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Abstract: IMUs (inertial measurement units) and cameras are widely utilized and combined
to autonomously measure the motion states of mobile robots. This paper presents a
loosely coupled algorithm for autonomous localization, the ICEKF (IMU-aided camera
extended Kalman filter), for the weighted data fusion of the IMU and visual measurement.
The algorithm fuses motion information on the velocity layer, thereby mitigating the
excessive accumulation of IMU errors caused by direct subtraction on the positional layer
after quadratic integration. Furthermore, by incorporating a weighting mechanism, the
algorithm allows for a flexible adjustment of the emphasis placed on IMU data versus
visual information, which augments the robustness and adaptability of autonomous motion
estimation for robots. The simulation and dataset experiments demonstrate that the ICEKF
can provide reliable estimates for robot motion trajectories.

Keywords: loosely coupled visual–inertial measurement; visual inertial odometry; robot
autonomous localization; data fusion

1. Introduction
1.1. Motivation

As the demand for autonomous mobility of robots continues to increase, localization
technology continues to evolve. When robots perform motion tasks in environments such as
extraterrestrial planets, rugged ground terrains, aerial spaces, or maritime environments [1–3],
they face various challenges, including unstable satellite signals, impact and vibration
upon sensors, limited visual features, and unpredictable light conditions. Furthermore,
autonomous localization is a requisite ability for aerial [4], ground [5,6], or maritime [3,7]
autonomous robots to successfully accomplish challenging tasks of local planning aiming
for navigation to prevent collisions.

Integrated visual–inertial sensors do not require active signal emission or depend on
external preset references, which benefits further data fusion as autonomous odometry.
Two primary fusion strategies exist to facilitate fusion: loosely coupled methods and tightly
coupled methods [8].

Loosely coupled methods are computationally efficient and maintain a higher update
rate than tightly coupled methods do, thereby enabling low-cost and compact implemen-
tations. This approach additionally allows the simultaneous integration of localization
information from multiple sources such as visual measurement, GNSS (global navigation
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satellite system), LIDAR (light detection and ranging), etc. [9,10]. Especially for applica-
tion on the multiagent [11], loosely coupled methods are naturally capable of processing
simultaneous multi-source information. Although the estimation accuracy is relatively
low owing to the lack of an optimization process, which tight-coupled methods [12,13]
usually perform, the integration of multiple measurement data into a loosely coupled
framework is inevitable to address the challenges of environmental uncertainty during
practical utilization. Therefore, a loosely coupled data fusion approach that is capable
of adjusting the weights of the measurement results from individual sensors or agents is
necessary to achieve a balanced output, considering how much the information source can
be trusted.

1.2. Related Work

Loosely coupled visual–inertial odometry methods are usually constructed based on
filter frameworks such as the EKF [14,15]. High-confidence visual keyframe measurements
are then periodically utilized to correct the high-frequency integration results from IMUs.
This basic structure effectively balances the updating rate and accuracy.

Kelly and Sukhatme [16] proposed a data fusion algorithm for the self-calibration
of a monocular visual–inertial system with proven observability. With a similar filtering
structure, Weiss and Siegwart [17] incorporated the world coordinate system drift in visual
measurements, as well as the spatial relationships between the IMU and the monocular
camera, into the EKF framework. This approach enables failure detection and scale-drift
estimation by fusing of measurement data on the position and attitude layers.

Achtelik and Weiss [18] constructed a filter-based framework to recover the relative
configuration of two drones performing IMUs and monocular visual measurements. To
address error amplification during the error propagation process in EKFs due to possible
inaccurate state modeling, BROSSARD et al. [19] proposed the visual–inertial invariant EKF
algorithm, which is based on Lie algebra rules. Furthermore, researchers designed visual–
inertial odometry that embraces the characteristics of novel filers such as the MEKF [20]
and the equivariant filter [21,22] to broaden the application of filter-based techniques in
motion estimation.

The aforementioned loosely coupled strategies have demonstrated remarkable per-
formance when mainly focused on the fusion of positional layers. However, since the
high-frequency update and the intrinsic drift of IMUs inevitably result in fast error ac-
cumulation, the effect of the final correction on the position and attitude layers will be
suboptimal when the visual measurement update frequency drops or accuracy deteriorates.
Furthermore, these methods are thus incapable of adjusting the emphasis on either source
while encountering external visual interference.

1.3. Our Approach

This paper presents a loosely coupled algorithm for autonomous localization with a
weighted data fusion on the linear velocity and angular velocity layers, namely the ICEKF.
The weight of the IMU measurement can be adjusted according to whether the external
conditions are favorable for visual measurement, thus increasing the overall accuracy of
autonomous localization. The real-time performance is promising since the time complexity
is O(n). The local weak observability of the ICEKF is demonstrated.

The organization of this paper is as follows: the state vector of the ICEKF is established
in the second section, the design of the propagation and update of the filter is discussed
in the third section, the observability analysis is presented in the fourth section, and the
fifth section carries out numerical studies of simulations and dataset experiments. Finally,
a summary is provided.
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2. Design of the State Vector
This section discusses the construction of the state vector and analyzes the weighted

coupling process on the velocity layer. The forms of the ICEKF state vector are then deducted.

2.1. Definition of Variables in the ICEKF

The descriptions of the main coordinate frames and variables used in this study are
listed in Table 1. The relationships between the coordinate frames of the IMU-aided camera
integration system are established, as shown in Figure 1, where pi

c and qi
c represent the rela-

tive linear translation and rotation between the IMU and the camera, which are considered
constants once calibrated. The IMU outputs linear acceleration ami and angular velocity ωmi

in its rigid body coordinate frame. This paper considers the visual black-box measurement
outputting rotation qc

w and unscaled linear translation pc
w in the world frame. The fusion

result is attached to the IMU coordinate frame, with the coupled linear translation and
rotation denoted as pic

w and qic
w, respectively. The derivatives of the translation and rotation

are vic
w and

.
q

ic
w. The units used in this paper are described in the SI, such as acceleration in

m2/s and angular velocity in rad/s.

Table 1. Coordinate frames and notations in the ICEKF.

Symbol Description

w fixed world coordinate frame
i coordinate frame attached to the IMU
c coordinate frame attached to the camera
ic coordinate frame attached to the IMU-aided camera system

xA
B

x represents a general viable vector, A is the coordinate frame
attached to the vector, and B is the reference frame; for example, pc

w
denotes the linear translation of the camera with the frame c,

measured with respect to the world frame w

p
translation vector of rigid bodies along 3 axes, of which the

quasi-quaternion description is p = [0, pT ]
T

q
unit quaternion according to the Hamilton notation [16], written as

q = [q0, q1, q2, q3]
T = [q0, qT ]

T

q∗ conjugate quaternion of q, and q∗ ⊗ q= 1
R rotation matrix converted from q, such as Ri

w = R
(
qi

w
)

⌊x×⌋ skew-symmetric matrix of x, and ⌊x×⌋y = −x⌊y×⌋ [23]
n white Gaussian noise vector with zero mean and covariance σ2

g gravity vector in the world frame
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2.2. Construction of the State Vector

Given the necessity for information fusion on the velocity layer, while containing
first-order derivatives and integrals, the state of the ICEKF is defined as a column vector
consisting of 30 elements, as follows:

X =
{

pic
w

T
vc

w
T vi

w
T

qic
w

T
qi

w
T

ωc
c

T ωi
i
T

bai
Tbωi

Tλ
}T

, (1)

where vc
w is the linear velocity of the visual measurement derived from pc

w; ωc
c is the

equivalent body angular velocity of the camera measured in the IMU frame; qi
w and ωi

i
are the rotation velocity and body angular velocity, respectively; bai and bωi are the biases
of ami and ωmi, respectively; λ is the scale coefficient of the monocular visual translation.
The remaining variables are described in the last section. Let ai

w be the linear acceleration
of the IMU measured in the world frame, where ai

w = Ri
w(ami − bai − nami ). Additionally,

ωi
i = ωmi − bωi − nωmi .

The relationships among the variables in the ICEKF state are shown in Figure 2.
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When the visual measurement is treated as a black box, vc
w =

.
pc

w. To obtain ωc
c , qc

w
should be transformed to qc′

w, which is the visual rotation described in the IMU frame.
Then, ωc

c can be obtained from the derivatives of the Euler angles recovered from qc′
w. The

coupling coefficients of the linear and angular velocities, µv, µω ∈ [0, 1], are independent of
the state update. This design guarantees that the coupling weights are always adjustable,
which increases the accuracy of motion estimation without impacting observability.

To focus on the filter construction in this paper, the following is assumed:
1. The drift of the visual world frame in the visual black-box measurement is negligible

due to its slow variation.
2. The outcomes acquired through the first-order derivation of measurement results

are modeled as random walk, including ωc
c and vc

w.



Appl. Sci. 2025, 15, 989 5 of 23

2.3. Coupling Process

The coupling process of the linear velocities of the IMU-camera system requires a
weighted summation as follows:

vic
w = µvvi

w + λ(1 − µv)Ri
cvc

w, (2)

The angular velocity, which covaries with the rotation of the coordinate frames, cannot
be directly summed. According to Appendix A and the proposed lemmas in Appendix B,
with µω ∈ [0, 1], the following equations hold:

d
dt

(
qi

w

)µω
=

1
2

(
qi

w

)µω
⊗

(
µωωi

i

)
, (3)

d
dt

(
qc′

w

)1−µω
=

1
2

(
qc′

w

)1−µω
⊗ ((1 − µω)ω

c
c), (4)

where qc′
w is the equivalent rotation of the visual measurement in the IMU frame.

After further deduction according to Appendix A, the derivative of qic
w is written as

follows:
.
q

ic
w = d

dt
(
qi

w
)µω ⊗

(
qc′

w

)1−µω
+

(
qi

w
)µω ⊗ d

dt

(
qc′

w

)1−µω

= µω
2
(
qi

w
)µω ⊗ ωi

i ⊗
(

qc′
w

)1−µω
+ 1−µω

2 qic
w ⊗ ωc

c

, (5)

where ω = [0, ω] is the supplementary vector of the body angular vector ω.
Angular velocity fusion according to Equation (5) is performed while assuming that

qic
w = qc′

w = qi
w, which are all attached to the IMU frame. Thus, potential errors can be

caused by the assembly and measurement noise for a real IMU-camera integrated rig.
However, after careful calibration and the filter process, the influence of the possible
inconsistency is negligible.

2.4. Simplification of the State Vector

To simplify further discussion, the subscripts of the variables described in the world
coordinate system are omitted; thus, the ICEKF state vector in Equation (1) is rewritten
as follows:

X =
{

pic
T vc

T vi
T qic

T qi
Tωc

Tωi
T ba

Tbω
Tλ

}T
, (6)

The derivatives of the variables in the vector are as follows:

.
pic = vic = µvvi + λ(1 − µv)Ri

cvc,
.
vc = nvc ,

.
vi = Ri(ami − bai − nami )− g,

.
qic =

µω
2 qi

µω ⊗ ωi ⊗ qc
1−µω + 1−µω

2 qic ⊗ ωc,
.
qi =

1
2 qi ⊗ ωi,

.
ωc = nωc ,

.
ωi =

d
dt (ωmi − bωi − nωmi ),.

bai = nbai ,
.
bωi = nbωi ,

.
λ = nλ,

(7)

where vc, ωc, and λ are modeled as random walk, and notably qc = qi
c ⊗ qc

w = qc′
w.

2.5. Error of the State Vector

Let X̂ denote the expectation of X, and let X̃ denote the error between the expectation,
and the measurement, written as X̃ = X − X̂. X̃ with 28 elements, is described as follows:

X̃ =
{

∆pic
T ∆vc

T ∆vi
T δθic

T δθi
T ∆ωc

T ∆ωi
T ∆bai

T∆bωi
T ∆λ

}T
, (8)

With the small-angle assumption, when the rotation angle corresponding to a unit

quaternion q is very small, the error of q is written as δq =
[
q0, δqT]T ≈

[
1, 1

2 δθT
]T

[23].
Because the algorithm operates at a high update rate, the high-order terms that yield
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negligible computational results are disregarded, such as δq · ∆ω, δq · δq, and δq · n. Then,

the description of the derivative
.̃

X can be inspected.
According to Equation (2), the derivative of the coupled translation error is as follows:

.
∆pic = µv∆vi + λ(1 − µv)Ri

c∆vc, (9)

The expectation of the linear acceleration of the IMU is âi = ami − b̂ai, and ∆bai =

bai − b̂ai. According to Appendix A, the rotation can be reformed as Ri = R(qi) ≈
R̂i(I3 + ⌊δθi×⌋) under the small angle assumption. After neglecting the high-order terms,
the error of the linear velocity of the IMU is written as follows:

.
∆vi = ai − âi = Ri(ami − bai − nami )− g − R̂i(ami − b̂ai) + g
≈ −R̂i⌊âi×⌋δθi − R̂i∆bai − nami

, (10)

For general quaternions and angular velocities, q = q̂ ⊗ δq and ω = ω̂ + ∆ω. By
subjecting qic

∗ = (qc)
1−µω

∗
⊗ (qi)

µω ∗ and (qi
µω)∗ ⊗ qi

µω= 1 to Equation (5), the error of
the coupled rotation can be deducted as follows:

δ
.
qic = q̂∗ic ⊗

(
µω
2 qi

µω ⊗ ωi ⊗ qc
1−µω + 1−µω

2 qic ⊗ ωc − µω
2 q̂µω

i ⊗ ω̂i ⊗ q̂1−µω

c ⊗ δqic −
1−µω

2 q̂ic ⊗ ω̂c ⊗ δqic

)
=

[
µω
2 δqic ⊗ qic

∗ ⊗ qi
µω ⊗

(
ω̂i + ∆ωi

)
⊗ qc

1−µω − µω
2

(
q̂1−µω

c

)∗
⊗

(
q̂µω

i

)∗
⊗ q̂µω

i ⊗ ω̂i ⊗ q̂1−µω

c ⊗ δqic

]
+
[

1−µω
2 δqic ⊗

(
ω̂c + ∆ωc

)
− 1−µω

2 ω̂c ⊗ δqic

]
=


µω
2 δqic ⊗

(
qc

1−µω
)∗ ⊗ ω̂i ⊗ qc

1−µω

+ µω
2 δqic ⊗

(
qc

1−µω
)∗ ⊗ ∆ωi ⊗ qc

1−µω

− µω
2

(
q̂1−µω

c

)∗
⊗ ω̂i ⊗ q̂1−µω

c ⊗ δqic

+


1−µω

2 δqic ⊗ ω̂c

+ 1−µω
2 δqic ⊗ ∆ωc

− 1−µω
2 ω̂c ⊗ δqic


, (11)

According to Appendix A, the rotation of pic with respect to qc
1−µω is written as

follows: (
q̂1−µω

c

)∗
⊗ pic ⊗ q̂1−µω

c
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c
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where Rµωc
T is the rotation matrix converted from qc
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the following is obtained:

.
δqic =



µω
2 δqic ⊗

[
0
Rµωc

Tω̂i

]

− µω
2

[
0
Rµωc

Tω̂i

]
⊗ δqic

+ µω
2 δqic ⊗

[
0
Rµωc

T∆ωi

]


+


1−µω

2 δqic ⊗ ω̂c

− 1−µω
2 ω̂c ⊗ δqic

+ 1−µω
2 δqic ⊗ ∆ωc



= µω
2



[
0 −

(
Rµωc

Tω̂i
)T

Rc
Tω̂i −

⌊(
Rµωc

Tω̂i
)
×
⌋ ][

q0
δqic

]

−
[

0 −
(
Rµωc

Tω̂i
)T

Rc
Tω̂i

⌊(
Rµωc

Tω̂i
)
×
⌋ ][

q0
δqic

]

+

[
0 −

(
Rµωc

T∆ωi
)T

Rc
T∆ωi −

⌊(
Rµωc

T∆ωi
)
×
⌋ ][

q0
δqic

]


+ 1−µω

2



[
0 −ω̂T

c
ω̂c −⌊ω̂c×⌋

][
q0
δqic

]

−
[

0 −ω̂T
c

ω̂c ⌊ω̂c×⌋

][
q0
δqic

]

+

[
0 −(∆ωc)

T

∆ωc −⌊∆ω̂c×⌋

][
q0
δqic

]


≈ − µω

2

{[
0
2
⌊(

Rµωc
Tω̂i

)
×
⌋
δqic

]
−

[
0
q0Rµωc

T∆ωi

]}
− 1−µω

2

{[
0
2⌊ω̂c×⌋δqic

]
−

[
0
q0∆ωc

]}
,

(13)
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Then, with the small angle assumption δqic =
[
q0, δqic

T]T ≈
[
1, 1

2 δθic
T
]T

, the error of
the coupled equivalent Euler angle is simplified as follows:

.
δθic = −µω

[⌊(
Rµωc

Tω̂i

)
×
⌋

δθic − Rµωc
T∆ωi

]
− (1 − µω)[⌊ω̂c×⌋δθic − ∆ωc], (14)

The expectation of the body angular velocity of the IMU is ω̂i = ωmi − b̂ωi, and
∆bωi = bωi − b̂ωi. Resembling the process above, the error of the rotation of the IMU is
written as follows:

.
δqi = q̂∗i ⊗ (

.
qi −

.
q̂i ⊗ δqi) =

1
2 δqi ⊗ (ω̂i + ∆ωi)− 1

2 ω̂i ⊗ δqi

= 1
2

[
0 −ω̂i

ω̂i −⌊ω̂i×⌋

][
qi0

δqi

]
− 1

2

[
0 −ω̂i

ω̂i ⌊ω̂i×⌋

][
qi0

δqi

]
+ 1

2

[
0 −∆ωi

∆ωi −⌊∆ωi×⌋

][
qi0

δqi

]

≈
[

0
−⌊ω̂i×⌋δqi

]
−

[
0
1
2 qi0∆ωi

] , (15)

Equation (15) can be simplified with the small angle assumption as follows:

.
δθi = −⌊ω̂i×⌋δθi − ∆ωi = −⌊ω̂i×⌋δθi − ∆bωi − nωmi , (16)

The derivatives of the remaining terms in X̃ are as follows:

.
∆vc = nvc ,

.
∆ωc = nωc ,

.
∆ωi =

d
dt
(∆bωi + nωmi ) = nωi,

.
∆bai = nbai ,

.
∆bωi = nbωi ,

.
∆λ = nλ, (17)

3. Propagation and Update of the ICEKF
The propagation and update of the ICEKF are described in detail in this section. The

key matrices in the propagation step determine the internal transition process of the filter.
The update step rectifies the filtered outcomes in reference to the measurement results.

3.1. Propagation

For the linearized continuous-time errors of an ICEKF state, the following equation
exists [24]:

.̃
X = FcX̃ + Gcn, (18)

where n = [nT
ωc nT

ami
nT

ωc nT
ωmi

nT
bai

nT
bωi

]
T is the propagation noise vector for the ICEKF fol-

lowing the Gaussian distribution. Fc and Gc are considered constant during every iteration.
To discretize Equation (18) during the period ∆t, we write the description of the dis-

crete state transition matrix Fd and the discrete noise covariance matrix Qd as follows [24]:{
Fd = exp(Fc∆t) = Id + Fc∆t + 1

2! F
2
c ∆t2 + . . .

Qd =
∫ t+∆t

t Fd(τ)GcQcGT
c Fd(τ)

Tdτ
, (19)

where Qc = diag(σ2
nvc

, σ2
nai

, σ2
nωc

, σ2
nωi

, σ2
nbai

, σ2
nbωi

) is the diagonal matrix converted from
Gaussian noise.
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Section 2.5 presents the specific expression of
.̃

X. Considering that the algorithm
operates at a high frequency, only the first-order expansion in Equation (19) is considered.
The complete expression of Fd is derived as follows:

Fd =



I3 A1 A2 . . . 03×19

03 I3 . . . 03×22

03 03 I3 03 A3 03 03 A4 03 03×1

03 03 03 A5 03 A6 A7 03 03 03×1

03 03 03 03 A8 03 03 03 A9 03×1

013×15 . . . I13×13


28∗28

, (20)

where A1 = λ(1 − µv)Ri
c∆t, A2 = µvI3∆t, A3 = −R̂i⌊âi×⌋∆t, A4 = −R̂i∆t,

A5 = I3 −
(
µω

⌊(
Rµωc

Tω̂i
)
×
⌋
+ (1 − µω)⌊ω̂c×⌋

)
∆t, A6 = (1 − µω)I3∆t, A7 = µωRµωc

T∆t,
A8 = I3 − ⌊ω̂I×⌋∆t, and A9 = −I3∆t.

Qd can be further derived by combining Equation (20) and Gc, and the explicit form
of Gc is recovered according to Equation (18) as follows:

Gc =



03 03 03 03 03 03

I3 03 03 03 03 03

03 − R̂i 03 03 03 03

03 03 03 03 03 03

03 03 03 − I3 03 03

03 03 I3 03 03 03

03 03 03 03 I3 03

07×18


28∗18

. (21)

3.2. Measurement

Let the state measurement matrix at the k-th step of the ICEKF be zk. After the
measured linear translation zP, the attitude quaternion zq, the linear velocity zv, and the
angular velocity zω are obtained by comparing the results from the keyframes of the visual
measurement with the expectation of the ICEKF, zk is obtained as follows:

z̃k =
[
z̃T

p z̃
T
q z̃T

v z̃T
ω

]T
, (22)

For the error of the linear translation, the following holds:

z̃p = (pic − Ricpc
i )λ + np − (p̂ic − R̂icpc

i )λ̂

= (picλ − p̂icλ) +
(
p̂icλ − p̂icλ̂

)
+

[
R̂icpc

i λ − R̂ic(I3 + ⌊δθic×⌋)pc
i λ

]
+

(
−R̂icpc

i λ + R̂icpc
i λ̂

)
+ np

= λ∆p + R̂ic
⌊(

pc
i λ

)
×
⌋
δθic +

(
p̂ic − R̂icpc

i
)
∆λ + np

, (23)

For the error of the attitude quaternion considering the small angle assumption, the
following equation is used:

z̃q = q̂∗ic ⊗
(

qi
c ⊗ qc

)
= δqic ≈

[
1

1
2 δθic + nθ

]
, (24)

For the error of the linear velocity, the following holds:

z̃v = vic − v̂ic

= µv
.

∆vi∆t + λ(1 − µv)Ri
c∆vc

= −µv∆tR̂i⌊âi×⌋δθi − µv∆tR̂i∆ba + λ(1 − µv)Ri
c∆vc + nv

, (25)
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Since the angular velocities in different coordinate frames cannot be directly subtracted,
the measurement error can be indirectly obtained according to Equation (14) as follows:

z̃ω =
.

δθic∆t + nω

= −∆t
[
µω

⌊(
Rµωc

Tω̂i
)
×
⌋
+ (1 − µω)⌊ω̂c×⌋

]
δθic + (1 − µω)∆t∆ωc + µω∆tRµωc

T∆ωi + nω
, (26)

Based on the description of X̃ in Equation (8) and the above expansion of the measure-
ment process, under the small angle assumption, the measurement error is reformulated
as follows:

z̃k ≃ HkX̃k + nm, (27)

where Hk is the measurement matrix, and the measurement noise is simplified as
nm =

[
np

Tnθ
Tnv

Tnω
T]T . Thus, Hk can be recovered from Equations (22)–(26) as follows:

Hk =


λI3×3 03×6 B1 03×15 B2

03×9
1
2 I3×3 03×16

03×3 B3 03×6 B4 03×6 − µv∆t R̂i 03×4

03×9 B5 03×3 (1 − µω)∆tI3×3 µω∆tRµωc
T 03×7


12∗28

, (28)

where B1 = R̂ic
⌊(

pc
i λ

)
×
⌋
, B2 = p̂ic − R̂icpc

i , B3 = λ∆t(1− µv)Ri
c, B4 = −µv∆tR̂i⌊âi×⌋ and

B5 = −∆t
[
µω

⌊(
Rµωc

Tω̂i
)
×
⌋
+ (1 − µω)⌊ω̂c×⌋

]
.

3.3. Entire ICEKF Process

The entire process of the ICEKF in the k-th iteration is presented as follows:
Step 1. By calculating Fd and Qd according to Equation (19), the prior covariance

matrix of errors Pk+1|k can be obtained from the following:

Pk+1|k = FdPk|kFd + Qd, (29)

Step 2. The Kalman gain matrix Kk is updated as follows:{
Sk = HkPk+1|kHT

k + Rk

Kk = Pk+1|kHT
k S−1

k
, (30)

where Rk is the measurement noise matrix.
Step 3. The current state X̂k+1|k+1 = X̂k+1|k +

ˆ̃Xk is calculated according to ˆ̃Xk = Kkz̃k,
where z̃k is obtained via Equation (27).

Step 4. The posterior covariance matrix of errors Pk+1|k+1 is updated, and Step 1 is
carried out again according to the following:

Pk+1|k+1 = (I28×28 − KkHk)Pk+1|k(I28×28 − KkHk)
T + KkRkKT

k , (31)

During Step 2, the measurement error model of the visual measurement can be
preestablished as described in [25,26]. While updating the attitude during Step 3, the
angular error of rotation in ˆ̃Xk is achieved with the small angle assumption. Therefore, the
quaternion form of the attitude expectation q̂k+1 must be recovered as follows [23]:

δq̂k ≈ 1
2 δθ̂k

q̂k+1 =


[√

1 − δq̂T
k δq̂k, δq̂T

k

]T
if δq̂T

k δq̂k ≤ 1

1√
1+δq̂T

k δq̂k

[
1, δq̂T

k
]T if δq̂T

k δq̂k > 1

, (32)
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For a clearer view of the entire process, the data flow during the k-th iteration is
illustrated by Figure 3.
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4. Nonlinear Observability Analysis
The nonlinear system with an ICEKF can function properly if it has local weak observ-

ability, as described in [27]. To simplify the observability analysis with angular velocity
layer fusion, a pair of virtual coupled measurement variables are defined as angular ve-
locity ωmic with bias bωic , which can be regarded as the yields obtained from correcting
ωmi and bωi with visual measurement. Thus, referring to the observation system modeling
in [16], the nonlinear system representing the fusion measurement results can be expressed
as follows:

.
X =



.
pic.
vc
.
vi.
qic.
qi.
ωc
.

ωi.
bai.
bωi.
λ



=

f0︷ ︸︸ ︷

µvvi + λ(1 − µv)Ri
cvc

03×1

−Ribai − g
1
2 Ξ

( .
qic

)
bωic

1
2 Ξ

( .
qi

)
bωi

03×1

03×1

03×1

03×1

0



+

f1︷ ︸︸ ︷

03×3

03×3

03×3

04×3
1
2 Ξ

( .
qi

)
03×3

03×3

03×3

03×3

0



ωmi +

f2︷ ︸︸ ︷

03×3

03×3

03×3
1
2 Ξ

( .
qic

)
04×3

03×3

03×3

03×3

03×3

0



ωmic +

f3︷ ︸︸ ︷

03×3

03×3

Ri

04×3

04×3

03×3

03×3

03×3

03×3

0



ami, (33)

where for a general unit quaternion q, there is the following:
.
q = 0.5Ξ

( .
q
)

ω

Ξ(q) =

[
−qT

q0 I3 − ⌊q×⌋

]
, (34)
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The measurement functions are designed as h
( .

X
)

=
[
h1

T , . . . , h8
T
]T

, with

h1 = (pic − Ricpc
i )λ, h2 = qic, h3 = qi, h4 = qic

Tqic, h5 = qi
Tqi, h6 = vc, h7 = ωc,

and h8 = ωi.
According to the detailed deduction in Appendix C, the observability matrix of the

system is constructed with the Lie derivative as follows:

Ω =



∇L0h1

∇L0h2

∇L0h3

∇L0h4

∇L0h5

∇L0h6

∇L0h7

∇L0h8

∇L1
f0

h1

∇L1
f0

h3

∇L2
f0

h1

∇L1
f3

L1
f0

h1



=



pic︷︸︸︷
U1

vc︷︸︸︷
0

vi︷︸︸︷
0

qic︷︸︸︷
U2

qi︷︸︸︷
0

ωc︷︸︸︷
0

ωi︷︸︸︷
0

ba︷︸︸︷
0

bω︷︸︸︷
0

λ︷︸︸︷
U3

0 0 0 U4 0 0 0 0 0 0
0 0 0 0 U5 0 0 0 0 0
0 0 0 U6 0 0 0 0 0 0
0 0 0 0 U6 0 0 0 0 0
0 U8 0 0 0 0 0 0 0 0
0 0 0 0 0 U9 0 0 0 0
0 0 0 0 0 0 U10 0 0 0
0 U11 U12 G[9,4] 0 0 0 G[9,8] 0 G[9,10]

0 0 0 0 0 U13 0 0 0 0
0 0 0 G[11,4] G[11,5] 0 0 U15 G[11,9] G[11,10]

0 0 0 G[12,4] G[12,5] 0 0 0 0 U16


38×30

, (35)

where each column corresponds to the entries in the state vector of the ICEKF, the ma-
trices G with indices represent blocks that are irrelevant to the rank analysis, and the
matrices U with subscripts are blocks contributing to the column rank of Ω, as follows:
U1 = I3λ, U4, U5 = I4, U8, U9, U10 = I3, U12 = λµvI3, U14 = 0.5Ξ

( .
qi

)
, U15 = −λµvRi, and

U16 = U(Ri).
To prove that Ω has full rank, block Gaussian elimination is applied. The rows of

blocks can be rearranged so that only one block in each row is allowed to determine whether
the corresponding column of blocks has full column rank. Following this process, all the
block columns in Ω, with the exception of the last one corresponding to U16, have full
column rank when λ, µv are nonzero.

Expanding the rotation matrix Ri as three columns yields the following:

L1
f3

L1
f0

h1 = λµvRi = λµv
[
rxryrz

]
, (36)

An explicit form is achieved by inspecting the Lie derivative of Equation (36) as
U16 = µv

[
rx

Try
Trz

T]T
9×1. As described in [16], if the linear acceleration was excited on at

least one axis, one of rx, ry, or rz would be a nonzero vector.
In accordance with the analysis above, it can be demonstrated that for the visual–

inertial system with the ICEKF described in this paper, when λ, µv are nonzero and the
IMU is excited in any direction, the observability matrix has full column rank, which means
that the system has local weak observability [27]. The above conditions are readily fulfilled
during practical applications.

5. Simulation and Experiments
Three-dimensional motion simulation and dataset experiments are conducted in this

section to analyze the performance of the ICEKF.

5.1. Simulation

Assuming that the coordinate frames of the IMU and the camera are aligned, the pose
transformation between them can be omitted. To observe the convergence process, we
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deliberately assign random initial values to the prior covariance matrix Pk|k. The starting
point is [1,0,0]. The covariance matrix of measurement error Rk is designed as a skew-
symmetric matrix with small random values. Gaussian noise is introduced to all the virtual
measurement values. The coefficients are set as µv = 0.5, µω = 0.5, and λ = 1. The virtual
IMU-camera rig is directed to move along a virtual helical trajectory, as described by the
following equation: 

x = cos
(

1
2 πt

)
y = sin

(
1
2 πt

)
z = t

, (37)

The three-dimensional position curves of the ICEKF and the ground truth are shown
in Figure 4, which reveals that the estimated results align closely with the true values. The
position errors of the ICEKF estimation against the ground truth of the IMU-camera rig
along the three axes are depicted in Figure 5, and Figure 6 shows the orientation errors.
The curve of λ is shown in Figure 7.
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The norm errors between the ground truth and the simulation results, including the
statistical values of the RMSE (root mean square error), mean error, and STD (standard
deviation) for both coupled translation pic and attitude qic across all three axes, are detailed
in Table 2. The errors of the attitude are obtained by converting qic to roll-pitch-yaw.

Table 2. Norm errors of the translation and attitude between the ground truth and the simulation
results.

Translation
RMSE

Translation
Mean Error

Translation
STD

Attitude
RMSE

Attitude
Mean Error

Attitude
STD

0.207 m 0.1447 m 0.1408 m 0.1684 rad 0.1348 rad 0.1008 rad

The curves and numerical statistics show that despite the randomized Pk|k and Rk

alongside a high yaw angle velocity disturbing the initial convergence, the ICEKF ultimately
converges without much specific parameter tuning. This indicates that the ICEKF possesses
strong robustness while yielding reliable motion estimates.

To further test the filter’s ability to converge, an initial state estimate set is designed
which conducts the virtual rig starting from the different three-dimensional points to the
actual desired starting point [1,0,0]. The initial estimate set, varying from [0,−1,−1] to
[1,0,0], and the converging process are illustrated by Figure 8, which depicts how even
when facing uncertain initial estimates, the filter can converge with a decent performance.
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5.2. Dataset Experiment

To inspect the effectiveness of the algorithm in real-world scenarios, this paper em-
ploys the EuRoC ROOM01 and MainHall02 datasets [28] for validation. Since this study
investigates the performance of the loosely coupled visual–inertial algorithm itself in-
stead of visual odometry, one of the state-of-the-art visual SLAM algorithms, monocular
ORB-SLAM V3 [29], serves as the visual black-box approach. Given that this algorithm
has been confirmed to exhibit exceptional ATE performance, this paper focuses on RPE
comparisons of different algorithms by employing EVO tools [30] to analyze trajectories.
The ICEKF operates with the IMU data at 200 Hz, and meanwhile the visual measurement
runs at 20 Hz. To facilitate the comparison, each frame from the visual measurement with
ORB-SLAM is considered a keyframe.

The coefficients are µv = 0.9 and µω = 0.5, and the initial scale factor is determined
based on the prior results of the visual algorithm as λ = 2.04. Given that the hardware
setup and scenario are fixed in the dataset, the initial covariance matrix Pk|k of the ICEKF
can be easily adjusted via multiple runs. In the first run, the initial Pk|k is selected randomly,
and eventually stabilizes as the algorithm progresses. The final updated Pk|k is utilized to
run the scenario test again, which greatly increases the convergence speed and provides
high resilience against noise. For applications in unknown environments, initial covariance
estimation can be conducted in a similar scenario to further improve convergence efficiency.

Dataset experiments with monocular ORB-SLAM, its IMU variant, and the monocular
MSCKF with an IMU were performed. The entire experiment processes are shown in
Figures 9 and 10.

The contrast between the three-dimensional position output of the ICEKF and the ground
truth is shown in Figures 11 and 12. The three-dimensional position errors and the orientation
errors between the output of the ICEKF and the ground truth after applying alignment using
Umeyama’s method [30] from the two dataset tests are shown in Figures 13–16.
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Trajectory analysis using EVO is conducted, in which the ICEKF with the results
from ORB-SLAM and its IMU variant, as well as the data obtained from the monocu-
lar MSCKF [31], are compared against the ground truth, with the statistical RPE results
presented in Tables 3 and 4.

The comparative results indicate that the ICEKF ensures real-time measurement
through high-frequency IMU updates and achieves an accuracy comparable to that of the
monocular ORB-SLAM and its IMU variant while outperforming the monocular MSCKF.
Although the trajectory does not reach the high accuracy of ORB-SLAM-based methods
owing to the lack of posterior batch optimization processing, the computational complexity
of the coupled part of the algorithm is only O(n), which benefits localization applica-
tions. Moreover, the algorithm framework can be directly utilized with other localization
algorithms to improve their measurement stability in complex environments.
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Table 3. Norm errors of the translations between the ground truth and the results of the dataset
experiments (ROOM01).

Translation RMSE Translation Mean
Error Translation STD

ICEKF 0.04153 m 0.00574 m 0.04112 m
Monocular

ORB-SLAM V3 0.0393 m 0.0355 m 0.01678 m

Monocular
ORB-SLAM V3

with IMU
0.003841 m 0.002973 m 0.002433 m

Monocular MSCKF 0.1305 m 0.05366 m 0.119 m

Table 4. Norm errors of the translations between the ground truth and the results of the dataset
experiments (MainHall02).

Translation RMSE Translation Mean
Error Translation STD

ICEKF 0.08922 m 0.009765 m 0.08869 m
Monocular

ORB-SLAM V3 0.735 m 0.533 m 0.506 m

Monocular
ORB-SLAM V3

with IMU
0.001366 m 0.004981 m 0.01272 m

Monocular MSCKF 0.2689 m 0.09905 m 0.25 m

To assess the robustness of the ICEKF with regard to leap noise from visual measure-
ments, this study incorporates random stimulations with an amplitude of 0.5 m into the
visual measurement result to imitate harsh visual measurement failure. Figure 17 shows
a comparison of the partial trajectory from the ICEKF against the corrupted visual mea-
surement. This indicates that the ICEKF can significantly mitigate the impact of sporadic
instability from visual measurements.
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6. Conclusions
This study introduces a novel weighted loosely coupled algorithm for fusing data

from IMUs and visual measurements and demonstrates its observability. The algorithm, of
which the coupled part possesses a computational complexity of O(n), retains the high-
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frequency update capability inherent to the EKF framework, thus enabling high-accuracy
active localization. Both simulation and dataset tests reveal that the ICEKF achieves deep
integration of the IMU and the visual data on the velocity layer throughout the updating
process, which benefits the localization performance. By conveniently tuning the weights
assigned to different data sources, the framework improves both the fusion accuracy and
the resilience to abrupt noise. In future studies, we will aim to apply the approach across
multiple devices by analyzing the sensitivity of the coupling coefficients in challenging
real-life scenarios.
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Appendix A
Assuming that the rotation q is accomplished during a certain period and that the

corresponding body angular velocity is ω,
.
q = 1

2 q ⊗ ω [30], where ω = [0, ω]. The µ-th
power of q is written as qµ, which is a unit quaternion that denotes scaling the rotation
angle around the virtual axis with µ ∈ [0, 1] [32].

A three-element vector p rotating according to q is written as q ⊗ p ⊗ q∗
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Then, with the small angle assumption 1
0 2, 1,

T TT T
ic ic ic= qδ δ δ   ≈   q q θ , the error of 

the coupled equivalent Euler angle is simplified as follows: 

( ) ( )
.

ˆ ˆ1T T
ic c i ic c i c ic cω ωω μ μ ωδ μ δ μ δ  = − × − Δ − −  × − Δ      R Rθ ω θ ω ω θ ω , (14) 

The expectation of the body angular velocity of the IMU is ˆˆi mi iω= − bω ω , and 
ˆ

i i iω ω ωΔ = −b b b . Resembling the process above, the error of the rotation of the IMU is writ-
ten as follows: 
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Equation (15) can be simplified with the small angle assumption as follows: 
.

ˆ ˆ
mii i i i i i iωδ δ δ= − × − Δ = − × − Δ −       b nωθ ω θ ω ω θ , (16) 

The derivatives of the remaining terms in X  are as follows: 

R(q)p with
p =

[
0, pT]T .
For general quaternions, the error between the measurement and the expectation is

defined as δq from q = q̂ ⊗ δq. The derivative form is δ
.
q = q̂∗ ⊗

(
.
q −

.
q̂ ⊗ δq

)
[16].

According to R(δq) ≈ I3 + ⌊δθ×⌋ [23], there is R(q) = R̂
(
q̂
)
R(δq) ≈ R̂

(
q̂
)
(I3 + ⌊δθ×⌋).

Assuming that there are two quaternions, q =
[
q0, qT]T and p =

[
p0, pT]T , the

following equation exists:

q ⊗ p =

[
q0 −qT

q q0I3 + ⌊q×⌋

]
⊗ p =

[
p0 −pT

p p0I3 + ⌊p×⌋

]
⊗ q. (A1)

Appendix B
The following lemmas are proposed in this paper for the coupling process on the

velocity layer.
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Lemma A1. For the IMU-camera measurement system in Figure 1, let qc′
w be the equivalent

rotation of qc
w described in the IMU frame. Assuming that qic

w, qi
w and qc′

w are unit quaternions with

qic
w = qc′

w = qi
w, qic

w =
(
qi

w
)µω ⊗

(
qc′

w

)1−µω
, where µω ∈ [0, 1].

Proof of Lemma A1. Rewriting the quaternions into axis-angle form [32] yields
qic

w = [cos θic, ric sin θic], qc′
w = [cos θc, rc sin θc], and qi

w = [cos θi, ri sin θi], with
θc = θi = θic = θ, and unit vectors ric = rc = ri = r.

Inspecting the exponential form of quaternions [33], we have the following:

(
qc′

w

)(1−µω)
= exp

(
(1 − µω) log qc′

w

)
= exp((1 − µω)[0, θr])

= [cos((1 − µω)θ), r sin((1 − µω)θ)]
, (A2)

(
qi

w
)µω = exp

(
µω log qi

w
)
= exp(µω [0, θr])

= [cos(µωθ), r sin(µωθ)]
. (A3)

Three conditions are discussed as follows:

1. When µω = 1,
(

qc′
w

)0
= [1, 0], and

(
qi

w
)1

= [cos θ, r sin θ],
(

qc′
w

)0
⊗

(
qi

w
)1

=

[cos θ, r sin θ] = qic
w.

2. When µω = 0, similarly,
(

qc′
w

)1
⊗

(
qi

w
)0

= qic
w.

3. When µω ∈ (0, 1), there is the following:

(
qi

w
)µω ⊗

(
qc′

w

)(1−µω)
= [cos((1 − µω)θ), r sin((1 − µω)θ)][cos(µωθ), r sin(µωθ)]

= [cos((1 − µω)θ) cos(µωθ)− sin((1 − µω)θ) sin(µωθ)(r · r),
r cos((1 − µω)θ) sin(µωθ) + r cos(µωθ) sin((1 − µω)θ) + (r × r) sin((1 − µω)θ) sin(µωθ)]

= [cos θ, r sin θ] = qic
w

. (A4)

Therefore, for all three conditions, qic
w =

(
qi

w
)µω ⊗

(
qc′

w

)1−µω
holds. □

Lemma A2. Letting µ ∈ [0, 1], for the derivative of the µ-th power of a general unit quaternion q,
d
dt (q

µ) = 1
2 qµ ⊗ (µω).

Proof of Lemma A2. Referring to Equation (314) in [32] (pp. 483), for a general quaternion
in the space-reference inertia axes, namely, the body frame in this paper, d

dt (q) =
1
2 q ⊗ (ω).

Referring to Equation (15) in [34] (pp. 168), for a unit quaternion q denoting rotation α

around unit vector r, d
dt α = ω · r exists.

To scale the rotation angle with a coefficient µ ∈ [0, 1], since the vector r remains
unchanged, d

dt µα = (µω) · r. Thus, d
dt (q

µ) = 1
2 qµ ⊗ (µω) holds. □

Appendix C
The Lie derivative of the measurement function h(x) with respect to the vector f(x) is

written as follows:

Lfh(x) = ∇fh(x) =
∂h(x)

∂x
f(x). (A5)

The k-th order Lie derivative of h(x) with respect to f(x) is written as follows:

Lk
f h(x) =

∂
(

Lk−1
f h(x)

)
∂x

f(x). (A6)
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Specifically, the zeroth-order Lie derivative of h(x) is the measurement function itself,
namely L0h(x) ≜ h(x).

By deducting the gradient of the zeroth-order Lie derivatives of the measurement

function among h
( .

X
)
=

[
h1

T , . . . , h8
T
]T

, we obtain the following:

∇L0h1 =
[
I3λ 03×3 03×3 λΓ

(
qic, pc

i
)

03×4 03×3 03×3 03×303×3
(
pic − Ricpc

i
)]

∇L0h2 = [04×3 04×3 04×3 I4 04×4 04×3 04×3 04×3 04×3 04×1]

∇L0h3 = [04×3 04×3 04×3 04×4 I4 04×3 04×3 04×3 04×3 04×1]

∇L0h4 =
[
01×3 01×3 01×3 2(qic)

T 01×4 01×3 01×3 01×3 01×3 0
]

∇L0h5 =
[
01×3 01×3 01×3 01×4 2(qi)

T 01×3 01×3 01×3 01×3 0
]

∇L0h6 = [03×3 I3 03×3 03×4 03×4 03×3 03×3 03×3 03×3 03×1]

∇L0h7 = [03×3 03×3 03×3 03×4 03×4 I3 03×3 03×3 03×3 03×1]

∇L0h8 = [03×3 03×3 03×3 03×4 03×4 03×3 I3 03×3 03×3 03×1]

. (A7)

The first-order Lie derivative of h1 with respect to f0 and its gradient are as follows:

L1
f0

h1 = ∇L0h1 · f0 = λ
(

µvvi + λ(1 − µv)Ri
cvc

)
+

1
2

λΓ(qic, pc
i )Ξ

( .
qic

)
bωi. (A8)

∇L1
f0

h1 =
[
03×3 λ2(1 − µv)Ri

c λµvI3 G[9,4] 03×4 03×3 03×3 G[9,8] 03×3 G[9,10]

]
(A9)

The first-order Lie derivative of h3 with respect to f0 and its gradient are as follows:

L1
f0h3 = ∇L0h3 · f0 = 0.5Ξ

( .
qi

)
bωi. (A10)

∇L1
f0h3 =

[
04×3 04×3 04×3 04×4 04×4 I3 04×3 04×3 0.5Ξ

( .
qi

)
04×1

]
(A11)

The second-order Lie derivative of h1 with respect to f0 and its gradient are as follows:

L2
f0

h1 = ∇L1
f0

h1 · f0 = λµv(−Ribai − g) +
1
2

G[9,4]Ξ
( .

qic

)
bωi. (A12)

∇L2
f0

h1 =
[
03×3 03×3 03×3 G[11,4] G[11,5] 03×3 03×3 −λµvRi G[11,9] G[11,10]

]
(A13)

The second-order Lie derivative of h1 with respect to f0 as well as f3 and its gradient
are as follows:

L1
f3

L1
f0

h1 = ∇L1
f0

h1 · f3 = λµvRi =
[

L1
f3,1

L1
f0

h1 L1
f3,2

L1
f0

h1 L1
f3,3

L1
f0

h1

]
3×3

. (A14)

∇L1
f3

L1
f0

h1 =


∇L1

f3,1
L1

f0
h1

∇L1
f3,2

L1
f0

h1

∇L1
f3,3

L1
f0

h1


=

[
09×3 09×3 09×3 G[12,4] G[12,5] 09×3 09×3 09×3 09×3 U(Ri)

]
9×30

(A15)
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