of increasingly sophisticated synthetic
inputs to enhance defensive performance.

• By leveraging historical user mouse movement sequences, the proposed system pre-
generates fake data, which is then mixed with live input to provide real-time protection
against active attacks.

• The experimental results demonstrate that the proposed technique effectively reduces
attack accuracy, dropping from 99% to an average of 62%. This is close to the sta-
tistically insignificant baseline of 50% in binary classification tasks distinguishing
real from fake mouse data. This indicates the method’s success in obscuring critical
patterns necessary for extracting sequential mouse coordinates, thereby ensuring the
protection of sensitive authentication data.

The remainder of this paper is organized as follows: Section 2 reviews related works on
mouse data attacks and existing protection techniques. Section 3 details the methodology
and simulation environment of the proposed system. Section 4 analyzes the experimental

Appl. Sci. 2025, 15, 977 3 of 14

results, and Section 5 concludes the study with a discussion of its implications and future
research directions.

2. Related Research
2.1. Generative Adversarial Networks (GANs)

To counter machine learning-based mouse data attacks, this study proposes a mouse
data protection technique utilizing Generative Adversarial Networks (GANs). GANs, first
introduced in 2014, comprise two neural networks—a generator and a discriminator—that
engage in a competitive learning process. The generator creates synthetic data that mimic
real data, while the discriminator’s task is to distinguish between the real and generated
data. This iterative competition improves the performance of both networks, with the goal
of generating highly realistic fake data. GANs are commonly employed in applications
such as image generation and data augmentation, particularly when there is a lack of
sufficient training data for machine learning models [12,13].

Generative Adversarial Networks (GANs) are increasingly being applied in the field
of information security, particularly in generating synthetic attack data and enhancing
security systems. One such study investigates how GANs can be utilized in cybersecurity
to create synthetic attack data, and this is crucial for training intrusion detection systems.
Since acquiring realistic cyberattack data can be challenging due to privacy concerns, GANs
provide a solution by generating diverse and realistic attack data that simulate a wide range
of cyber threats. This synthetic data can be employed to improve the training of security
models without compromising the privacy of real-world data [14–16]. Another application
of GANs in information security is enhancing encryption methods for digital image protec-
tion. By using GANs to generate encrypted versions of images, researchers aim to make
it more difficult for unauthorized users to access sensitive information. This approach
also incorporates a customized super-resolution network for reconstructing these images,
ensuring secure data handling even when faced with potential adversarial attacks [17,18].
These studies underscore the growing interest in leveraging GANs to improve data secu-
rity, particularly in areas like attack simulation and encryption, where the generation of
synthetic data plays a critical role in advancing cybersecurity defense mechanisms.

2.2. Mouse Data Attacks and Protection Techniques Based on Windows API

The Windows API (Application Programming Interface) [19] provides a collection
of functions that enable applications to interact with hardware and software components
within the Microsoft Windows operating system. Among these, two critical mouse-related
functions, GetCursorPos() and SetCursorPos(), are utilized to manage mouse coordinates.
These functions, defined in the winuser.h header file, enable the retrieval of the current
mouse cursor position (GetCursorPos()) and the movement of the cursor to specified
coordinates (SetCursorPos()). Traditional mouse data attacks involve attackers repeat-
edly invoking GetCursorPos() to track mouse movements. In response to this, defensive
techniques have been developed, where the mouse cursor is periodically repositioned to
random coordinates, thereby disrupting the attacker’s ability to track real mouse positions.
Specifically, for a set of real mouse coordinates (A1, A2, . . ., An), random synthetic coor-
dinates (B1, B2, . . ., Bn) are generated using SetCursorPos(), resulting in the collection of
both real and fake coordinates (e.g., A1, B1, B2, A2, . . ., Bn, . . ., An). Since attackers lack
knowledge of the fake coordinates, they are unable to distinguish between real and fake
data, preventing the extraction of true mouse data.

However, this randomization technique can be circumvented if attackers also collect
the timing information associated with each coordinate collection. By analyzing the tempo-
ral distribution between real, non-periodic coordinates and the periodic fake ones, attackers

Appl. Sci. 2025, 15, 977 4 of 14

can identify patterns and use these distinguishing features to classify the coordinates
effectively [10,11].

2.3. Machine Learning-Based Mouse Data Attack Techniques

To overcome defenses based on SetCursorPos() that generate fake mouse data, machine
learning-based attack techniques have emerged. In these attacks, attackers collect both real
and fake mouse data by periodically calling GetCursorPos(). Then, they apply various
machine learning algorithms, such as K-Nearest Neighbors (KNN), Logistic Regression,
and Support Vector Machines (SVM), to classify the data. Key features, such as the X and Y
coordinates of the mouse and the elapsed time between movements, are used to construct
the dataset. Results from applying these machine learning models show that classification
accuracy can reach up to 98% [10]. Furthermore, by incorporating additional features,
such as the distance between consecutive mouse coordinates, classification accuracy can be
improved to 99% [11]. These findings suggest that simply using SetCursorPos() to generate
random fake data is insufficient against machine learning-based attacks, necessitating the
development of more sophisticated techniques for generating fake data to protect mouse
data effectively.

3. Proposed Method for Real-Time Mouse Data Protection Using
Generative Adversarial Networks (GANs)

In this section, we propose a method to protect real-time mouse data from machine
learning-based attacks. To prevent attackers from accurately classifying mouse data, syn-
thetic data closely resembling real data must be generated. The following subsections
describe the data generation methodology, dataset construction, and experimental results
from the attacker’s perspective.

3.1. Overall Flow of Real-Time Mouse Data Protection Method Using GANs

This subsection outlines the methodology for protecting mouse data using GANs
in an image-based authentication system. Figure 1 shows the flowchart illustrating how
GANs protect real-time mouse data. The blue and red colors in the figure represent the
generation and storage flows of real mouse data and fake mouse data within the system,
respectively. The defense tool collects mouse sequence data from a user when they interact
with an image-based authentication webpage, applying GANs to generate synthetic mouse
sequence data for each authentication page. If the user revisits the authentication page, the
defense tool integrates the synthetic data by using the SetCursorPos() function, making the
cursor movement reflect the generated fake data.

This process naturally mixes real and synthetic mouse sequence data. If an attacker
collects data using the GetCursorPos() function, they will capture both real and synthetic
data that closely resemble real mouse data. Unlike random methods of generating fake data,
the proposed method uses previous mouse sequence data, trained using the Conditional
Tabular Generative Adversarial Network (CTGAN) [20,21] to generate synthetic data. There
are certain constraints to consider when generating synthetic fake data using CTGAN. First,
generating synthetic data with CTGAN requires training time. In our experiment, it takes
approximately 1 to 2 min to generate synthetic data for a 5 to 10-s image authentication
process, performed on a machine equipped with an NVIDIA GeForce RTX 4090 GPU using
CUDA, which is produced in Taipei, Taiwan. More importantly, the entire mouse movement
sequence data from the authentication process is necessary, as adversarial learning networks
require complete data during the initial training. Consequently, real-time generation is
not feasible.

Appl. Sci. 2025, 15, 977 5 of 14Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 14

Figure 1. Overall flow of the proposed method for real-time mouse data protection using GANs.

This process naturally mixes real and synthetic mouse sequence data. If an attacker

collects data using the GetCursorPos() function, they will capture both real and synthetic

data that closely resemble real mouse data. Unlike random methods of generating fake

data, the proposed method uses previous mouse sequence data, trained using the Condi-

tional Tabular Generative Adversarial Network (CTGAN) [20,21] to generate synthetic

data. There are certain constraints to consider when generating synthetic fake data using

CTGAN. First, generating synthetic data with CTGAN requires training time. In our ex-

periment, it takes approximately 1 to 2 min to generate synthetic data for a 5 to 10-s image

authentication process, performed on a machine equipped with an NVIDIA GeForce RTX

4090 GPU using CUDA, which is produced in Taipei, Taiwan. More importantly, the en-

tire mouse movement sequence data from the authentication process is necessary, as ad-

versarial learning networks require complete data during the initial training. Conse-

quently, real-time generation is not feasible.

To address this limitation, this paper proposes pre-generating synthetic data by train-

ing on historical mouse sequence data for each user and authentication page, which is

then blended with current mouse sequence data. This approach effectively counters real-

time data theft attacks.

3.2. Dataset Configuration

In this paper, to demonstrate the effectiveness of the proposed mouse data protection

method in image-based authentication, we simulated realistic attacks by having the same

user attempt authentication twice on four types of image-based authentication pages.

During authentication, mouse movement data were collected using the GetCursorPos()

function. The dataset was created by removing any data points where the mouse coordi-

nates did not change from the previous ones. Table 1 shows the number of sequences with

Figure 1. Overall flow of the proposed method for real-time mouse data protection using GANs.

To address this limitation, this paper proposes pre-generating synthetic data by train-
ing on historical mouse sequence data for each user and authentication page, which is then
blended with current mouse sequence data. This approach effectively counters real-time
data theft attacks.

3.2. Dataset Configuration

In this paper, to demonstrate the effectiveness of the proposed mouse data protec-
tion method in image-based authentication, we simulated realistic attacks by having the
same user attempt authentication twice on four types of image-based authentication pages.
During authentication, mouse movement data were collected using the GetCursorPos()
function. The dataset was created by removing any data points where the mouse coor-
dinates did not change from the previous ones. Table 1 shows the number of sequences
with actual movement. The dataset is labeled with a numbering system indicating the
sequence and authentication page type. For example, Dataset A-1 and A-2 represent the
mouse sequences from the first and second attempts on the same page.

Each dataset consists of elapsed time, X-coordinate, and Y-coordinate features, all
sorted by the sequence of mouse movements. Elapsed time refers to the time taken to move
from the previous coordinate to the current one, and the X and Y coordinates refer to the
absolute mouse positions on the screen. To ensure equal importance for each feature, all
values were normalized to a range of 0–1 using the min–max normalization. Table 2 shows
a sample of the normalized Dataset A-1.

Appl. Sci. 2025, 15, 977 6 of 14

Table 1. Dataset configuration and the number of collected data for real mouse movements.

Dataset Data Collection Details Number of Collected Movement Data

Dataset A-1 Collected from the first experiment on page A 16,623
Dataset A-2 Collected from the second experiment on page A 16,628
Dataset B-1 Collected from the first experiment on page B 11,364
Dataset B-2 Collected from the second experiment on page B 11,365
Dataset C-1 Collected from the first experiment on page C 7947
Dataset C-2 Collected from the second experiment on page C 7952
Dataset D-1 Collected from the first experiment on page D 10,074
Dataset D-2 Collected from the second experiment on page D 10,147

Table 2. Sample data of dataset A-1.

Seq# Elapsed Time X-Coordinate Y-Coordinate

1 0.117283 0.431419 0.580363
2 0.195521 0.430637 0.581614
3 0.194678 0.429465 0.585366
4 0.184249 0.509965 0.205128
5 0.1165 0.506839 0.213258

.
16,621 0.145252 0.953497 0.545966
16,622 0.468025 0.032435 0.446529
16,623 0.508667 0.111762 0.347717

‘. . .’ represents the omitted intermediate data from seq#6 to seq#16,620.

3.3. Generation of Fake Mouse Data Using GANs

In generating fake mouse data, to obscure the detection of continuous mouse movements,
the included features cover not only the X and Y coordinates of the actual mouse but
also the elapsed time. Previous studies have shown that adding features such as elapsed
time and distance significantly improves the detection performance of fake data from the
attacker’s perspective [10,11]. This might be because the combination of elapsed time and
distance features encapsulates inherent characteristics, such as movement speed, and these
are important for distinguishing real mouse movements from randomly generated ones.

Therefore, in this study, the feature set includes not only the X and Y coordinates of the
mouse sequence data but also the elapsed time. To generate realistic mouse data based on
this tabular, continuous-feature dataset, we employ the CTGAN model [20,21]. The CTGAN
model extends the CGAN model by proposing a method specialized in generating tabular
data that includes both categorical and continuous variables. In particular, it effectively
addresses the sparsity of both types of variables using techniques such as conditional
sampling and mini-batch discrimination [20,22,23]. These methods allow the model to
handle the sparsity of small values in continuous variables, such as mouse coordinates and
elapsed time, and generate them accurately. When generating fake data using the CTGAN
model, the distance feature is excluded because, even if included, attackers can use the
X and Y coordinates of the mouse to calculate the actual distance and use this information
for detection. Thus, including the distance feature becomes redundant. Figure 2 compares
the distribution of fake mouse data generated by the CTGAN model using X-coordinate,
Y-coordinate, and elapsed time features against the distribution of actual data from Dataset
A-1. The comparison is based on the distribution of real and fake data.

The upper distribution in Figure 2 shows the X and Y coordinate distributions of
randomly generated fake mouse data and real mouse data with elapsed time as the axis.
The lower distribution shows the fake mouse data generated using CTGAN. In the distri-
bution, blue represents real mouse data, while red represents fake mouse data. The X-axis

Appl. Sci. 2025, 15, 977 7 of 14

represents the mouse’s X and Y coordinates, and the Y-axis represents the elapsed time. As
shown in the distribution, the fake mouse data generated by CTGAN closely resemble the
real mouse data distribution, unlike the randomly generated fake data.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 7 of 14

conditional sampling and mini-batch discrimination [20,22,23]. These methods allow the

model to handle the sparsity of small values in continuous variables, such as mouse coor-

dinates and elapsed time, and generate them accurately. When generating fake data using

the CTGAN model, the distance feature is excluded because, even if included, attackers

can use the X and Y coordinates of the mouse to calculate the actual distance and use this

information for detection. Thus, including the distance feature becomes redundant. Figure

2 compares the distribution of fake mouse data generated by the CTGAN model using X-

coordinate, Y-coordinate, and elapsed time features against the distribution of actual data

from Dataset A-1. The comparison is based on the distribution of real and fake data.

Figure 2. Comparison of random and GAN-based fake mouse data generation results.

The upper distribution in Figure 2 shows the X and Y coordinate distributions of

randomly generated fake mouse data and real mouse data with elapsed time as the axis.

The lower distribution shows the fake mouse data generated using CTGAN. In the distri-

bution, blue represents real mouse data, while red represents fake mouse data. The X-axis

represents the mouse’s X and Y coordinates, and the Y-axis represents the elapsed time.

As shown in the distribution, the fake mouse data generated by CTGAN closely resemble

the real mouse data distribution, unlike the randomly generated fake data.

Figure 2. Comparison of random and GAN-based fake mouse data generation results.

3.4. Simulation of Fake Data Classification from the Attacker’s Perspective

In this section, simulations were conducted assuming that attackers use various ma-
chine learning models to classify real and fake data. The attackers might also generate fake
data using random methods or the GAN-based technique proposed in this paper and then
train a model to classify the fake mouse data. To simulate this, machine learning models such
as K-Nearest Neighbor, Logistic Regression, Random Forest, Gradient Boosting, Support
Vector Machine, and Multi-Layer Perceptron were used. The dataset used for the simulation
was collected by attempting authentication twice on the same image-based authentication
page. Data from the first and second attempts were paired together to simulate the classifi-
cation from an attacker’s perspective. Additionally, real and fake data were merged based
on the collection time and re-ordered using cumulative elapsed time to simulate how an
attacker might combine data. Table 3 shows a sample of the mixed mouse sequence data

Appl. Sci. 2025, 15, 977 8 of 14

generated for Image Authentication Page A. The data include fake mouse data generated
by CTGAN using the actual mouse sequence data from the first trial (Dataset A-1) and the
actual data from the second trial (Dataset A-2).

Table 3. Sample data of the mixed dataset of dataset A-2 and synthetic data created based on
dataset A-1.

Seq# Elapsed Time X Y X Distance Y Distance Class

1 0.143747 0.431419 0.580363 0 0 1
2 0.085557 0.794842 0.791745 0.36385 0.212846 0
3 0.104029 0.782337 0.160725 0.01252 0.63539 0
4 0.050052 0.430637 0.581614 0.352113 0.423804 1
5 0.154898 0.451348 0.595372 0.020736 0.013854 0

. .
33,249 0.18158 0.415006 0.377111 0.071596 0.627204 1
33,250 0.184869 0.415006 0.377736 0 0.00063 1
33,251 0.188698 0.415006 0.378361 0 0.00063 1

‘. . .’ represents the omitted intermediate data from seq#6 to seq#33,248.

In Table 3, the elapsed time is calculated based on the cumulative elapsed time of
the two-sequence data, which are integrated into a single sequence and then recalculated.
X Distance and Y Distance refer to the distances moved from the previous sequence’s X and
Y coordinates. Lastly, the Class column indicates whether the data are real or fake, with
1 representing real data and 0 representing fake data. In this dataset, the data from Dataset
A-2 are labeled as 1, while the fake data generated from Dataset A-1 are labeled as 0.

To determine optimal performance from the defender’s perspective, the number of
epochs during the CTGAN model training was varied to generate fake data. Various
machine learning-based classification models were then employed to evaluate and identify
the optimal epoch that resulted in the lowest classification performance. Figure 3 presents
the results of this preliminary experiment aimed at determining the optimal number
of epochs.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 9 of 14

Figure 3. Performance evaluation results of generated fake mouse data based on different epochs.

The X-axis in Figure 3 represents different machine learning algorithms, while the Y-

axis displays the average performance metrics (accuracy, precision, recall, etc.) of the clas-

sification models. The number of epochs for training the CTGAN model is indicated in

the legends. F1 and F2 in the legends represent two feature combinations: (Elapsed Time,

X Coordinate, Y Coordinate) and (Elapsed Time, X Coordinate, Y Coordinate, X Distance,

and Y Distance), respectively. The lowest classification performance occurred at 50 epochs

for all feature sets, and subsequent experiments were conducted with 50 epochs. Both the

generator and discriminator learning rates were set to 2 × 10−4 for stability.

To maximize classification performance from the attacker’s perspective, the optimal

hyperparameters for each machine learning-based classification model and dataset were

determined using k-fold cross-validation. First, the mixed datasets were split into training

and test datasets at an 8:2 ratio. Then, k-fold cross-validation was applied to the training

dataset to evaluate performance based on various parameter combinations for each clas-

sification model. The most effective parameter combinations were selected, and the final

performance was evaluated using the test dataset. Detailed performance evaluation re-

sults are described in Section 4.

4. Experimental Results

In this section, we present the experimental results of the proposed method for pro-

tecting real-time mouse data. The dataset used in these experiments is the one constructed

in Section 3.2. To evaluate the effectiveness of the proposed approach, we compared it

with the traditional random method of generating fake data, using various feature com-

binations. The results of these comparisons are shown in Figures 4 and 5. Figure 4 com-

pares the classification performance from the attacker’s perspective using the feature com-

bination of the Elapsed Time, X Coordinate, and Y Coordinate, while Figure 5 presents

the performance comparison results after adding the X Distance and Y Distance features.

Figure 3. Performance evaluation results of generated fake mouse data based on different epochs.

Appl. Sci. 2025, 15, 977 9 of 14

The X-axis in Figure 3 represents different machine learning algorithms, while the
Y-axis displays the average performance metrics (accuracy, precision, recall, etc.) of the
classification models. The number of epochs for training the CTGAN model is indicated in
the legends. F1 and F2 in the legends represent two feature combinations: (Elapsed Time,
X Coordinate, Y Coordinate) and (Elapsed Time, X Coordinate, Y Coordinate, X Distance,
and Y Distance), respectively. The lowest classification performance occurred at 50 epochs
for all feature sets, and subsequent experiments were conducted with 50 epochs. Both the
generator and discriminator learning rates were set to 2 × 10−4 for stability.

To maximize classification performance from the attacker’s perspective, the optimal
hyperparameters for each machine learning-based classification model and dataset were
determined using k-fold cross-validation. First, the mixed datasets were split into training
and test datasets at an 8:2 ratio. Then, k-fold cross-validation was applied to the training
dataset to evaluate performance based on various parameter combinations for each clas-
sification model. The most effective parameter combinations were selected, and the final
performance was evaluated using the test dataset. Detailed performance evaluation results
are described in Section 4.

4. Experimental Results
In this section, we present the experimental results of the proposed method for pro-

tecting real-time mouse data. The dataset used in these experiments is the one constructed
in Section 3.2. To evaluate the effectiveness of the proposed approach, we compared it with
the traditional random method of generating fake data, using various feature combinations.
The results of these comparisons are shown in Figures 4 and 5. Figure 4 compares the
classification performance from the attacker’s perspective using the feature combination of
the Elapsed Time, X Coordinate, and Y Coordinate, while Figure 5 presents the performance
comparison results after adding the X Distance and Y Distance features.

Table 4 represents the average values of the performance metrics for all machine
learning classification algorithms shown in Figures 4 and 5. As shown in Table 4, for all
datasets, the classification performance using various feature combinations significantly
decreased when applying the proposed data protection method compared to the method
that uses randomly generated fake data. Depending on the performance metrics, a re-
duction of approximately 30% to 50% was observed. Even in terms of absolute accuracy,
the performance was found to be 61.9%, which is only slightly higher than the baseline
accuracy of 50% for binary classification, where random selection is possible even without
any meaningful classification. This result demonstrates that the proposed data protection
method is highly effective.

Additionally, to verify whether the classification accuracy of fake data generated
using GANs is statistically significantly lower than the classification accuracy of randomly
generated fake data, a one-tailed paired t-test was performed based on the accuracies of
all machine learning methods presented in Table 4. The confidence intervals and p-values
for each feature set were summarized in Table 5. The results of the paired t-test show that
for all feature sets, there was a decrease ranging from a minimum of 33.7% to a maximum
of 42% within the 95% confidence interval, with p-values that are much smaller than 0.01.
Therefore, it can be concluded that, even at the 99% confidence level, the decrease in
classification accuracy is statistically significant.

Appl. Sci. 2025, 15, 977 10 of 14
Appl. Sci. 2025, 15, x FOR PEER REVIEW 10 of 14

Figure 4. Comparison of classification performance based on elapsed time, X-coordinate, and Y-

coordinate features.

Figure 4. Comparison of classification performance based on elapsed time, X-coordinate, and Y-
coordinate features.

Appl. Sci. 2025, 15, 977 11 of 14Appl. Sci. 2025, 15, x FOR PEER REVIEW 11 of 14

Figure 5. Comparison of classification performance based on elapsed time, X-coordinate, Y-coordi-

nate, X-distance, and Y-distance features.
Figure 5. Comparison of classification performance based on elapsed time, X-coordinate, Y-coordinate,
X-distance, and Y-distance features.

Appl. Sci. 2025, 15, 977 12 of 14

Table 4. Comparison of classification performance between the randomly generated method and the
proposed method using GANs.

Feature Set Metrics Randomly
Generated Method

Proposed Method
Using GANs Difference (+/−)

Elapsed Time,
X, Y Coordinates

Accuracy 0.923 0.544 −0.379
Precision 0.860 0.545 −0.315

Recall 0.978 0.522 −0.456
F1-score 0.915 0.534 −0.381

AUC 0.942 0.562 −0.380

Elapsed Time,
X, Y Coordinates

X, Y Distances

Accuracy 0.995 0.619 −0.376
Precision 0.999 0.690 −0.309

Recall 0.989 0.485 −0.504
F1-score 0.994 0.569 −0.425

AUC 0.997 0.675 −0.322

Table 5. Results of the one-tailed paired t-test for the classification accuracies between the randomly
generated method and the proposed method using GANs.

Feature Set t-Statistic Confidence Interval (95%) p-Value

Elapsed Time,
X, Y Coordinates 22.200 0.337–0.420 2.731 × 10−7

Elapsed Time,
X, Y Coordinates

X, Y Distances
37.059 0.351–0.401 1.288 × 10−8

5. Conclusions
In this paper, we propose a method to protect mouse movement sequence data from

real-time interception attacks during image-based authentication. The proposed approach
generates fake data by leveraging the user’s previous mouse movement sequences and
mixes this data in real time with the user’s current actual mouse movement data. The
effectiveness of this method is validated through various simulation experiments designed
to mimic real-world scenarios from the attacker’s perspective.

Specifically, the proposed mouse data protection method utilizes GANs (Generative
Adversarial Networks) to generate fake mouse sequence data that closely resemble real
data, making it indistinguishable from actual mouse movement data during interception
attacks that rely on the GetCursorPos() function. The generated fake data also incorpo-
rate elapsed time as an additional feature. Consequently, this process alters not only the
mouse position but also the movement sequence itself, thereby preventing attackers from
accurately identifying the user’s true mouse movement sequence.

To demonstrate the effectiveness of the proposed method, we simulated various image-
based authentication processes. Using the collected mouse sequence data, fake data were
generated and mixed with real data, and classification simulations were conducted using
various machine learning models from the attacker’s perspective. Comparative evaluations
with existing methods that randomly generate fake data for protection showed that these
existing methods resulted in attack success rates of up to 99%. In contrast, the proposed
method reduced classification accuracy by 30% to 50%. From an absolute classification
accuracy perspective, the proposed method achieved an average accuracy of 61.9% and
a maximum of 65.5% across all models, which is close to the baseline random selection
accuracy of 50% in binary classification. This indicates that attackers were unable to

Appl. Sci. 2025, 15, 977 13 of 14

accurately classify individual mouse movement sequence data, rendering attacks focused
on intercepting such data during image-based authentication ineffective.

The results of this study demonstrate that the proposed mouse data protection method
effectively mitigates security threats posed by attackers attempting to intercept mouse data
during image-based authentication. This approach is expected to significantly enhance
the security of most image-based authentication technologies. In addition, this approach
can be applied to voice-based authentication by generating fake voice sequence data based
on real voice sequence data, such as waveforms and pitch. In future work, we will model
the voice sequence characteristics as feature values and perform experimental analysis by
collecting data in environments similar to real-world conditions to apply the proposed
method to voice-based authentication technologies.

Author Contributions: Conceptualization, J.K., K.L. and H.J.; methodology, J.K., K.L. and H.J.;
software, J.K. and H.J.; validation, J.K. and H.J.; data curation, J.K. and K.L.; writing—original draft
preparation, J.K. and H.J.; writing—review and editing, K.L. and H.J.; supervision, H.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be
found here: https://github.com/jinwk1/Mouse-Data-Protection-.git (accessed on 14 January 2025).

Acknowledgments: This Research was supported (in part) by Glocal University Project of Mokpo
National University in 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shah, S.W.; Kanhere, S.S. Recent Trends in User Authentication—A Survey. IEEE Access 2019, 8, 112505–112519. [CrossRef]
2. Walia, K.S.; Shenoy, S.; Cheng, Y. An Empirical Analysis on the Usability and Security of Passwords. In Proceedings of the 2020

IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 11–13
August 2020; pp. 1–8. [CrossRef]

3. Conklin, A.; Dietrich, G.; Walz, D. Password-based authentication: A system perspective. In Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, Big Island, HI, USA, 5–8 January 2004. [CrossRef]

4. Jeong, J.; Hwang, M. User Authentication System using Base Password and Member Registration Information. J. Korea Inst. Inf.
Commun. Eng. 2016, 20, 2289–2296. [CrossRef]

5. Sidhu, S.; Mohd, B.J.; Hayajneh, T. Hardware Security in IoT Devices with Emphasis on Hardware Trojans. J. Sens. Actuator Netw.
2019, 8, 42. [CrossRef]

6. Dhamija, R.; Perrig, A. Déjà vu. A user study Using Images for Authentication. In Proceedings of the 9th Usenix Security
Symposium, Denver, CO, USA, 14–17 August 2000; pp. 44–58.

7. Newman, R.E.; Harsh, P.; Jayaraman, P. Security analysis of and proposal for image-based authentication. In Proceedings of
the 39th Annual 2005 International Carnahan Conference on Security Technology, Las Palmas, Spain, 11–14 October 2005; pp.
141–144. [CrossRef]

8. MSDN. Available online: https://learn.microsoft.com/ko-kr/windows/win32/api/winuser/nf-winuser-getcursorpos (accessed
on 14 December 2024).

9. MSDN. Available online: https://learn.microsoft.com/ko-kr/windows/win32/api/winuser/nf-winuser-setcursorpos (accessed
on 14 December 2024).

10. Lee, K.; Esposito, C.; Lee, S.-Y. Vulnerability Analysis Challenges of the Mouse Data Based on Machine Learning for Image-Based
User Authentication. IEEE Access 2019, 7, 177241–177253. [CrossRef]

11. Lee, K.; Lee, S.-Y. Improved Practical Vulnerability Analysis of Mouse Data According to Offensive Security based on Machine
Learning in Image-Based User Authentication. Entropy 2020, 22, 355. [CrossRef] [PubMed]

12. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Proceedings of the Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13
December 2014; pp. 2672–2680. [CrossRef]

13. Park, S.-W.; Ko, J.-S.; Huh, J.-H.; Kim, J.-C. Review on Generative Adversarial Networks: Focusing on Computer Vision and Its
Applications. Electronics 2021, 10, 1216. [CrossRef]

https://github.com/jinwk1/Mouse-Data-Protection-.git
https://doi.org/10.1109/ACCESS.2019.2932400
https://doi.org/10.1109/IRI49571.2020.00009
https://doi.org/10.1109/HICSS.2004.1265412
https://doi.org/10.6109/jkiice.2016.20.12.2289
https://doi.org/10.3390/jsan8030042
https://doi.org/10.1109/CCST.2005.1594881
https://learn.microsoft.com/ko-kr/windows/win32/api/winuser/nf-winuser-getcursorpos
https://learn.microsoft.com/ko-kr/windows/win32/api/winuser/nf-winuser-setcursorpos
https://doi.org/10.1109/ACCESS.2019.2956819
https://doi.org/10.3390/e22030355
https://www.ncbi.nlm.nih.gov/pubmed/33286129
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.3390/electronics10101216

Appl. Sci. 2025, 15, 977 14 of 14

14. Shahriar, M.H.; Haque, N.I.; Rahman, M.A.; Alonso, M. G-ids: Generative adversarial networks assisted intrusion detection
system. In Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid,
Spain, 13–17 July 2020; pp. 376–385. [CrossRef]

15. Zhao, X.; Fok, K.W.; Thing, V.L. Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks.
Comput. Secur. 2024, 145, 104005. [CrossRef]

16. Agrawal, G.; Kaur, A.; Myneni, S. A review of generative models in generating synthetic attack data for cybersecurity. Electronics
2024, 13, 322. [CrossRef]

17. Singh, M.; Baranwal, N.; Singh, K.N.; Singh, A.K. Using GAN-Based Encryption to Secure Digital Images With Reconstruction
Through Customized Super Resolution Network. IEEE Trans. Consum. Electron. 2024, 70, 3977–3984. [CrossRef]

18. Singh, P.; Dutta, S.; Pranav, P. Optimizing GANs for Cryptography: The Role and Impact of Activation Functions in Neural
Layers Assessing the Cryptographic Strength. Appl. Sci. 2024, 14, 2379. [CrossRef]

19. MSDN. Available online: https://learn.microsoft.com/ko-kr/windows/win32/apiindex/windows-api-list (accessed on 14
December 2024).

20. Xu, L.; Skoularidou, M.; Cuesta-Infante, A.; Veeramachaneni, K. Modeling tabular data using conditional GAN. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp.
7335–7345. Available online: https://proceedings.neurips.cc/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.
html (accessed on 14 December 2024).

21. CTGAN GitHub. Available online: https://github.com/sdv-dev/CTGAN/blob/main/README.md (accessed on 14 December
2024).

22. Wang, Z.; She, Q.; Ward, T.E. Generative adversarial networks in computer vision: A survey and taxonomy. ACM Comput. Surv.
(CSUR) 2021, 54, 1–38. [CrossRef]

23. Jabbar, A.; Li, X.; Omar, B. A survey on generative adversarial networks: Variants, applications, and training. ACM Comput. Surv.
(CSUR) 2021, 54, 1–49. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/COMPSAC48688.2020.0-218
https://doi.org/10.1016/j.cose.2024.104005
https://doi.org/10.3390/electronics13020322
https://doi.org/10.1109/TCE.2023.3285626
https://doi.org/10.3390/app14062379
https://learn.microsoft.com/ko-kr/windows/win32/apiindex/windows-api-list
https://proceedings.neurips.cc/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/254ed7d2de3b23ab10936522dd547b78-Abstract.html
https://github.com/sdv-dev/CTGAN/blob/main/README.md
https://doi.org/10.1145/3439723
https://doi.org/10.1145/3463475

	Introduction
	Related Research
	Generative Adversarial Networks (GANs)
	Mouse Data Attacks and Protection Techniques Based on Windows API
	Machine Learning-Based Mouse Data Attack Techniques

	Proposed Method for Real-Time Mouse Data Protection Using Generative Adversarial Networks (GANs)
	Overall Flow of Real-Time Mouse Data Protection Method Using GANs
	Dataset Configuration
	Generation of Fake Mouse Data Using GANs
	Simulation of Fake Data Classification from the Attacker’s Perspective

	Experimental Results
	Conclusions
	References

