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Abstract: The cutting temperature in hard turning is extremely high, which reduces tool life,
lowers machined-surface quality, and affects dimensional control. However, hard turning
differs greatly from conventional turning in that the cutting process mainly happens at
the tool-nose radius due to the extremely shallow depth of the cut. This paper provides
a comprehensive and systematic analysis of this issue based on an evaluation of tool
geometry in hard turning via finite element analysis (FEA) simulations and experiments.
The effect of tool angles on cutting temperature in hard turning is analyzed. The impacts of
cutting-edge angle, rake angle, inclination angle, and average local rake angle on the cutting
temperature are investigated via central composite design (CCD). The simulated results
and the empirically measured cutting temperature exhibit comparable patterns, with a
minor 2% difference. Increasing the cutting-edge angle, negative rake angle and negative
inclination angle enhances the local negative rake angles of the cutting-edge elements at the
tool-nose radius involved in the cutting process. Notably, the most important component
influencing cutting temperature in hard turning is the inclination angle, as opposed to
normal turning, where the rake angle dominates the heat generation. Following this is the
cutting-edge angle and the rake angle, which each contribute 40.75%, 32.39%, and 7.03%.
These findings could enhance the application of the hard-turning technique by improving
tool life and surface quality by focusing on optimizing the inclination angle.

Keywords: cutting temperatures; tool geometry; hard turning

1. Introduction
In recent years, there have been notable advancements in the machinability of hard

processing materials. Machining high-hardness materials, or hard machining, offers nu-
merous benefits, including cost savings, higher productivity rates, better surface quality,
and the removal of deformities generated by cutting temperatures. Among them, hard
turning is a technique for finishing machining parts made from high-hardness materials
with a hardness greater than 45 HRC. Interestingly, hard turning can be performed without
coolants, which is called dry hard turning. However, due to the single-point cutting con-
tact, the elevated temperatures in the cutting zone can reduce tool life and deteriorate the
machined surface due to thermal distortions [1].

During the hard machining process, the majority of the energy from cutting forces
is converted into thermal energy [2,3]. There are many factors that influence thermal
energy levels, including the physical and chemical properties of the workpiece and tool
materials, cutting conditions, and tool geometry [4]. Moreover, this thermal energy is
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mainly generated in three distinct zones: the primary zone, where the workpiece material
suffers plastic deformation; the secondary zone, arising from friction between the tool and
the chip; and the tertiary zone, caused by friction between the tool and the workpiece [5–7],
as shown in Figure 1. Unfortunately, the elevated temperatures in the cutting zones, ranging
from 800 to 1200 ◦C, reduce the tool’s strength, hardness, and wear resistance [8].
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Moreover, the damage to the cutting tool due to the thermal issue also reduces the
ability to control dimensional accuracy and maintain desired surface integrity, which leads
to high machining costs and a reduction in product quality [9]. Therefore, many researchers
have investigated the mechanism of heat generation and heat conduction to control its
effects. Numerous researchers have employed actual cutting experiments or combined
them with FEA simulations to evaluate the influence of input parameters on machining
characteristics. The finite element method has been demonstrated as an effective approach
for analyzing the chip-formation process and forecasting essential machining performance
metrics, such as cutting temperatures, forces, and stresses. Hard turning differs significantly
from conventional turning [10]. Hard turning is a finishing operation that involves high-
speed cutting with a low feed rate and a shallow depth of cut not exceeding 0.2 mm [11–14].
Lezoglu et al. [15] and Mathivanan et al. [16] predicted cutting force and temperature
distribution based on the FEA simulation models. They indicated that the tool should not
be used near or over the diffusion and bonding limits of the materials employed in that
particular tool grade.

Liu et al. [17] employed FEA simulations to examine the heat generated in the machin-
ing zones. Results from the FEA model were as accurate as those from experiments. The
influence of workpiece hardness and cutting conditions on thermal generation during the
hard turning of AISI H13-tool steel was investigated by Elsadek et al. [18]. According to the
findings, workpiece hardness represented 63.77% of the cutting temperature, with cutting
speed and feed rate following in at 16% and 4.78%, respectively. The depth of the cut factor
has the least impact. Furthermore, Abrao et al. [19] discovered that while hard-turning AISI
52100 steel, cutting temperature rises with the increasing depth of cut, feed rate, cutting
speed, and flank wear. Santhanakrishnan et al. [20] used the response surface methodology
(RSM) to create a model to forecast workpiece temperature during the machining process
of Al 6351. The results also showed that increasing the cutting speed causes higher cutting
temperatures. Xu et al. [21] studied the cutting process of Inconel 718 by changing the
rake angle. The cutting temperature when employing a tool with a negative rake angle
is approximately 900 ◦C, whereas it is 750 ◦C for a neutral rake angle and 700 ◦C for a
positive rake angle. Also, Saglam et al. [22] used carbide inserts to hard turn AISI 1040 steel
(40 HRC) and examined the effects of rake and cutting-edge angles on cutting temperature.
They discovered that a negative rake angle is typically used in hard turning to increase tool
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strength and withstand high compressive pressures. Shah et al. [23] and Dutta et al. [24]
investigated the impact of nose radii on the machining process of Ti- and Mg-based alloys.
They both observed that larger nose radii lead to higher cutting temperatures, which can
adversely affect tool life and surface integrity.

Despite there being many studies investigating the hard-turning process, the effects
of the cutting tool’s geometry are still rarely examined. Therefore, this study’s goal is
to use standard inserts to examine how the cutting tool’s geometric factors affect cutting
temperatures throughout the hard-turning process via both simulation and experiment
methods. The impacts of cutting-edge angle, rake angle, inclination angle, and average
local rake angle on the cutting temperature are examined. The study outcomes could
outline more advantages of the applications of the hard-turning process. This study applies
a “Hybrid Approach,” which refers to the combined use of an analysis of tool geometry
in hard turning, finite element analysis (FEA) simulations, and experimental methods, to
investigate the effects of cutting-tool geometry on cutting temperature in hard turning. The
methods are interactive and complementary in this study, providing robust insights into
the hard-turning process, including an analysis of tool geometry, FEA simulations, and
experimental validation.

2. Materials and Methods
2.1. The CCD Experimental Design

The central composite design (CCD) incorporates axial points (−α and +α) to allow
for quadratic modeling, enhancing the ability to detect curvature in the response surface
used. This design ensures that the impacts of tool shape on machining responses can be
precisely analyzed and optimized.

In Table 1, the experimental design is established based on the CCD method. The
tool-geometry parameters investigated include the cutting-edge angle Kr, rake angle γ,
and inclination angle λ, each varied at five levels ranging from −α to +α. The ranges for
the experimental parameters were selected based on the following considerations: tool
manufacturers’ recommendations and literature reviews on hard turning.

Table 1. Experimental design based on CCD.

Tool-Geometry Parameter Unit
Levels

−α −1 0 +1 +α

Kr (◦) 60 66 75 84 90
γ (◦) −2 −3.6 −6 −8.4 −10
λ (◦) −2 −3.6 −6 −8.4 −10

The encoded experimental factor matrix is presented in Table 2, detailing the combina-
tions of tool-geometry parameters for each experimental run.

The cutting conditions were determined in accordance with the manufacturer’s cata-
logue recommendations, as shown in Table 3.
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Table 2. Coded experimental factor matrix.

No.
Factors

No.
Factors

Kr γ λ Kr γ λ

1 +1 −1 −1 11 0 −α 0
2 −1 −1 −1 12 0 +α 0
3 +1 +1 −1 13 0 0 −α
4 −1 +1 −1 14 0 0 +α
5 +1 −1 +1 15 0 0 0
6 −1 −1 +1 16 0 0 0
7 +1 +1 +1 17 0 0 0
8 −1 +1 +1 18 0 0 0
9 +α 0 0 19 0 0 0
10 −α 0 0 20 0 0 0

Table 3. Fixed machining parameters in the study.

Cutting Speed v (m/min) Feed Rate f (mm/rev) Depth of Cut dw (mm)

150 0.08 0.2

2.2. Analysis of Tool Geometry in Hard Turning

Hard turning is typically a finishing process characterized by high cutting speeds,
small depths of cut, and low feed rates [11–13]. The previously developed mathematical
model of tool geometry in hard turning showed that the cutting action is confined to the tool-
nose radius [25]. Therefore, the local tool-geometry parameters and the undeformed chip
thickness of the tool-nose radius elements engaged in the cutting process are determined
as shown in Figure 2, using the following input parameters: cutting-edge angle Kr = 60◦,
inclination angle λ = − 6◦, rake angle γ = − 6◦, tool-nose radius r = 0.8 mm, chamfer
angle = −25◦, and chamfer width = 1.5 mm. The equations of the proposed model are
presented as [25]:

- The portion of the nose radius involved in the cutting process:

θA = Kr − cos−1
(

r − dw

r

)
θC = Kr

θD = Kr + sin−1
(

f
2r

)
θB = Kr − tan−1

(
rsin(Kr − θA)− f

r − dw

)
- Local rake angle:

γj = tan−1
(

sin
(π

2
− θj

)
tanγ + cos

(π

2
− θj

)
tanλ

)
- Local undeformed chip thickness:

Zone 1 : θA ≤ θj < θB

t1 (θ
j ) = r − r − dw

cos (Kr − θj )

Zone 2 : θB ≤ θj ≤ θD
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t2 (θ
j ) = r −

√
r2 + f 2 − 2r f cos

(
θj +

π

2
− Kr − sin−1

(
f
r

sin
(
θj +

π

2
− Kr

)))
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From Figure 2c,d, the cutting process occurs from θA = 18.59◦ to θD = 62.59◦. At the
cutting-edge element θD = 23.59◦, the largest uncut chip thickness t(θD) = 0.05 (mm).

2.3. FEM Simulation

In this study, the FEM method is used to simulate the hard turning of AISI H13
hardened steel (52 HRC) using a TiN-coated ceramic tool. DEFORM 3D software (version
11), which employs an implicit Lagrangian computational technique, is used for FEM
analysis. The workpiece is modeled as a plastic-behavior material, represented as a curved
structure with a diameter of 53 mm and an arc angle of 20◦, and it is meshed around
32,000 to 60,000 tetrahedral elements, depending on the feeding rate.

The mesh’s minimum element size was set to 25% of the feed value [26,27]. DEFORM-
3D’s default remeshing functionality was used to ensure that the mesh within the critical
area retained an acceptable number of elements while new chips were created during
the manufacturing process. In addition, a 7:1 ratio was maintained between the greatest
and smallest element sizes in the workpiece mesh, as seen in Figure 3. This arrangement
ensures that the solid elements used in the material removal procedure are seven-times
smaller than the surrounding elements. In the finite element simulation, the tool insert
designated by ISO code TNGA160408S01525 was modeled as a rigid body and discretized
into approximately 45,000 tetrahedral elements. To improve computational accuracy, the
region at the tool tip that contacts the workpiece was improved using a 4:1 size ratio, which
was consistent with the workpiece meshing approach. Furthermore, DEFORM-3D’s default
remeshing functionality was used to ensure that the mesh within the critical area retained



Appl. Sci. 2025, 15, 983 6 of 15

an acceptable number of elements while new chips were created during the manufacturing
process. To simulate the cutting process, the workpiece model was constrained in position,
while the cutting tool was permitted to move along the defined cutting trajectory. There
were 10,000 simulation steps.
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The machining process was conducted at an ambient temperature of 27 ◦C, employing
a convection coefficient of 0.02 N/s/mm/◦C. A shear friction factor of 0.6 was applied at
the interface between the tool and the workpiece [28], and the heat-transfer coefficient was
specified as 45 N/s/mm/◦C without the use of any coolant. The flow stress of the material
is influenced by temperature T, strain ε, and strain rate

.
ε; therefore, it can be modeled using

the following Johnson–Cook equation:

σ = (A + Bεn)

(
1 + Cln

( .
ε
.
εo

))(
1 −

(
T − To

Tm − To

)m)

where σ is flow stress, ε is equivalent plastic strain,
.
ε is the strain rate,

.
εo is the reference

strain rate, T is temperature, To is room temperature, Tm is the melting temperature, A is the
yield-stress constant, B is the strain-hardening coefficient, n is the strain-hardening index, C
is strain-rate dependence coefficient, and m is the temperature-dependence coefficient. The
Johnson–Cook model constants for AISI H13 follows Zhang et al.’s report [29], as shown
in Table 4.

Table 4. Johnson–Cook model constants for AISI H13 (52HRC) [29].

A (MPa) B (MPa) n C m
.
εo (1/s) To (◦C) Tm (◦C)

908.54 321.39 0.278 0.028 1.18 1.0 27 1475

The tool-workpiece system was defined in such a way that the problem was simplified
in terms of the analysis domain. The point of this simplification is to achieve reasonable
simulation times. First, the tool-holder model was eliminated from the tool assembly and
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only the insert model was used. Furthermore, the round steel-bar model was converted
to an arc-shaped part. The arc has a 20◦ angle and belongs to a circle with a diameter of
53 mm. In addition, the workpiece was designed partially cut based on the used depth of
the cut, to reduce computational costs.

2.4. Experimental Procedure

The experimental procedure was conducted under conditions similar to those used in
the simulations. Hard-turning operations were conducted using a BOEHRINGER DUS-
400ti CNC lathe, as depicted in Figure 4. The workpieces were made of AISI H13 hardened
steel (52 HRC), measuring 53 mm in diameter and 80 mm in length.
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The thermo-mechanical characteristics of the workpiece and the tool are presented in
Table 5. The titanium nitride (TiN)-coated ceramic inserts employed had an ISO designation
of TNGA160408S01525 and were secured on a tool holder designated as PTGNR 1616H
16. This configuration of the insert and tool holder provided cutting-edge angle Kr = 91◦,
rake angle γ = −6◦, and inclination angle λ = −6◦. Sandvik inserts and tool holders were
employed in the experimental setup. To facilitate adjustments in tool angles, a specialized
tool-post system was designed using SolidWorks 2021 software. This system was fabricated
on a DMG MORI DMU65 monoBLOCK five-axis milling center and subsequently evaluated
using a Hexagon GLOBAL Classic coordinate measuring machine (CMM).
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Table 5. Thermo-mechanical characteristics of the tool and the workpiece.

Thermo-Mechanical Properties AISI H13 Ceramic Tool TiN Coating

Young’s Modulus (GPa) 211 145 -
Poisson ratio 0.28 0.22 0.25

Density (kg/m3) 7800 3500 4650
Thermal conductivity (W/m·◦C) 37 24 23.5

Hardness (HV) 544 - 2300

Many techniques can be used to measure temperature during the machining process,
which depend on the specific conditions under which measurements are conducted [30–32].
A FLUKE Ti400 infrared (IR) thermal imager was used in this investigation to determine
the temperature at the tool–chip contact zone. This temperature measurement system
automatically corrected for atmospheric transmission based on input parameters such as
the distance to the object, atmospheric temperature, and relative humidity. The captured
thermal images were then analyzed using FLUKE’s SmartView analysis software (ver-
sion 4.4). Cutting temperature measurements were conducted three times for each set of
tool-structure parameters to account for variability and ensure reliability. The reported
temperature values are the averages of these repeated measurements, and the standard
deviations were within acceptable limits, indicating good repeatability of the results.

3. Results and Discussion
The central composite design (CCD) and the experimental results are presented in

Table 6. Analysis of variance (ANOVA) is a statistical technique employed to evaluate
the impact of input variables on the output responses of a technical process with a 95%
confidence level. In other words, a p-value of less than 0.05 indicates that the model is
statistically significant. Another essential statistic is the coefficient of correlation (R2),
which measures the model’s degree of fit. Notably, the simulation findings and empirically
measured cutting temperature show similar patterns, with only a 2% difference, indicating
comparable results. As shown in Table 6, the simulated temperature values are all higher
than the experimental measurement values. This discrepancy arises because the infrared
thermal imager used in the experiments captures surface temperatures, whereas the simu-
lation estimates the internal cutting-zone temperature (at the interface between the tool
and the chip). This is because the internal zones naturally experience higher temperatures
than those visible externally. The average local rake angle and cutting temperature results
will be further analyzed in the following figures.

Figure 5 presents the cutting process in the hard-turning method. The simulation
results demonstrated that the main cutting edge does not participate in the cutting action.
The cutting process occurs exclusively at the tool-nose radius. Moreover, the chip makes
contact only with the chamfered face of the cutting edge. The data obtained from the
further experiments results could reveal more information.

Table 7 shows the ANOVA results for the average local rake angle. The results indicate
that the most significant factor is the inclination angle, accounting for 65.84%, followed
by the rake angle, contributing 31.43%. The cutting-edge angle only contributes 0.98%
to the average local rake angle. Therefore, optimizing the hard-turning process should
concentrate on modifying the inclination angle and rake angle. The cutting-edge angle
could be ignored as its effect is minor. The main effect plots for the average local rake
angle are presented in Figure 6. Increasing the negative rake and inclination angles leads
to a greater negative local rake angle of the cutting-edge elements at the tool-nose radius
engaged in the cutting process.
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Figure 7 presents the temperature distributions at the chip–tool interface, as deter-
mined through 3D FEM simulation. The cutting temperature is highest at the contact area
between the chip and the tool, consistent with the findings of Hao et al. [33]. The cutting
temperature could reach a range of 800–900 ◦C, which is close to the experimental results
shown in Table 5. This is due to the heat generated in the primary shear-deformation zone
being transferred to the chip and the heat produced by friction between the chip and the
chamfered face. Moreover, as shown in Figure 5, the contact type is only a point at the
small cutting depth in the hard-turning process rather than the facial type at the higher
cutting depth in the conventional machining process.

Table 8 displays the ANOVA for experimental cutting temperature. The results show
that inclination angle is the dominant contributor to cutting temperature, accounting for
40.75% of total variability, whereas the rake angle has a modest influence, which accounts
for 32.39% of the total variability. The cutting-edge angle has a lower level of contribution
(7.03%), and all interaction effects are insignificant. Notably, all interaction effects are
insignificant because the contribution values of two-way interaction are too small, as
shown in Table 8. These results are consistent with the analysis of tool geometry in hard
turning, which demonstrated that the inclination angle has the most significant influence
on the local rake angle. The quadratic model for cutting temperature (1) with R2= 95.2%
indicates a high degree of concordance between the predicted and experimental values,
as shown in Figure 8. The regression equation for the cutting temperature be presented
as follows:

T_ exp = 510.9 + 9.07 Kr − 10.87 γ− 3.74 λ− 0.0619 Kr × Kr − 0.246 γ×γ− 0.340
λ× λ+ 0.0752 Kr × γ− 0.0405 Kr × λ+ 0.195 γ× λ

(1)

Table 6. Central composite design (CCD) and experimental results.

No. Cutting-Edge
Angle Kr (◦)

Rake Angle
γ (◦)

Inclination
Angle
λ (◦)

Average Local
Rake Angle

γ_ave (◦)

Simulated
Temperature
T_sim (◦C)

Experimental
Temperature
T_exp (◦C)

1 84 −3.6 −3.6 −29.7 888 868
2 66 −3.6 −3.6 −30 900 881
3 84 −8.4 −3.6 −31.7 905 887
4 66 −8.4 −3.6 −33.2 914 892
5 84 −3.6 −8.4 −33.9 912 895
6 66 −3.6 −8.4 −33.3 911 890
7 84 −8.4 −8.4 −35.9 922 904
8 66 −8.4 −8.4 −36.5 939 920
9 90 −6.0 −6.0 −32.4 903 880

10 60 −6.0 −6.0 −33.2 916 894
11 75 −2.0 −6.0 −30.9 903 884
12 75 −10.0 −6.0 −35.3 927 910
13 75 −6.0 −2.0 −29.9 902 882
14 75 −6.0 −10.0 −36.3 927 909
15 75 −6.0 −6.0 −33.1 919 900
16 75 −6.0 −6.0 −33.1 922 902
17 75 −6.0 −6.0 −33.1 921 903
18 75 −6.0 −6.0 −33.1 920 900
19 75 −6.0 −6.0 −33.1 919 898
20 75 −6.0 −6.0 −33.1 920 901
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Table 7. ANOVA result for average local rake angle.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 9 73.7959 99.98% 73.7959 8.1995 6783.94 0.000
Linear 3 72.5213 98.26% 72.5213 24.1738 20,000.32 0.000

Kr 1 0.7243 0.98% 0.7243 0.7243 599.22 0.000
γ 1 23.1987 31.43% 23.1987 23.1987 19,193.58 0.000
λ 1 48.5984 65.84% 48.5984 48.5984 40,208.15 0.000

Square 3 0.1496 0.20% 0.1496 0.0499 41.26 0.000
Kr × Kr 1 0.1483 0.20% 0.1426 0.1426 118.01 0.000
γ× γ 1 0.0006 0.00% 0.0007 0.0007 0.60 0.458
λ× λ 1 0.0007 0.00% 0.0007 0.0007 0.60 0.458

2-Way
Interaction 3 1.1250 1.52% 1.1250 0.3750 310.26 0.000

Kr × γ 1 0.7200 0.98% 0.7200 0.7200 595.70 0.000
Kr × λ 1 0.4050 0.55% 0.4050 0.4050 335.08 0.000
γ× λ 1 0.0000 0.00% 0.0000 0.0000 0.00 1.000

Error 10 0.0121 0.02% 0.0121 0.0012
Lack-of-Fit 5 0.0121 0.02% 0.0121 0.0024
Pure Error 5 0.0000 0.00% 0.0000 0.0000

Total 19 73.8080 100.00%

Table 8. ANOVA result for experimental cutting temperature.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 9 2736.17 95.20% 2736.17 304.02 22.06 0.000
Linear 3 2304.11 80.17% 2304.11 768.04 55.72 0.000

Kr 1 202.04 7.03% 202.04 202.04 14.66 0.003
γ 1 930.89 32.39% 930.89 930.89 67.54 0.000
λ 1 1171.18 40.75% 1171.18 1171.18 84.97 0.000

Square 3 394.68 13.73% 394.68 131.56 9.55 0.003
Kr × Kr 1 319.34 11.11% 352.95 352.95 25.61 0.000
γ× γ 1 21.68 0.75% 28.12 28.12 2.04 0.184
λ× λ 1 53.67 1.87% 53.67 53.67 3.89 0.077

2-Way
Interaction 3 37.38 1.30% 37.38 12.46 0.90 0.473

Kr × γ 1 21.13 0.74% 21.12 21.12 1.53 0.244
Kr × λ 1 6.12 0.21% 6.12 6.12 0.44 0.520
γ× λ 1 10.13 0.35% 10.13 10.13 0.73 0.411

Error 10 137.83 4.80% 137.83 13.78
Lack-of-Fit 5 122.49 4.26% 122.49 24.50 7.99 0.020
Pure Error 5 15.33 0.53% 15.33 3.07

Total 19 2874.00 100.00%
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The main effect plots for the simulation and experimental cutting temperature are 
shown in Figures 9 and 10. They both indicate that increasing the negative rake angle and 
negative inclination angle leads to a rise in cutting temperature. The reason is when the 
negative inclination angle and rake angle are increased, the local rake angle becomes more 
negative. This results in increased friction at the contact surface between the chip and the 
chamfered face of the tool, as well as greater material deformation in the primary and 
secondary shear zones, thereby raising the cutting temperature. Figure 11 presents the 
relationship between the rake angle, inclination angle, and cutting temperature, which is 
consistent with the results in Figures 9 and 10. This figure also reveals that increasing the 
negative rake angle and negative inclination angle raises the cutting temperature. Inter-
estingly, Figure 8 presents the comparison of measured and predicted temperatures of the 
hard-turning process. The results from the FEM simulation are mostly consistent with the 
calculated results, indicating the reliability of the model. 
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Figure 8. Comparison of measured and predicted temperatures.

The main effect plots for the simulation and experimental cutting temperature are
shown in Figures 9 and 10. They both indicate that increasing the negative rake angle
and negative inclination angle leads to a rise in cutting temperature. The reason is when
the negative inclination angle and rake angle are increased, the local rake angle becomes
more negative. This results in increased friction at the contact surface between the chip
and the chamfered face of the tool, as well as greater material deformation in the primary
and secondary shear zones, thereby raising the cutting temperature. Figure 11 presents
the relationship between the rake angle, inclination angle, and cutting temperature, which
is consistent with the results in Figures 9 and 10. This figure also reveals that increasing
the negative rake angle and negative inclination angle raises the cutting temperature.
Interestingly, Figure 8 presents the comparison of measured and predicted temperatures of
the hard-turning process. The results from the FEM simulation are mostly consistent with
the calculated results, indicating the reliability of the model.
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4. Conclusions
In this study, the effect of insert-angle factors on cutting temperature in the hard-

turning process is explored using a combined approach. Several conclusions have been
determined, as follows:

- The cutting temperature from the experiment and the simulation results have consis-
tent values, reaching about 900 ◦C. The difference in the experiment and simulation
results is small—approximately 2%.

- Only the tool-nose radius cuts during the hard-turning operation, and the chip makes
contact with the cutting edge’s chamfered face. At each cutting point, the local tool-
geometry parameters and the thickness of the undeformed chip change, and the local
rake angle becomes noticeably negative.

- Increasing the negative rake angle and negative inclination angle improves the local
negative rake angle of the cutting-edge elements at the tool-nose radius during the
hard-turning process, accounting for 65.84% and 31.43%, respectively.

- The most significant factor influencing cutting temperature is the inclination angle,
which accounts for 40.75% of the total variability. The rake angle has a smaller effect,
accounting for 32.39% of the total variability, and the cutting-edge angle accounts
for 7.03%.

The interactions between the components are not significant. Increasing the negative
rake angle and negative inclination angle raises the cutting temperature. This study’s find-
ings could bring about additional benefits for applications of the hard-turning technique.
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