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Abstract: Precision agriculture technology based on computer vision is of great significance
in fruit recognition and evaluation. In this study, we propose a fruit recognition and
evaluation method based on multi-model collaboration. Firstly, the detection model was
used to accurately locate and crop the fruit area, and then the cropped image was input into
the classification module for detailed classification. Finally, the classification results were
optimized by the feature matching network. In the method, the detection model was based
on YOLOv8, and the model was improved by introducing a TripletAttention structure and
an Attention Mechanism-Based Feature Fusion (AFM) structure. The improved YOLOv8
model improves the P, R, mAP50, and MAP50-95 indicators by 2.4%, 2.1%, 1%, and 1.3%,
respectively, compared with the baseline model on only one generalized “fruit” label
dataset. The classification model Swin Transformer used in this study has a classification
accuracy of 92.6% on a dataset of 27 fruit categories, and the feature matching network
based on cosine similarity can calibrate the classification results with low confidence.
The experimental results show that the proposed method can be applied to the maturity
assessment of apples and tomatoes, as well as to the non-destructive testing of apples.

Keywords: multi-model collaboration; fruit recognition and evaluation; improved YOLOv8
detection model; swin transformer classification model; feature matching network

1. Introduction
Today, labor costs in the fruit production process still account for a significant portion

of the total cost. Therefore, researching intelligent and automated fruit production processes
is of great significance and practical value. Fruit recognition technology with high accuracy
and broad adaptability can not only accurately identify and classify different types of fruits,
helping supermarkets and retail stores with automated fruit vending, but it also plays an
important role in yield estimation, automated harvesting, and ripeness detection.

With the development of computer vision technology, various machine vision de-
tection algorithms have been widely applied in fruit recognition and evaluation. GOEL
et al. [1] used two color descriptors, the red–green difference and the red–green ratio, to
detect different ripening stages of tomatoes, enabling the assessment of tomato ripeness.
YU et al. [2] utilized color and texture features to train a random forest binary classification
model, effectively distinguishing between different ripeness stages of lychees. LU et al. [3]
used local binary pattern features and hierarchical contour analysis, utilizing texture and
intensity distribution to identify immature citrus fruits. Traditional machine learning meth-
ods primarily rely on extracting features such as color, shape, and texture from fruit images
to achieve fruit recognition and ripeness evaluation. However, since manually designed
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features often struggle to handle complex scenes with mixed backgrounds and varying
environmental factors, it is difficult for them to meet the needs of intelligent and automated
fruit recognition and evaluation.

Deep learning-based models can automatically extract relevant features without man-
ual intervention, making them more widely applicable in the agricultural field. JIA et al. [4]
proposed an improved Mask R-CNN visual detector model, which enables the faster and
more accurate recognition of overlapping apples. ZHANG et al. [5] improved the YOLOv4
model by adding coordinate attention modules to both the feature extraction module and
the feature pyramid, which enhanced the accuracy of fruit recognition. GU et al. [6] intro-
duced a transformer-based BRA sparse attention module into the backbone network of
YOLOv8 and improved the detection head and feature fusion network to achieve mango
recognition. LU et al. [7] improved the performance of the YOLOv4 model in apple ripeness
assessment tasks by adding a convolutional attention mechanism module to the detector.
ANANTHANARAYANA et al. [8] used the SSD network and MobileNetV2 network for the
recognition and freshness assessment of three types of fruits: apples, oranges, and bananas.
KANG et al. [9] utilized a Feature Pyramid Network and dilated spatial pyramid pooling
to achieve apple detection in orchards. XUE et al. [10] proposed a fruit image classification
framework, where the first part uses a convolutional autoencoder (CAE) for pretraining the
images, and the second part employs an attention-based DenseNet to extract features from
the images. CHEN et al. [11] aimed to detect citrus fruits and assess fruit ripeness. In the
first stage, YOLOv5 was used to recognize citrus fruits in the images. In the second stage,
an improved visual saliency detection algorithm was applied to generate saliency maps
of the fruits, which combined RGB image information with saliency maps. A ResNet34
network was then used to determine the ripeness level of the fruits.

Deep learning classification models have gradually evolved from traditional CNN-
based models (such as ResNet [12], EfficientNet [13], etc.) to Transformer-based classifica-
tion models. Vision Transformer [14] directly applies the self-attention mechanism to the
entire image, effectively handling long-range dependencies, but it comes with high com-
putational cost. The Swin Transformer [15] classification model, based on a Transformer
architecture with visual attention, is particularly well-suited for handling large-sized im-
ages and long-range information interactions. It introduces a hierarchical, window-based
attention mechanism to process information at different scales, thereby enhancing the
model’s ability to understand images. The YOLO algorithm [16], based on deep learning,
has the feature of single-stage object detection, which allows for the fast and accurate
detection of different targets, making it highly suitable for fruit recognition and evalua-
tion tasks. The improvements to the YOLO algorithm are primarily reflected in speed,
accuracy, robustness, and flexibility. Through optimizations in network architecture and
computational efficiency, YOLO has further enhanced detection speed. The introduction of
new feature extraction networks, anchor box mechanisms, and multi-scale feature fusion
techniques has significantly improved accuracy. Enhancements in robustness allow the
model to better handle occlusion, complex backgrounds, and varying lighting conditions
during detection tasks. Furthermore, YOLO offers multiple configuration options, making
the model more flexible, allowing users to select the most suitable version based on their
specific requirements and computational resources. These improvements have enabled
the YOLO algorithm to exhibit greater adaptability and reliability in practical applications.
Numerous studies have shown that enhancing the model’s feature extraction and fusion
capabilities can effectively improve the accuracy and stability of fruit recognition. The
introduction of attention mechanisms allows the model to selectively focus on important,
relevant features while ignoring less important information. HU et al. [17] proposed SE-
Net, a channel attention mechanism consisting of three parts: compression, excitation, and
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channel weight updating. First, global average pooling is used to compress the feature map
of each channel. Then, a fully connected layer learns the correlation between the channels
and uses an activation function (sigmoid) to generate the weight for each feature map
group, enhancing the important features and suppressing the less important ones. Finally,
the channel weight vector is updated by multiplying it with the original input. Considering
that SE-Net performs mapping at a single scale, LI et al. [18] proposed SK-Net, which
operates at multiple scales and enables the network to autonomously learn to select and
fuse feature map information from different receptive fields. While SE-Net only considers
the contribution of feature map channels, it neglects the fact that the spatial location of
objects in an image also plays a crucial role in object detection. WOO et al. [19] proposed
CBAM, which combines channel attention and spatial attention mechanisms in series, effec-
tively improving the network’s feature extraction and representation capabilities. However,
although CBAM integrates channel attention and spatial attention mechanisms, it does
not consider cross-dimensional interaction. MISRA et al. [20] established interactions
from three branches: the width and height of the image, the dimension and width, and
the dimension and height. The proposed CTAM (Cross-Transformer Attention Module)
demonstrated outstanding performance. To avoid the loss of spatial information caused
by 2D global pooling in SE-Net, HOU et al. [21] proposed CA, which decomposes channel
attention into two parallel 1D feature encodings and embeds spatial position information
into the channel attention. This approach allows the model to capture more information
while avoiding significant overhead. Due to the large side effects of dimensionality reduc-
tion and the inefficiency of unnecessary channel interactions, WANG et al. [22] proposed
ECA-Net, a local cross-channel interaction strategy that does not reduce dimensionality,
maintaining performance while reducing model complexity.

Currently, most research on fruit recognition and evaluation is focused on several key
areas: the precise recognition and evaluation of single fruit varieties, the detection and eval-
uation of multiple fruit types, and improving recognition capabilities in indoor and orchard
environments. Tasks such as fruit ripeness assessment, quality grading, damage detection,
and disease identification provide more comprehensive and accurate solutions for agri-
cultural production and fruit quality control. In fruit recognition and classification tasks,
single models are widely used due to their simple structure and ease of implementation.
However, single models often suffer from limitations such as poor generalization ability
and stability when recognizing multiple fruit types. To overcome these limitations, collabo-
rative strategies involving multiple models have been gradually introduced. Compared
to single models, the use of multiple models typically leads to significant improvements
in performance. Multi-model strategies primarily include model ensemble, model fusion,
and model collaboration. These approaches combine the strengths of independent models,
further enhancing the system’s robustness, accuracy, and generalization ability.

Many researchers have improved model performance from different angles to achieve
more accurate recognition and evaluation. Currently, most studies focus on recognizing
a few types of fruits, and once the data labels are determined, the model’s recognition
categories are restricted. In this paper, during the construction of the fruit recognition
dataset, only a generalized “fruit” label is assigned. The YOLO-based detection model is
improved to locate the fruit regions in the image. Then, a classification model is employed
to perform detailed classification on the detected fruit regions. By separating the detection
and classification tasks, the method achieves multi-model collaboration for better overall
performance. Furthermore, when new fruit categories need to be added for recognition and
evaluation tasks, only the classification model needs to be updated, reducing the labeling
workload for detection. The detection model only needs to recognize the “fruit” target,
allowing it to focus more on the position and shape features of the target, thereby reducing
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misjudgments and omissions caused by category confusion. The classification model, on the
other hand, can make finer category distinctions on the detected fruit images, improving
recognition accuracy. Finally, for classification results with lower confidence, feature
matching is used for calibration to enhance classification accuracy. Additionally, feature
matching requires only a small number of samples to effectively address classification issues
when new fruit categories appear. The contributions of this paper can be summarized
as follows:

(1) This paper proposes a multi-model collaborative method for fruit recognition and eval-
uation, which separates the detection and classification tasks and optimizes the classifi-
cation results through a feature matching network. The proposed method can achieve
more accurate fruit recognition and is also suitable for fruit ripeness assessment.

(2) An attention-based fusion module is designed to achieve interactive fusion and en-
hancement of input features, which helps improve the performance and generalization
capability of the YOLOv8 detection model in complex tasks.

(3) A classification prediction network is designed, where a Swin Transformer-based
classification network works in collaboration with a cosine similarity-based feature
matching network. This approach enhances classification accuracy while effectively
addressing the classification issues of new categories.

(4) Ablation experiments and experimental results demonstrate the effectiveness of the
proposed method, which can be applied to both indoor and outdoor fruit recognition
and ripeness assessment.

2. Materials and Methods
2.1. Data Preparation

In the fruit recognition model, images were annotated using X-AnyLabeling, with
3000 images selected from the Fruit Recognition public dataset and 2000 images collected
from orchard datasets, resulting in a total of 5000 manually annotated images. Each
annotation set includes bounding box data and category information, where the bounding
box data consists of the center coordinates, width, and height, and all annotated categories
are labeled as “fruit”. For the fruit classification model, fruits of the same type were placed
in their respective folders, with each folder named after the fruit category. This paper
constructs a fruit classification dataset containing 27 categories of fruits, with a total of
4832 images. The distribution of data for each fruit category is shown in Table 1. In addition,
a tomato ripeness dataset with 898 images, an apple ripeness dataset with 1110 images,
and an apple nondestructive testing dataset with 713 images have also been created. To
achieve feature matching in images, a small sample dataset was constructed, containing
10 fruit categories with 5 images per category.

Table 1. The quantity distribution of each type of fruit.

Number Category Amount Number Category Amount Number Category Amount

1 Banana 181 10 Watermelon 186 19 Hami melon 188
2 Bayberry 186 11 Mango 165 20 Pineapple 189
3 Strawberry 191 12 Lemon 148 21 Durian 184
4 Coconut 192 13 Sugar oranges 177 22 Orange 188
5 Mangosteen 178 14 Green grapes 155 23 Red apples 177
6 Pomegranate 187 15 Pitaya 182 24 Lichee 194
7 Tomato 184 16 Longan 191 25 Grape 194
8 Pear 188 17 Green apples 188 26 Grapefruit 185
9 Cherries 161 18 Cherry tomatoes 191 27 Kiwi 187
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2.2. Proposed Method

This study proposes a fruit recognition and evaluation model that separates the
tasks of detection and classification and incorporates a feature matching network for post-
processing. Initially, the YOLOv8 model is improved by adding an attention mechanism to
the backbone network and using a self-developed attention-based fusion module in the neck
network to accurately locate fruit positions and generate bounding boxes. Subsequently,
the SwinT model is employed to classify the detected fruits and calculate classification
confidence scores. To further calibrate the classification results and address potential errors
introduced by new fruit categories, a feature matching method based on cosine similarity
is adopted. For classification results with low confidence, calibration is performed through
the feature matching network. Finally, the detection and classification results are integrated
to produce the final output. The overall framework is shown in Figure 1.
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2.2.1. Detection Model Based on Improved YOLOv8

The YOLOv8 network is primarily composed of three parts: the backbone network,
the neck network, and the detection head. The backbone network extracts features from the
input images and includes structures such as Conv, C2f, and SPPF. The Conv structure is
used to extract basic features from the images; the C2f structure reduces feature redundancy
and enhances feature extraction capabilities; and the SPPF structure reduces redundant
feature extraction within the network, thereby speeding up the generation of candidate
boxes. The neck network comprises structures like Upsample, Concat, C2f, and Conv,
and it utilizes the Feature Pyramid Network (FPN) and the Path Aggregation Network
(PAN). The FPN performs feature fusion through top-down upsampling techniques, while
the PAN transmits spatial information in a bottom-up manner. The detection head uses
loss functions and Non-Maximum Suppression (NMS) to output the target’s category and
confidence score. It also employs regression techniques to handle the candidate boxes,
determining the precise location and size of the targets.

To enhance the feature extraction capability of the model, TripletAttention was added
before the SPPF structure in the backbone network, thereby improving the network’s
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feature extraction ability and achieving structural improvements. For better feature fusion,
an attention-based fusion module (AFM) was designed and implemented, replacing the
original Concat module with AFM, which further improved the model. The framework of
the improved YOLOv8 is shown in Figure 2.
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TripletAttention is a lightweight and effective attention mechanism that calculates
attention weights by capturing cross-dimensional interactions through a three-branch
structure. TripletAttention establishes interactions from the width and height, dimension
and width, and dimension and height branches of an image, thereby capturing cross-
dimensional relationships. In each branch, the input tensor undergoes rotation operations
(e.g., 90◦ counterclockwise rotation) and residual transformations to establish dependencies
between different dimensions. When computing attention weights, TripletAttention uses
lightweight methods such as Z-Pool and smaller convolutional kernels, resulting in low
computational overhead. The TripletAttention structure is shown in Figure 3.

The Concat structure in the neck network directly concatenates extracted features,
treating all features as equally important and failing to achieve information interac-tion
between different dimensions. In this paper, we propose an Attention Fusion Module
(AFM) based on attention mechanisms, and the specific structure is shown in Figure 4.
The AFM structure first adjusts the channel number of the input feature ten-sor and
concatenates features along the channel dimension. Next, it adds an attention mechanism
to enhance the network’s focus on different parts of the features, improv-ing the model’s
perceptual and expressive abilities. Finally, through feature separation and fusion, the
weights of useful features are enhanced, the weights of unimportant features are reduced,
and information exchange between different features is achieved. This effectively filters out
noise and redundant information, thereby enhancing the network’s feature representation
and generalization capabilities.
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2.2.2. Classification Model with Swin Transformer

The Swin Transformer classification model adopts a hierarchical design, consist-ing
of 4 stages. First, the Swin Transformer splits the image through Patch Partition and then
adjusts the channel number via Linear Embedding. Except for the first stage, each stage
reduces the resolution of the input feature map through the Patch Merging layer, performing
downsampling to gradually expand the receptive field for acquiring global information.
The Swin Transformer block mainly consists of LayerNorm, Win-dow Attention, Shifted
Window Attention, and MLP. The introduction of Shifted Win-dow Attention allows better
interaction in each layer, efficiently capturing both local and global features, as shown in
Figure 5 illustrating the Swin Transformer architec-ture and Figure 6 depicting the Swin
Transformer block.
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2.2.3. Cosine Similarity-Based Feature Matching Network

When using a classification model to recognize images, a low confidence score often
indicates a higher risk of misclassification. In such cases, even images that are known and
explicitly labeled as a specific fruit category may be misclassified by the model as belonging
to another category. Additionally, for categories that the model has not encountered or
learned during training, referred to as “unknown categories”, the accuracy and confidence
of classification are even harder to guarantee, further increasing the likelihood of misclassi-
fication. Therefore, it is crucial to focus on the model’s low-confidence outputs and calibrate
the classification results to improve overall performance and reduce misclassifications.

Given that image feature vectors are high-dimensional, this study employs cosine
similarity for the rapid calibration of classification results. Cosine similarity is effective
in handling high-dimensional and sparse data and is computationally efficient. Thus, we
use cosine similarity to measure the similarity between two images. Cosine similarity is
calculated by measuring the cosine of the angle between two vectors, with the formula

Cosine similarity =
A · B

∥A∥∥B∥ (1)

The CLIP [23] training dataset consists of 400 million text-image pairs, endowing it
with powerful image feature extraction capabilities and Few-Shot and Zero-Shot learning
abilities. To extract image features, CLIP is employed to extract features from the image
to be calibrated, and these features are normalized. By converting the image into tensor
format, PyTorch’s computational and model inference capabilities can be fully utilized.
Secondly, features are extracted from each reference category’s set of reference images,
normalized, and stored. Establishing the reference feature library only requires storing
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images in folders named after their respective categories. Finally, cosine similarity is
computed through dot product between the feature of the image to be calibrated and all
reference category features to identify the category with the highest similarity score, thereby
predicting its class.

3. Experiments and Results
3.1. Experimental Environment and Training Parameter Settings

The experiment is trained under the pytorch framework, and the experimental envi-
ronment configuration is shown in the Table 2 below.

Table 2. Experimental environment configuration.

Configuration Name Enviromental Parameter

CPU 13th Gen Intel(R) Core(TM) i9-13900KF
GPU NVIDIA GeForce RTX 4080, 16375MiB
Memory 128 G
Python 3.7.16
Torch 1.13.1
CUDA 11.6

The training parameters for the improved YOLOv8 detection model are detailed in
Table 3, and the training parameters for the Swin Transformer classification model are
provided in Table 4.

Table 3. YOLOv8 detection model training parameters.

Parameter Setting

Batch Size 64
Learning Rate 0.002
Epochs 100
Pretrained Weights No (Training from scratch)
Dataset Split 80% training, 20% test
Momentum 0.9
Data Caching Yes
Optimizer AdamW
Device CUDA
Workers 8

Table 4. Swin Transformer detection model training parameters.

Parameter Setting

Batch Size 32
Learning Rate 0.0001
Epochs 100
Pretrained Weights Yes
Dataset Split 80% training, 20% test
Optimizer AdamW
Weight Decay 5E-2
Device CUDA
Workers 8
Fine-tuning Layers Fine-tuned all layers

3.2. Evaluation Index
3.2.1. Evaluation Index of YOLOv8 Detection Model

To validate the effectiveness of the improved models, Precision (P), Recall (R), mAP50
(mean Average Precision with IoU = 0.5), and mAP50-95 (mAP with IoU thresholds from
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0.5 to 0.95) were utilized. IoU is used to measure the overlap between the candidate boxes
generated by the model and the ground truth boxes. A higher IoU value indicates greater
similarity between the boxes. Precision measures the accuracy of fruit detections, ensuring
that identified objects are indeed fruits. Recall assesses how well the model detects all
instances of fruits present in the images.

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP represents the number of correctly predicted positive samples; FP is the number
of false positive samples. FN represents the number of mispredicted negative class samples.

AP =
1
m

m

∑
r=1

(P(r)∆R(r)) =
∫ 1

0
P(R)dR (4)

where m is the number of positive samples, P(r) is the proportion of positive samples in
the first r retrieval processes, ∆R(r) is the change in Recall with respect to r in the first r
retrieval results, and P(R) represents the Precision (P) under feature recall (R).

mAP =
1
n

n

∑
i=1

APi (5)

Here, n is the total number of categories and APi represents the AP value of the
ith class.

mAP50 evaluates the Average Precision (AP) of each class based on candidate boxes
generated by the model that have an IoU (Intersection over Union) of 0.5 or greater with
the ground truth boxes. It calculates the AP for each class and then averages these values
to obtain mAP50.

mAP50-95 extends this evaluation by considering a series of confidence thresholds
(typically from 0.5 to 0.95, with a 0.05 interval). For each confidence threshold, it computes
the AP for each class, where predictions with IoU greater than or equal to that threshold
are considered correct predictions. Finally, it averages the AP values across all classes and
thresholds to derive mAP50-95.

3.2.2. Evaluation Metrics for Swin Transformer Classification Models

Using accuracy and average loss as the primary metrics to evaluate the model. Accu-
racy refers to the proportion of samples correctly classified by the model out of the total
number of samples, calculated as:

Accuracy =
CS
TS

(6)

Here, CS represents the number of correctly predicted samples and TS represents the
total number of predicted samples.

Loss calculation is typically performed using the Cross-Entropy Loss function, which
is computed and accumulated over the entire training dataset, then averaged by the total
number of iterations to yield the average loss. Cross-Entropy Loss is a widely used loss
function that effectively measures the inconsistency or discrepancy between the model’s
predicted distribution and the true data distribution. The formula for Cross-Entropy Loss is

L(y,
∧
y) = − 1

N

N

∑
i=1

c

∑
c=1

yic log(
∧

yic) (7)
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where C represents the number of categories classified, N is the number of samples, yic = 0

if sample i does not belong to class c, and equal to 1 otherwise. log(
∧

yic) is the probability
distribution that the model predicts that sample i belongs to each class and is a vector of
length C, where all elements of the vector sum to one.

3.3. Ablation Experiment of Improved YOLOv8 Detection Model

To further validate the effectiveness of the improved models, ablation experiments
were conducted. The experiments compared the performance of models a, b, c, and d.
Model a represents the YOLOv8 baseline algorithm. Model b incorporates TripletAttention
into the backbone network of the baseline algorithm. Model c replaces the Concat structure
in the neck network of the baseline algorithm with the AFM structure. Model d combines
the additions of TripletAttention in the backbone network and the replacement of Concat
with AFM in the neck network of the baseline algorithm. Performance evaluation metrics
include Precision (P), Recall (R), mean Average Precision at IoU = 0.5 (mAP50), and mean
Average Precision from IoU = 0.5 to 0.95 (mAP50-95). Detailed results of the ablation
experiments are shown in the Table 5 below:

Table 5. Ablation experiments.

Model Method P R mAP50 mAP50-95 Parameters

a YOLOv8 (baseline) 0.945 0.878 0.947 0.789 3,005,843
b YOLOv8+TripletAttention 0.966 0.883 0.956 0.804 3,006,143
c YOLOv8+AFM 0.957 0.884 0.956 0.800 3,110,019
d YOLOv8+AFM+TripletAttention 0.969 0.899 0.957 0.802 3,110,319

The results indicate that incorporating attention mechanisms into the backbone net-
work and replacing the Concat structure in the neck network with AFM structure improved
the detection model compared to the baseline model by 2.4% in Precision (P), 2.1% in
Recall (R), 1% in mAP50, and 1.3% in mAP50-95. Additionally, the number of parameters
increased from 3,005,843 to 3,110,319. The specific training process is shown in Figure 7.
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The comparison shows that the improved model can reduce instances of missed de-
tections and decrease the frequency of false positives, especially in scenarios with more
occlusions and complex environments. Detailed experimental results validating this out-
come are provided in Figures 8–10.
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3.4. Training the Swin Transformer Classification Model

To improve the model’s classification accuracy, several steps were taken: first, data
augmentation techniques such as random cropping and horizontal flipping were applied,
and images were normalized to ensure they met the model’s input requirements. Secondly,
pre-trained weights were loaded and certain layers were frozen as needed to fine-tune the
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model. Finally, iterative parameter optimization was conducted to gradually refine the
model, assessing its generalization ability on the validation set.

The fruit classification model was trained on a total of 4362 images across 27 fruit
categories, with 3501 images used for training and 861 images for validation. During
training, the model achieved a loss of 0.088 and a classification accuracy of 97.5%. After
100 epochs, the loss on the validation set increased to 0.278, with a classification accuracy of
92.6%. The specific training process is illustrated in Figure 11. The model was further tested
on indoor and outdoor images of pineapple, grape, orange, and lychee fruits, achieving
high classification accuracy, as shown in Figure 12.
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3.5. Result and Analysis

The YOLO detection model excels in the field of object detection due to its advan-
tages in real-time performance and accuracy. On the other hand, the Swin Transformer
classification model, with its hierarchical structure, self-attention mechanism, and shifted
window partitioning strategy, enhances its ability to comprehend complex images and cap-
ture long-range dependencies within them. By integrating these models, an efficient fruit
recognition and evaluation system can be realized, accurately pinpointing fruit locations
and identifying their categories. The results of the integrated model are shown in Figure 13.
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Figure 13. Fruit recognition result.

To further validate the superiority of the proposed framework, this study examines
three scenarios: detecting untrained fruit categories by the detection model, encountering
undefined fruit categories by the classification model, and applying maturity detection.
These scenarios assess the model’s transferability and generalization capabilities effectively.

3.5.1. Experiment on Detecting Untrained Fruit Categories

Circular and elliptical fruit shapes constitute a significant proportion in fruit forms.
To validate the model’s generalization ability, this study selected passion fruit, which was
not included in the target detection model, to verify the recognition of similar circular
and elliptical fruits. Additionally, irregularly shaped bananas, which were not previously
detected, were successfully identified, further demonstrating the model’s strong general-
ization capability, as shown in Figure 14.
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3.5.2. Experiment on Classifying Untrained Fruit Categories

When the detected image belongs to a fruit category unknown to the classification
model, its confidence level is low. The classification model outputs the category most
similar to those defined, leading to potential misclassifications. In such cases, a feature
matching network based on cosine similarity adjusts the classification based on reference
categories, as shown in Figure 15.
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3.5.3. Fruit Evaluation Experiment

Based on the apple skin color and market demand, maturity is divided into three
categories: high maturity (mostly red skin), medium maturity (red and green mixed skin),
and low maturity (mostly green skin). Following this classification, an apple maturity
dataset was constructed for model training. By replacing the fruit classification model with
an apple maturity classification model, fruit maturity detection can be performed, as shown
in Figure 16.
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During the growth process of tomatoes, once the fruit has set, the skin is initially
white-green during the unripe stage. It starts turning yellow during the semi-ripe stage and
finally becomes red at the ripe stage. Tomato maturity can be classified into three stages
based on skin color: unripe, semi-ripe, and ripe. A maturity classification dataset can be
constructed based on these skin color distinctions. As shown in Figure 17, tomato maturity
can be effectively detected.
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In order to further realize the evaluation of fruits, the images of apples are divided
into two categories: damaged, diseased, or rotten apples and lossless apples. By training
the Swin Transformer classification model, the model can classify whether there is damage,
disease, or decay on the surface of apple images. As shown in Figure 18, nondestructive
testing of apples is implemented.
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4. Conclusions
In this paper, detection and classification tasks are handled separately and post-

processed using a feature matching network. The model can choose different detection
and classification models based on practical needs, allowing for independent optimization
to achieve the best overall performance. Since the detection model only needs to identify
the broad category of “fruit”, it can focus more on the target’s location and shape features,
reducing misclassification and missed detection due to category confusion. The classifi-
cation model can then make finer distinctions within the detected fruit areas, improving
recognition accuracy. The feature matching network can correct classification results and
expand the recognized categories when new ones appear.
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When new fruit types need to be added, only the classification model needs to be
updated, without retraining the detection model. This modular design makes system ex-
pansion easier and more efficient, and it can be extended to maturity detection applications.

The methods proposed in this paper exhibit good generalization and transferability in
fruit detection, effectively reducing the time required for data annotation and improving
model accuracy. However, recognition is limited when the fruit shape is irregular. When
applied to maturity detection, the model performs well for categories with significant
differences in skin color but is less effective when the skin color is unusual.

The improved YOLOv8 model P, R, mAP50, and MAP50-95 are 2.4%, 2.1%, 1%, and
1.3% higher than the baseline model, respectively. It can realize the location of most fruits
with circular and oval shapes. The Swin Transformer classification model can realize the
classification of 27 types of fruits. The ripeness test of two fruits and the nondestructive
test of one fruit are realized.

Multi-model collaboration can significantly enhance the overall performance of the
model, particularly in terms of accuracy and robustness. However, this process inevitably
increases the computational overhead, leading to a decrease in processing speed. Specif-
ically, this performance degradation is primarily due to the computation involved with
multiple models and the complex feature fusion process. To address this challenge, future
work will focus on optimizing algorithms and leveraging hardware acceleration to alleviate
the computational bottlenecks introduced by multi-model collaboration, thereby improving
the model’s running efficiency while maintaining high performance.
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