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Abstract: Global warming is a significant threat to the future of humankind. It is caused by
greenhouse gases that accumulate in the atmosphere. CO2 emissions are one of the main
drivers of global warming, and the energy sector is one of the main contributors to CO2

emissions. Recent technological advances in artificial intelligence (AI) have accelerated
the adoption of AI in numerous applications to solve many problems. This study carries
out a scoping review to understand the use of AI solutions to reduce CO2 emissions in the
energy sector. This paper follows the PRISMA-ScR guidelines in reporting the findings.
The academic search engine Google Scholar was utilized to find papers that met the review
criteria. Our research question was “How is artificial intelligence used in the energy sector
to reduce CO2 emissions?” Search phrases and inclusion criteria were decided based on
this research question. In total, 186 papers from the search results were screened, and
16 papers fitting our criteria were summarized in this study. The findings indicate that AI is
already used in the energy sector to reduce CO2 emissions. Three main areas of application
for AI techniques were identified. Firstly, AI models are employed to directly optimize
energy generation processes by modeling these processes and determining their optimal
parameters. Secondly, AI techniques are utilized for forecasting, which aids in optimizing
decision-making, energy transmission, and production planning. Lastly, AI is applied to
enhance energy efficiency, particularly in optimizing building performance. The use of AI
shows significant promise of reducing CO2 emissions in the energy sector.

Keywords: artificial intelligence; emission reduction; energy sector; scoping review

1. Introduction
Global warming, driven by the accumulation of heat-trapping greenhouse gases such

as carbon dioxide (CO2), poses a significant threat to our planet. As sunlight is reflected
from the surface of the earth, the atmosphere reflects most of it back, trapping that energy
in. This is called the greenhouse effect [1]. This challenge has motivated researchers to
find mitigation strategies for CO2 emission from, e.g., buildings [2], agriculture [3], air
travel [4] and energy supply [5]. Furthermore, human activity in a modern society requires
energy produced by means that add to the CO2 emissions, such as fossil fuel combustion
energy plants [6] (p. 4). The energy sector, responsible for approximately 34% of global
CO2 emissions, significantly contributes to this problem [7]. Reducing these emissions is
critical for mitigating climate change and its severe impacts.

In addition to societal change, technological solutions have been introduced to reduce
emissions. The use of computing technologies in this task has been proposed to optimize
processes. There has also been research to identify ways to create optimized solutions to
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counter the emissions [8–10]. Recent advances in artificial intelligence (AI) offer promising
solutions by optimizing energy consumption, improving the efficiency of renewable energy
sources, and better managing energy demand [11]. The use of modern AI techniques
could provide optimization strategies to reduce emissions in any domain, including the
energy sector. The use of AI to optimize industrial processes has proven to be a viable
option. For example, AI has been leveraged to control quality in industrial vision-based
application [12] and to provide decision support [13]. The core promise of AI-based
technologies is efficiency, which should be applicable to the energy sector. However, the
multitude of research articles related to both emissions and AI make it difficult to identify
the current state of AI usage to combat CO2 emissions.

Understanding how AI can be utilized in the energy sector to reduce CO2 emissions
is crucial for driving environmental benefits, informing policy and investment decisions,
and enabling continued innovation [14]. We argue that such understanding can be found
in the current research literature. This paper aims to explore the current applications of
AI in the energy sector, evaluate their effectiveness in reducing CO2 emissions through
optimizing energy generation, demand forecasting and optimizing energy usage efficiency,
and identify future opportunities for leveraging AI to combat climate change. By examining
these aspects, we can gain a deeper understanding of the role of AI in fostering a sustainable
energy future. This leads to the research question of the present article.

• RQ: How is artificial intelligence used in the energy sector to reduce CO2 emissions?

The research question is broad. However, we believe that having a high-level overview
of the subject can be beneficial to the research field by providing an introduction to existing
studies covered by the topic. The broadness of the research question means that the
systematic review methodology is not a good fit to answer the question. Recommended
reporting guidelines for systematic reviews include practical recommendations based on
the findings. Nevertheless, our study is targeted as an introduction to studies covered by
the topic; therefore, the scoping review methodology is a better fit for this study [15]. The
paper follows the PRISMA-ScR reporting guidelines for scoping reviews [16].

The unique contribution of this research is that it uses the scoping review framework
to describe the current status of AI research to prevent emissions. Furthermore, it strictly
considers one domain (energy) and uses specific criteria to identify relevant literature. As
a result, a concise list of relevant articles is produced. The articles satisfying the scoping
criteria are also categorized, and their contents are discussed.

Next, this article considers related studies that have identified AI as a tool for the
energy sector. Subsequently, the scoping review methodology of this study is explained. In
the results section, our findings are presented, and finally, a section discussing the results
concludes the article.

Related Studies

To our knowledge, no review papers exist with the same scope as our study. However,
some papers explore related areas. These papers discuss AI usage in the energy sector in
general or in some particular use cases in the energy sector. This section lists these types
of research papers. The immediately following papers are narrative style reviews that do
not report the review methodology. At the end of this section, methodologically more
sound papers are presented. Our article’s contribution in relation to existing literature is
that it is a scoping review unlike most of the related literature. Moreover, the identified
methodologically sound papers focus on various aspects of the energy sector, while our
article specifically focuses on CO2 emissions.

Ahmad et al. [17] and Ahmad et al. [18] provided an overview of how AI technologies
are used in different parts of the energy sector, covering a wide range of topics from
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energy production, transmission, storage, and consumption. In a separate review, Ahmad
et al. [19] studied real-time applications of probabilistic machine learning (ML) models in
the energy sector’s core technologies and energy distribution. A similar high-level overview
of AI usage in the energy sector was conducted by Babatunde et al. [20], which covers the
AI usage in the energy sector related to forecasting, diagnosis, control, and optimization
topics. Forootan et al. [21] ended up mainly covering the same topics in their review, same
as Zhou [22], who mainly included the same topics while focusing on research about AI
usage in energy systems in carbon neutral district communities.

Makala and Bakovic [23] conducted a review of AI usage in the energy sector, which
includes examples of AI-aided fault prediction and detection, energy usage optimization,
disaster recovery, and power theft detection. Rangel-Martinez et al. [24] reviewed the
impact of machine learning on renewable energy production (solar, wind, and hydro),
chemical catalysis design, and power storage and distribution. Cheng and Yu [25] reviewed
the impact of new-generation AI technologies on smart energy and electric power systems.
Kanase-Patil et al. [26] reviewed research on the integration of renewable energy systems
in smart cities with a focus on AI usage on renewable sizing problem.

Nemitallah et al. [27] reviewed the research concerning AI usage for boilers to optimize
the boiler performance and AI usage to reduce boiler NOx emissions. Zahraee et al. [28]
reviewed AI methods for optimizing the design, planning, and control of hybrid energy
systems that combine renewable energy production with backup energy production from
traditional non-renewable energy sources. Al-Othman et al. [29] focused on reviewing AI
methods in renewable energy systems with integrated hydrogen fuel cell-based energy
generation capabilities. Prince and Hati [30] reviewed methods to reduce energy usage in
ventilation systems covering the use of AI to predict airflow and control the ventilation
systems. Pérez-Gomariz et al. [31] reviewed publications related to AI usage for saving
energy in refrigeration systems.

Mehmood et al. [32] reviewed publications related to the application of AI to building
energy efficiency. Nyangon [33] reviewed AI usage in the energy sector with a focus
on preventing electricity asset stranding by utilizing AI technologies. Ali and Choi [34]
reviewed the components of the smart grid and the role of AI in improving performance,
reducing power losses, enhancing power quality, as well as easing the management of the
smart grid. Mohammad and Mahjabeen [35] presented many ways in which AI can be used
for solar energy generation, management, and grid integration to improve efficiency, cost
effectiveness, and scalability. Seyedzadeh et al. [36] provided a review on the four main ML
approaches including artificial neural network, support vector machine, Gaussian-based
regressions, and clustering methods to forecast and improve building energy performance.

In addition to narrative style reviews, more systematic studies that explore the related
areas also exist. The following review articles report their review process. Mhlanga [37]
reviewed the existing research around AI usage in the energy sector, focusing particularly
on emerging markets where the energy sector is not yet fully developed and faces challenges
such as constant power outages. Saheb et al. [38] focused on AI and sustainability in the
energy sector. Franki et al. [39] reviewed companies that use or develop AI technologies in
the power sector. Aguilar et al. [40] focused on the consumption side of the energy sector
and reviewed studies related to smart building energy management with ML technologies.
A similar study was conducted by Halhoul Merabet et al. [41], where the authors reviewed
research related to AI building control systems where the goal is to save energy while
maintaining occupant comfort. Mosavi et al. [42] focused on reviewing what different
ML models are used in energy system applications and what those applications are. Wei
et al. [43] reviewed AI models for forecasting energy usage. Pandey et al. [44] described
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the different parts of the power system and the potential of AI techniques for optimizing,
planning and controlling their operation.

2. Methodology
The review was conducted by utilizing the Google Scholar (https://scholar.google.

com/ accessed on 14 January 2025) academic search engine. The search phrases were
identified by first familiarizing ourselves with the topic by conducting a broad search
around the subject and finding common terms used in the research papers that clearly fit
in the topic of reducing CO2 emissions using AI methods in the energy sector. The search
phrase “reducing emissions in energy sector using artificial intelligence” was identified
as a good candidate for finding the relevant research papers. The Google Scholar search
algorithm clearly includes some fuzzy searching logic as the search phrase also returned
papers that used near-synonyms for the keywords in the search phrase. However, we
decided not to trust the algorithm blindly and instead came up with one near-synonym
for each of the keywords that were often used in the papers that were discovered in the
preliminary searching stage. Figure 1 presents the used keywords and their near-synonyms
and illustrates the logic of how the search phrases were constructed by concatenating the
identified keywords with fixed components “in” and “using”. This resulted in 8 distinct
search phrases, such as “reducing emissions in energy sector using artificial intelligence”,
“reducing emissions in energy sector using machine learning”, and so on.

Reducing emissions

Reducing co2

+ in

energy sector

power sector

++ using

artificial
intelligence

machine learning

+

Figure 1. Image describing the search phrase construction. The search phrases were created by
combining different keywords to full search phrase sentences with concatenating them together with
fixed words “in” and “using”.

The search phrases were executed individually using the default Google Scholar search
view. A semi-automatic result collection system was developed using the Playwright
(https://playwright.dev/ accessed on 14 January 2025) browser automation framework.
The system automated the result collection to remove human errors in the repetitive task
of copy-pasting the data from the result pages. The result collection system script was
executed one search phrase at a time. The main author of this paper conducted the result
collection and monitored the result collection script progress for any errors. The script
opened a normal browser window, navigated to Google Scholar web page and performed
the search using the search phrase. In the search result page, the script collected the relevant
data from each of the search results. The collected data included publication name, APA
citation, and link to the publication. The publication name was collected from the search
result anchor texts on the result page. The link to the publication was the href URL of
the result’s link. The APA citation was copied from the pop-up window that opens from
the “Cite” button on the results page. Furthermore, for each of the search results, Google
Scholar “Cited by”, “Related articles”, and “All versions” links were also collected just in
case, but in the end, they were not used in this study.

The search results from the first five pages, resulting in 50 papers for each query, were
collected and saved in JSON formatted files. The collected raw data from the JSON files were
converted to an Excel worksheet to orchestrate the review process. An automatic duplicate
removal was performed when the records from the JSON files were added to the Excel file

https://scholar.google.com/
https://scholar.google.com/
https://playwright.dev/
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using a Python script. The script compared the APA citation across the collected results and
dropped the duplicates based on that. The number of unique APA citations in the collected
raw data JSON files was independently replicated using a one-liner bash command that
used command line tools jq, sort, unique, and wl. This number was compared to the
number of entries that resulted from duplicate removal with the Python script to verify
that the duplicate removal logic in the Excel file creation was bug-free. A few duplicates
remained where the APA citation that Google Scholar provided did not match even when
the publication was the exact same. Those duplicates were discovered and removed during
the abstract screening phase. The abstract screening phase was conducted by the main
author of this paper. All papers where the inclusion criteria were unclear were passed to
the full text screening phase. During this phase, the search phrase effectiveness was also
evaluated by observing how well the abstracts fit the inclusion criteria. As the number
of included papers was sufficient in this phase, the search phrases were determined to be
effective in finding the relevant studies. Each of the authors of this paper contributed to the
full content screening process. In this phase, the reviewer read the full paper and compared
the contents to the inclusion criteria. The review process was orchestrated in the Excel file,
where the reviewer marked the paper to see whether it passed the inclusion criteria. If the
paper did not pass the inclusion criteria, the reviewer wrote a short explanation in the Excel
file. If the paper passed the inclusion criteria, the reviewer wrote an initial summary of the
paper to the manuscript. The initial summaries were revisited at the final synthetization
phase. The inclusion criteria for papers were agreed upon at the beginning of the review
process. Weekly meetings between the research team were organized to discuss papers
where the inclusion was unclear for the reader. The inclusion criteria were the following:

• Publication is related to the energy sector;
• Publication goal is to reduce CO2 emissions;
• Publication uses artificial intelligence to achieve the goal.

These inclusion criteria were chosen to complement our research question, which we
identified as lacking in existing reviews. The research question focuses on the energy sector
and asks how AI is used to reduce CO2 emissions. The inclusion criteria map directly to
this research question.

The energy sector was defined to include electricity production, heat production, and
energy storage systems. Papers related to energy consumption in the transportation sector
were omitted from this study to reduce the already wide scope of the study. The CO2

emission reduction needed to be clearly identified as one of the goals of the paper; however,
it did not have to be the main focus. In this study, we defined artificial intelligence as
limited to machine learning algorithms where a model was fitted with data. Papers where
optimization algorithms were used for pure mathematical models were excluded from
this study. This decision was made to ensure the paper’s coherence and accessibility for
readers with experience in machine learning. By focusing on machine learning models,
we aimed to create a unified narrative that professionals familiar with these techniques
can fully understand and appreciate. Only papers with full text available in English were
included. Grey literature was also considered, and no publication year limit was set for
the papers.

In the contents screening phase, many related review studies were identified, which
were related to AI usage in energy sector. These studies are presented in the related studies
section of this paper.

During the preparation of this study, the authors used Llama 3.1 70B Instruct genera-
tive AI model [45] to aid with the analysis of some of the papers and writing. The model
directly wrote no text, and the authors take full responsibility for the validity of the text
in this paper. The authors first read all the papers, and a general understanding of the
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contents was formed. The generative AI tool was used in the paper summarization phase
to aid in understanding the paper and the authors’ intentions.

Hallucinations are problematic when using generative AI to answer questions [46]. To
make sure that the AI model did not hallucinate the responses, the following method was
used to feed the paper to the AI model:

1. The pdf files were converted to text files using pdftoppm and tesseract [47] com-
mand line tools.

pdftoppm "${PDF_FILE}" "${WORKDIR}/output" -png
find "${WORKDIR}" -name "*.png" \

-exec tesseract {} "$(basename {} .png)" --psm 1 \;

2. Line numbers were added with the nl command.

cat "${WORKDIR}"/output-*.txt | nl -s" " -w2 -ba > paper.txt

3. The following prompt was used to start the chat session:

The following is an OCR generated text from a scientific paper that is
originally created from two column pdf file using tesseract. I want you to
answer questions about the paper. Because the text was generated using an
OCR software, it is not 100% accurate, and there is illogical jumps between
text columns. Also the text lacks images and only includes the image
captions. Try your best to make sense about the whole. Each text line is
started with a line number in following format:
1 Text on the line number one
2 Text on the line number two
And so on. When you answer to a question, I want you to say which line(s)
contains the information that you refer to. It is important that you
include all the lines that you refer. If your answer includes references
to lines in the text, then start the sentence with “According to line” or
“According to lines”. This is the OCR created text:
(the paper OCR extracted and line numbered text was pasted here)

After the reader had the general idea of the paper, the method was used to quickly
find answers to the questions such as What dataset did the authors use in this paper? and
What were the input and output variables of the model? The model answers were not
trusted directly. Instead, the line numbers that the model included in the responses were
used to locate the information in the original source paper. This way, any potential model
hallucinations could be avoided. The following is an example of the model answering a
question about a paper by Ashraf et al. [48]. The used model is the original version of
the Llama 3.1 70B Instruct model, running with full 16-bit precision and using the greedy
decoding strategy.

» What dataset did the authors use in this study?
According to lines 490-491, the authors used a dataset of approximately
31,200 observations averaged over 10-minute intervals taken from the
supervisory information system (SIS) for the power plant’s selected input
and output operating parameters.

As can be seen from the example, the model fully understands the instruction of
adding the referred line numbers to the answer. Sometimes the line numbers were off
by few lines. However, the information that the model referred to was always near the
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indicated lines. The model adds its own interpretation about the text to the answer. The
model was never trusted directly, the user always checked the referred lines and made
their own interpretation about the text. This way, the AI model was used only to find facts
from the papers, but all the potential problems with model hallucinations were avoided.
Furthermore, in the final result synthetization phase, the same model was used to suggest
categories based on the written summarizations.

3. Results
Figure 2 illustrates the number of papers in different phases of the review process.

The large drop of the initial 186 screened papers to the final 16 summarized papers shows
that it is hard to come up with specific search phrases that return papers that fit our
inclusion criteria. Therefore, we needed to search through many publications to find the
fitting papers.
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Records identified
(n=400)

Abstract screened
(n=186)

Contents screened
(n=81)

Records sought for retrieval
(n=86)

Results (n=16)

Duplicate records removed (n=214)

Records removed based on abstract (n=100)

No access (n=5)

Records removed based on content (n=37)
Related review studies (n=28)

Figure 2. PRISMA flowchart illustrating the number of papers through different phases of the review
process. The related review studies that were identified in the contents screening phase are listed in
the related studies section of this paper.

The results of this study are presented by categorizing the papers into three different
categories based on their content. AI is used to optimize energy production, forecast the
future for decision-making and policy setting, and optimize energy usage on the end-user
side of the energy sector. The following sections summarize the relevant studies in more
detail. A summary and a table are provided at the end.

3.1. AI Applications in Energy Generation for Emission Reduction

The largest category with the most papers contains studies related to energy gener-
ation optimization with AI methods. A common theme between most of the papers is
to fit a machine learning model to a dataset that is collected from the energy generation
process and use an optimization algorithm to find the optimal input parameters for the
model. Different variants of artificial neural networks were the most common method for
modeling the processes, although many of the studies tested multiple methods for process
modeling. Different optimization algorithms were used in the studies, such as Particle
Swarm Optimization, nonlinear programming methods, Monte Carlo simulation, and Ant
Colony Optimization.
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Chen et al. [49] studied how to optimize the scheduling of an adjustable post-
combustion carbon capture (PCC) system in a coal fired power plant (CFPP) with integrated
renewable power generation. The PCC system works by absorbing the CO2 to a solvent.
The CO2 is released from the solvent when it is heated, therefore regenerating the solvent for
reuse. Some of the energy required for solvent heating can be generated with renewables,
such as wind or solar. The operational limits of the CFPP, renewable power availability,
PCC system adjustment, CO2 emissions, and load demand create a complex optimization
problem with different solutions for different objective functions. In this paper, the authors
optimized the PCC system timings so that the regional power grid operating costs were
minimized. One part of the optimization target was the penalty costs of CO2 emissions.
The authors used a PCC system modeling platform to create a dataset with 3000 samples.
A total of 2000 samples were used to train a deep belief network (DBN) and the rest were
used for model validation. The authors used the Particle Swarm Optimization method
on the DBN model to optimize the objective function. The authors reported that when
the PCC system is optimally scheduled, the whole CFPP-PCC system renewable power
curtailments can be reduced by 51% with CO2 emission reductions by 80% when compared
to standalone CFPP.

Hong et al. [50] optimized the steam methane reforming (SMR) process for hydrogen
production to produce less CO2 emissions. Even though hydrogen fuel cells do not produce
emissions when the gas is converted to electricity, there are multiple ways to produce
hydrogen gas and some of them do produce CO2 emissions. SMR is one such method
where fossil fuels are used to produce hydrogen. In this paper, authors modeled an SMR
production plant using deep neural networks (DNNs). The dataset was collected from
an SMR pilot plant which included 66 data collection points. However, the pilot plant
did not include measurements for composition and flow rate of CO2; therefore, those
measurements needed to be simulated with a process simulation model. Two DNN models
were trained with the data, which the authors named the operation DNN model and the
simulation DNN model. The operation model was trained with the data that were collected
from the pilot plant. However, because the collected data did not have values for the
composition and flow rate, the simulation model training data included simulated values
for those variables. The operation model was used in simulation model validation since
many of the output variables were shared between the two models. The authors used
a multi-objective particle swarm optimization method to optimize the input parameters
for the simulation DNN model. The optimization targets were to maximize the thermal
efficiency and minimize CO2 emissions. The authors reported values between 77.5% and
87.0% in thermal efficiency and values between 577.9 t/y and 597.6 t/y in CO2 emissions in
the Pareto-optimal front. The authors suggested that the results contribute to improvements
in low-carbon production of hydrogen using the SMR method.

Ashraf et al. [48] studied the optimization and emission reduction in a 660 MW
super-critical coal fired power plant. The authors modeled the power plant heat rate with
seven plant operating parameters as the input features. The tested ML techniques were
artificial neural network (ANN), support vector machine (SVM), and AutoML platform
where Light Gradient Boosting on the ElasticNet Predictions model was used. The training
dataset consisted of approximately 31,200 samples of historical data from the power plant
supervisory information system. The model performances were validated with an external
validation dataset. The ANN achieved the best results. The authors conducted a parametric
study for the plant operating parameters using the Monte Carlo simulation technique with
the ANN and SVM models and compared the results to the AutoML platform feature
impact analysis. Based on the parametric study, the authors optimized the operating
parameters of the power plant and estimated that the optimized operation parameters
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would reduce CO2 emissions by 173.4 kt/y, 220.7 kt/y, and 204.9 kt/y in 50%, 75%, and
100% power generation modes, respectively.

In a separate study, Ashraf and Dua [51] used artificial neural networks to model
presumably the same 660 MW coal plant operation and used nonlinear programming
methods to find the optimal parameters where the model generated a maximum amount
of power under the defined constraints. The model explanatory variables were Coal Flow
Rate, Main Steam Temperature, Main Steam Flow Rate, and Reheat Steam Temperature.
The target variable for the model was the power production of the coal plant. The optimized
parameters were tested in a real setting by running the power plant while trying to maintain
the parameters around the optimized values. The optimization achieved 3 t/h savings
in Coal Flow Rate, 1.3% improvement in thermal efficiency, and estimated 50.5 kt/y
accumulated emission reductions when compared to a business-as-usual setting where the
plant is run with non-optimized parameters.

In a third study, Ashraf et al. [52] proposed two advanced AI modeling algorithms to
improve the isentropic efficiency of a high-pressure (HP) steam turbine. The authors tested
artificial neural network (ANN) and support vector machine (SVM) algorithms to model
the process. Both models were trained and validated with a dataset that was collected
from the power plant’s supervisory information system, which includes data from the fuel
combustion system, turbines, and reheating systems. The dataset contains hundreds of
parameters of operational data of which the model input parameters were selected based
on literature review and recommendations by the power plant operation and performance
engineers. The modeled output parameter was the HP turbine efficiency. The authors used
Monte Carlo methods to conduct a sensitivity analysis on the input variables and used
nonlinear programming methods to find the optimal operating parameters under specific
constraints. The results indicate that the efficiency of the HP turbine can be enhanced by
1.43%, 5.09%, and 3.40% for half-load, mid-load, and full-load power generation modes,
respectively, when compared to the average input parameter values. Additionally, the
annual CO2 reduction is projected to be 58.3, 123.5, and 70.8 kilotons per year (kt/y) for
half-load, mid-load, and full-load modes, respectively. Furthermore, SO2, CH4, N2O, and
Hg emissions saw significant reductions across all three power generation modes of the
power plant.

Shakibi et al. [53] studied how machine learning methods can be used to model and
optimize a system with combined solar/natural gas power and freshwater cogeneration
system. The authors modeled the cogeneration process with Engineering Equation Solver
software and used the model to create a dataset. A hyperparameter-optimized Support
Vector Regression (SVR) model was fitted to the dataset, and a Multi-Objective Grasshopper
Optimization Algorithm was used to find optimal parameters for the system. The authors
tested different optimization targets with double- and triple-optimization experiments. The
optimal scenario prioritized exergy efficiency, total product cost rate, and CO2 emissions,
achieving an exergy efficiency of 45.6%, a total product cost rate of 2.716 $/GJ, and a
freshwater consumption of 30.26 kg/s.

Amjad et al. [54] used ML methods to predict the lower heating value of different fuel
blends. The authors prepared fuel blends where good quality coal was used as a base, and
10%, 20%, 30%, 40%, and 50% concentrations of lower quality coal, rice husk, and sugarcane
bagasse were mixed into the blend. The authors measured the characterized properties of
all the mixes and of each of the ingredients in full concentration. The measured properties
were moisture content, ash content, volatile matter, sulfur content, fixed carbon content,
hydrogen content, and lower heating value. The authors used Ridge Regressor, Nyström
Kernel SVM Regressor, and Linear Regressor to model the fuel blend lower heating value
based on the characterized properties. The authors discovered that Ridge Regressor was
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the best performing model and reported R2 values of 0.993, 0.979, and 0.983 for validation,
cross-validation, and holdout experiments, respectively. The authors claimed that the
model can be used to suggest the most suitable fuel blend where the percentage of the coal
is replaced with biomass, thus reducing carbon footprint.

Arumugham et al. [55] proposed an approach to make smart grids more sustainable
and reliable by effectively integrating renewable energy sources with conventional power
generation methods. The authors used deep learning-based methods to model a microgrid
with integrated wind and solar cell power generation. The optimal response of the model
was solved using the Multi-Objective Ant Colony Optimization (MOACO) method. The
authors claimed that the developed microgrid model can be used to forecast demand and
supply, schedule power delivery according to demand, and provide actionable insights of the
operation of the smart grid system. The test results were evaluated across various scenarios to
optimize operating costs using the MOACO. The authors showed that simulations of demand
response based on the developed models reduce solar and wind power operating costs.

3.2. AI Applications in Energy Demand Forecasting and Optimization for Emission Reduction

In addition to directly affecting energy generation, another way to use AI for emission
reduction in the energy sector is to forecast the future. A clear prediction of the future can
be used to set policies and better plan the actions based on the prediction. When planned
correctly, the policies and actions can reduce emissions from the energy sector. Forecasting
the future can be beneficial on multiple levels. The following section includes studies that
used forecasting at national, power grid, and end-user levels to reduce emissions.

Chen et al. [56] tested Linear Regression, Support Vector Regression, and Random For-
est Regression algorithms to forecast the electricity demand at a regional level in Guandong
Province, China. The ML algorithms used economic data and weather data as explana-
tory variables, in addition to electricity consumption and production from neighboring
provinces and the electricity production of the Guandong province. The authors suggested
that by forecasting the future electricity demand, the power generation firms can better
plan the required electricity production in advance, therefore producing the electricity in
more optimized manner, thus potentially lowering the greenhouse gas emissions.

Staudt et al. [57] studied the prediction of power plant redispatch events that were
caused by transmission congestion. During the congestion events, the power plants in front
of the congestion need to ramp down their production (negative redispatch), and the plants
behind the congestion need to ramp up their production (positive redispatch). The authors
tested multiple different ML methods for redispatch event prediction and discovered that
artificial neural network (ANN) and extra-tree classifier performed the best. The authors
trained separate models for negative and positive redispatch types. The model output was
the probability that the power plant is redispatched during the following day. The authors
reported the average F1-scores of 0.47 for the ANN and 0.42 for the extra tree; however, the
score varied significantly between the different power plants. The authors argued that the
proposed method can be used to prepare for plant redispatch events, and the transmission
system operator can therefore identify power plants that can be completely ramped down
for the duration of the congestion instead of ramping down the production of multiple
plants by small amounts. This can reduce emissions since the other power plants can
continue running with optimal power output.

Truong et al. [58] proposed additive artificial neural networks (AANNs) for energy
consumption estimation and prediction in residential buildings. In addition to AANN
models, the authors also tested other AI models, such as two flavors of support vector
regression (SVR) models and a classical artificial neural network. The dataset was sourced
from residential buildings that used solar photovoltaic system as a renewable energy source.
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The dataset had a one-hour resolution (sampling time). The predictive accuracy of the
different AI methods was compared with Mean Absolute Percentage Error, Mean Absolute
Error, Root Mean Square Error and Correlation Coefficient. The AANN was identified as the
best performing forecasting model to predict buildings’ energy consumption. The authors
claimed that building energy consumption prediction is the basis for building performance
optimization and therefore building energy reduction. Energy usage reduction leads to less
energy used; thus, it can lead to emission reductions.

Jahangiri et al. [59] investigated whether an ML model is capable of finding the
least-cost and robust pathways to achieve a net-zero electricity system in Canada by 2050.
The model input variables included estimates such as carbon tax, demand growth and
annualized capital costs for different energy sources like wind, solar, coal, and nuclear
energy. The authors used the capacity expansion mixed-integer linear planning (COPPER)
model in this study. The ML model minimizes the system costs while taking into account
variables such as carbon pricing, decarbonization policies, and distribution network evolu-
tion. Almost all scenarios to achieve the least-cost pathways to net-zero electricity system
resulted in substantial deployment of wind power. Natural gas is maintained mostly to
guarantee electricity system reliability and reserve requirements. Furthermore, only a very
limited amount of new natural gas capacity needs to be added. The results achieved in this
study can be used by policymakers to support decision making to achieve net-zero in the
Canadian electricity system.

3.3. AI Applications in Energy Efficiency for Emission Reduction

A third notable trend in leveraging AI for emission reduction within the energy
sector is the optimization of building energy consumption. According to the European
Environment Agency indicator, building energy usage represents 34% of energy-related
greenhouse gas emissions in the EU in 2022 [60]. Moreover, Lamb et al. [7] estimated that
buildings contributed 6% of global CO2 emissions in 2018. By targeting the energy efficiency
measures in the building sector, significant gains in reducing overall CO2 emissions could
be achieved.

Zekić-Sušac et al. [61] studied building energy efficiency in the public sector and
tested machine learning models to predict the specific energy consumption (SEC) of the
buildings. SEC expresses the energy consumed per m2 while taking into consideration
external influences, such as the heating season length, thus enabling the comparison of
different buildings in different climates [62]. The dataset for this research was sourced from
the Croatian Energy Management Information System. The authors evaluated deep neural
networks, CART decision trees, and random forests for predicting the building SEC. The
authors discovered that random forest was the best performing model for the task. The
authors suggested that the models can be used to predict the energy consumption of new
buildings, thus aiding planning and therefore reducing future energy usage and emissions.

Thrampoulidis et al. [63] trained artificial neural networks to predict building retrofit
solutions with the focus on reducing the building CO2 emissions while considering the
optimal cost. The retrofit solutions included considerations for heating, building insulation,
renewable installation, and energy storage. The idea of this study was to replace an existing
complex modeling software with a lighter and faster neural network model that achieves
the same accuracy with reduced computational requirements and a reduced number of
required input variables that are hard to obtain. The authors conducted a case study for
buildings in Zurich, Switzerland by collecting information about buildings in this area from
multiple different data sources and combining that information to urban building energy
modeling data to train the neural networks. The proposed method predicted ten solutions
from the Pareto front of multi objective solutions of reducing CO2 emissions with optimal
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cost. The authors suggested that the simpler and computationally lighter model accelerates
the adoption of CO2 emission-friendly retrofit solutions, and therefore contributes to the
reduction in CO2 emissions.

Alpan et al. [64] presented a global model for reducing carbon emissions in residences.
The study demonstrated how IoT and AI could be used globally to reduce carbon emissions
caused by the energy consumption of cities. The authors envisioned a global model where
data are gathered from IoT devices, and AI can intervene in device energy usage with
minimal interference to the residents. The proposed system is constructed from multiple
levels, the highest of which is the global unit. The global unit contains multiple country
units, which in turn contain multiple city units, which in turn contain multiple residence
units. The proposed topology focuses on minimizing data from the IoT devices that
are connected to the centralized and hierarchical AI units. The authors suggested that
the proposed topology minimizes the computational resources required for transferring
and processing the data between the hierarchical levels. Otherwise, the amount of data
gathered from billions of devices would require a significant amount of computing power.
The authors tested a Decision Tree model in simulated setting and discovered that the
visioned system is capable of reducing the carbon emissions up to 21%.

Marasco and Kontokosta [65] developed a machine learning classifier to predict build-
ing energy conservation measures (ECMs) using energy audit data from over 1100 buildings.
The classifier is a user-facing falling rule list (FRL) that utilizes binary features derived
from the energy audit data. This method improves the utility of building energy audit
data to predict building-specific eligibility for energy conservation. The developed and
trained FRL classifier performs well, achieving ROC AUC values of 0.72–0.86 for predicting
the most important ECM opportunities. The developed method provides an effective and
low-cost method to predict and determine energy conservation, potential savings, and
reduction in greenhouse gas emissions on a larger scale.

3.4. Summary of AI Use in the Energy Sector

In energy generation optimization, AI techniques, such as artificial neural networks,
support vector machines, and deep neural networks, have been effectively used to optimize
the operation of power plants and other energy generation systems. These optimizations
lead to reductions in CO2 emissions by improving the efficiency of energy generation
processes and integrating renewable energy sources. In energy demand forecasting and
optimization, machine learning models, including linear regression, support vector regres-
sion, random forest regression, etc., are employed to forecast electricity demand. Accurate
demand forecasting enables better planning and optimization of energy production, which
can reduce greenhouse gas emissions by minimizing the need for inefficient, last-minute
energy generation. In energy efficiency improvements, AI models are applied to enhance
the energy efficiency of buildings and other infrastructure. Techniques such as decision
trees, random forests, and additive artificial neural networks help predict energy consump-
tion and identify opportunities for energy conservation, leading to reduced CO2 emissions.
Findings about the various AI models in these categories are presented in Table 1.
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Table 1. Articles discussing emission reduction using AI.

Category Article (n = 16) AI Methods

Energy Generation

Chen et al. [49] DBN, Particle Swarm Optimization
Hong et al. [50] DNN, Particle Swarm Optimization
Ashraf et al. [48] ANN, SVM, Gradient Boosted ElasticNet, Parametric

Significance Analysis
Ashraf and Dua [51] ANN, Nonlinear Programming
Ashraf et al. [52] ANN, SVM, Parametric Significance Analysis
Shakibi et al. [53] SVR, Grasshopper Optimization
Amjad et al. [54] Ridge Regressor, SVR, Linear Regressor
Arumugham et al. [55] DNN, Ant Colony Optimization

Energy Demand Forecasting

Chen et al. [56] Linear Regressor, SVR, Random Forest Regressor
Staudt et al. [57] ANN, Extra-Tree Classifier
Truong et al. [58] SVR, ANN
Jahangiri et al. [59] COPPER

Energy Efficiency

Zekić-Sušac [61] DNN, CART, Random Forest
Thrampoulidis et al. [63] ANN
Alpan et al. [64] Decision Tree
Marasco and Kontokosta [65] FRL Classifier

4. Discussion
This scoping review on reducing CO2 emissions using artificial intelligence in the

energy sector highlights the potential of AI technologies to contribute to emission reduction
efforts. The review categorizes the applications of AI into three main areas: energy gener-
ation for emission reduction, energy demand forecasting and optimization for emission
reduction, and energy efficiency for emission reduction.

Although our research question was broad, the inclusion criteria of the study were
quite effective in reducing the number of relevant studies. This suggests that there is not a
substantial number of articles that address the use of AI to reduce CO2 emissions in the
energy sector. Our search phrases found many publications focusing on AI usage in the
energy sector in general; however, these were most often narrative-style reviews about the
subject and lacked the experimental and technical details.

Most of the articles that were found with our search phrases and matched to our
criteria were published in recent years. This is an interesting result. This could indicate
that the possibility of using AI for emission reduction in the energy sector has just recently
been discovered. There could be several reasons for this, such as the recent Ukraine conflict,
which greatly impacted European energy production [66]. This could have increased
research around the topic. Moreover, the COVID-19 pandemic and the transition to green
energy might also be the reason for the increased research. Other potential explanations
for most of the papers being from recent years could be the global rise in the number of
published papers [67] or that the Google Scholar search algorithm used to find the articles
may favour the most recent publications. However, the Google Scholar bias should be
accounted for by our strategy of including 50 search results from each search.

There is a need for more realistic and more expansive datasets. Studies are being
conducted using restricted datasets coming from singular sources, which often suffer from
limitations in availability, quality, and bias. The lack of publicly accessible, diverse datasets
hinders the research community’s ability to test AI methods using standard benchmarks and
reduces the generalizability of the findings. Moreover, using small and specialized datasets
leads to less scalable AI solutions, affecting the solution’s reliability in production. Despite
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the common goal of emission reduction, the varied focus areas of the reviewed articles
make it difficult to create standardized datasets. Additionally, as emission reduction is a
global challenge, common factors like weather patterns and energy production resources
vary significantly across regions, further complicating the development of unified datasets.

The identified articles come from various geographical areas, and some of the results
of the research are applicable only in the original research setting. Challenges in this field
vary widely based on location and energy production methods, which are often shaped by
country-specific political decisions. Moreover, researchers’ access to energy infrastructure
for testing AI solutions differs across regions. This can lead to a situation where local
research in energy production lags behind global standards. To address this issue, we
recommend implementing policies that provide researchers with enhanced access to energy
infrastructure for their work.

Integrating AI with emerging technologies, including the Internet of Things (IoT),
offers significant potential to improve energy management and reduce emissions. Imple-
menting these solutions in real-world scenarios is crucial to uncover practical challenges
and benefits. However, technologies like IoT are often closed resources, thus making
real-world integration and data acquisition impractical. Additionally, further research is
needed to explore the application of AI in underdeveloped areas of the energy sector, such
as energy storage and distribution, to maximize its impact on reducing CO2 emissions.

Although many papers fitting our inclusion criteria used neural networks and deep
learning models in their research, the model architectures were based on traditional multi-
layer perceptron or convolutional neural network architectures. Recent advancements in
natural language processing (NLP) have been achieved with the transformer neural net-
work architecture, which is also successfully applied to other application areas in addition
to NLP. Furthermore, a recent trend is to use pre-trained foundation models as a base for
new AI solutions [68]. An example of this is the use of large language models for various
different applications such as classification. We identified a potential gap in the existing
research in this area. None of the included papers used these technologies yet.

Our search phrases focused on finding the research papers that explicitly stated CO2

emission reduction as the goal of the study. However, in the energy sector, CO2 emission
reductions can also be achieved while optimizing towards other goals, such as cost. Cost is
mainly driven by energy usage, and by reducing energy usage, indirect reduction to CO2

emissions can be accomplished. These types of papers did not fit our inclusion criteria.
Nevertheless, this paper includes many references to related studies which cover this
shortcoming. Furthermore, because the goal of this study was to provide an overview of
existing studies covering the topic, we ended up conducting this study using the scoping
review methodology. Scoping review is a more suitable methodology than systematic
review for a broad research question such as ours. However, a scoping review is not as
comprehensive as systematic reviews in the literature retrieval phase; thus, it is impossible
to say if all the existing research fitting the criteria is covered.

Based on the findings, some recommendations can be made to improve technologies
to reduce emissions. Firstly, without access to the process, it is difficult for researchers
to improve them. Having more datasets, especially open datasets, would provide more
opportunities to offer AI solutions. Furthermore, hosting challenges to provide the best
optimization could be a viable way of finding new solutions. Secondly, standardized
interfaces and process descriptions could provide more opportunities to use AI solutions
in this domain.

AI has demonstrated promise in reducing CO2 emissions in the energy sector through
optimization, forecasting, and efficiency improvements. Continued research and develop-
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ment, along with real-world implementation, are key factors to achieve sustainable energy
goals and mitigate climate change.

Author Contributions: Conceptualization, J.A., E.H. and T.S.; Methodology, J.A. and T.S.; Software,
J.A.; Investigation, J.A., M.R., E.H., O.V. and T.S.; Data Curation, J.A.; Writing—Original Draft
Preparation, J.A., M.R., E.H. and O.V.; Writing—Review and Editing, J.A., M.R., E.H., O.V. and T.S.;
Visualization, J.A. and T.S.; Project Administration, M.R.; Funding Acquisition, M.R. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was co-funded by the European Union and the Regional Council of Central
Finland, grant number J10052. The APC was funded by the same grant.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wong, K. Greenhouse effect and climate change. In Climate Change; Momentum Press: New York, NY, USA, 2016; pp. 33–44.
2. Ürge Vorsatz, D.; Harvey, L.D.D.; Mirasgedis, S.; Levine, M.D. Mitigating CO2 emissions from energy use in the world’s buildings.

Build. Res. Inf. 2007, 35, 379–398. [CrossRef]
3. Johnson, J.M.F.; Franzluebbers, A.J.; Weyers, S.L.; Reicosky, D.C. Agricultural opportunities to mitigate greenhouse gas emissions.

Environ. Pollut. 2007, 150, 107–124. [CrossRef] [PubMed]
4. Schäfer, A.W.; Evans, A.D.; Reynolds, T.G.; Dray, L. Costs of mitigating CO2 emissions from passenger aircraft. Nat. Clim. Change

2016, 6, 412–417. [CrossRef]
5. Diesendorf, M. Scenarios for Mitigating CO2 Emissions from Energy Supply in the Absence of CO2 Removal. Clim. Policy 2022,

22, 882–896. [CrossRef]
6. IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth

Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva,
Switzerland, 2023; pp. 1–34. [CrossRef]

7. Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.;
House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021,
16, 073005. [CrossRef]

8. Hashim, H.; Douglas, P.; Elkamel, A.; Croiset, E. Optimization Model for Energy Planning with CO2 Emission Considerations.
Ind. Eng. Chem. Res. 2005, 44, 879–890. [CrossRef]

9. Manan, Z.A.; Nawi, W.N.R.M.; Alwi, S.R.W.; Klemeš, J.J. Advances in Process Integration research for CO2 emission reduction—A
review. J. Clean. Prod. 2017, 167, 1–13. [CrossRef]

10. Tapia, J.F.D.; Lee, J.Y.; Ooi, R.E.; Foo, D.C.; Tan, R.R. A review of optimization and decision-making models for the planning of
capture, utilization and storage (CCUS) systems. Sustain. Prod. Consum. 2018, 13, 1–15. [CrossRef]

11. Wang, X.; Wang, H.; Bhandari, B.; Cheng, L. AI-Empowered Methods for Smart Energy Consumption: A Review of Load
Forecasting, Anomaly Detection and Demand Response. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 963–993. [CrossRef]

12. Ettalibi, A.; Elouadi, A.; Mansour, A. AI and Computer Vision-based Real-time Quality Control: A Review of Industrial
Applications. Procedia Comput. Sci. 2024, 231, 212–220. [CrossRef]

13. Soori, M.; Jough, F.K.G.; Dastres, R.; Arezoo, B. AI-Based Decision Support Systems in Industry 4.0, A Review. J. Econ. Technol.
2024, in press. [CrossRef]

14. Dong, M.; Wang, G.; Han, X. Artificial intelligence, industrial structure optimization, and CO2 emissions. Environ. Sci. Pollut. Res.
2023, 30, 108757–108773. [CrossRef] [PubMed]

15. Munn, Z.; Peters, M.D.J.; Stern, C.; Tufanaru, C.; McArthur, A.; Aromataris, E. Systematic review or scoping review? Guidance
for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 2018, 18, 143. [CrossRef]
[PubMed]

16. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.;
et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473.
[CrossRef] [PubMed]

17. Ahmad, T.; Zhang, D.; Huang, C.; Zhang, H.; Dai, N.; Song, Y.; Chen, H. Artificial intelligence in sustainable energy industry:
Status Quo, challenges and opportunities. J. Clean. Prod. 2021, 289, 125834. [CrossRef]

18. Ahmad, T.; Zhu, H.; Zhang, D.; Tariq, R.; Bassam, A.; Ullah, F.; AlGhamdi, A.S.; Alshamrani, S.S. Energetics Systems and artificial
intelligence: Applications of industry 4.0. Energy Rep. 2022, 8, 334–361. [CrossRef]

http://doi.org/10.1080/09613210701325883
http://dx.doi.org/10.1016/j.envpol.2007.06.030
http://www.ncbi.nlm.nih.gov/pubmed/17706849
http://dx.doi.org/10.1038/nclimate2865
http://dx.doi.org/10.1080/14693062.2022.2061407
http://dx.doi.org/10.59327/IPCC/AR6-9789291691647.001
http://dx.doi.org/10.1088/1748-9326/abee4e
http://dx.doi.org/10.1021/ie049766o
http://dx.doi.org/10.1016/j.jclepro.2017.08.138
http://dx.doi.org/10.1016/j.spc.2017.10.001
http://dx.doi.org/10.1007/s40684-023-00537-0
http://dx.doi.org/10.1016/j.procs.2023.12.195
http://dx.doi.org/10.1016/j.ject.2024.08.005
http://dx.doi.org/10.1007/s11356-023-29859-x
http://www.ncbi.nlm.nih.gov/pubmed/37752399
http://dx.doi.org/10.1186/s12874-018-0611-x
http://www.ncbi.nlm.nih.gov/pubmed/30453902
http://dx.doi.org/10.7326/M18-0850
http://www.ncbi.nlm.nih.gov/pubmed/30178033
http://dx.doi.org/10.1016/j.jclepro.2021.125834
http://dx.doi.org/10.1016/j.egyr.2021.11.256


Appl. Sci. 2025, 15, 999 16 of 18

19. Ahmad, T.; Madonski, R.; Zhang, D.; Huang, C.; Mujeeb, A. Data-driven probabilistic machine learning in sustainable smart
energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid
paradigm. Renew. Sustain. Energy Rev. 2022, 160, 112128. [CrossRef]

20. Babatunde, D.E.; Anozie, A.; Omoleye, J. Artificial neural network and its applications in the energy sector: An overview. Int. J.
Energy Econ. Policy 2020, 10, 250–264. [CrossRef]

21. Forootan, M.M.; Larki, I.; Zahedi, R.; Ahmadi, A. Machine Learning and Deep Learning in Energy Systems: A Review.
Sustainability 2022, 14, 4832. [CrossRef]

22. Zhou, Y. Advances of machine learning in multi-energy district communities-mechanisms, applications and perspectives. Energy
AI 2022, 10, 100187. [CrossRef]

23. Makala, B.; Bakovic, T.R. Artificial Intelligence in the Power Sector; EMCompass 81; World Bank Group: Washington, DC, USA,
2020.

24. Rangel-Martinez, D.; Nigam, K.; Ricardez-Sandoval, L.A. Machine learning on sustainable energy: A review and outlook on
renewable energy systems, catalysis, smart grid and energy storage. Chem. Eng. Res. Des. 2021, 174, 414–441. [CrossRef]

25. Cheng, L.; Yu, T. A new generation of AI: A review and perspective on machine learning technologies applied to smart energy
and electric power systems. Int. J. Energy Res. 2019, 43, 1928–1973. [CrossRef]

26. Kanase-Patil, A.B.; Kaldate, A.P.; Lokhande, S.D.; Hitesh Panchal, M.S.; Priya, V. A review of artificial intelligence-based
optimization techniques for the sizing of integrated renewable energy systems in smart cities. Environ. Technol. Rev. 2020,
9, 111–136. [CrossRef]

27. Nemitallah, M.A.; Nabhan, M.A.; Alowaifeer, M.; Haeruman, A.; Alzahrani, F.; Habib, M.A.; Elshafei, M.; Abouheaf, M.I.; Aliyu,
M.; Alfarraj, M. Artificial intelligence for control and optimization of boilers’ performance and emissions: A review. J. Clean.
Prod. 2023, 417, 138109. [CrossRef]

28. Zahraee, S.; Khalaji Assadi, M.; Saidur, R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization.
Renew. Sustain. Energy Rev. 2016, 66, 617–630. [CrossRef]

29. Al-Othman, A.; Tawalbeh, M.; Martis, R.; Dhou, S.; Orhan, M.; Qasim, M.; Ghani Olabi, A. Artificial intelligence and numerical
models in hybrid renewable energy systems with fuel cells: Advances and prospects. Energy Convers. Manag. 2022, 253, 115154.
[CrossRef]

30. Hati, A.S. A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence. Renew. Sustain. Energy
Rev. 2021, 146, 111153. [CrossRef]

31. Pérez-Gomariz, M.; López-Gómez, A.; Cerdán-Cartagena, F. Artificial Neural Networks as Artificial Intelligence Technique for
Energy Saving in Refrigeration Systems—A Review. Clean Technol. 2023, 5, 116–136. [CrossRef]

32. Mehmood, M.U.; Chun, D.; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to
buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [CrossRef]

33. Nyangon, J. Tackling the Risk of Stranded Electricity Assets with Machine Learning and Artificial Intelligence. In Sustainable
Energy Investment; Nyangon, J., Byrne, J., Eds.; IntechOpen: Rijeka, Croatia, 2021; Chapter 2. [CrossRef]

34. Ali, S.; Choi, B. State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review. Electronics 2020, 9, 1030.
[CrossRef]

35. Mohammad, A.; Mahjabeen, F. Revolutionizing Solar Energy: The Impact of Artificial Intelligence on Photovoltaic Systems. Int. J.
Multidiscip. Sci. Arts 2023, 2, 117–127. [CrossRef]

36. Seyedzadeh, S.; Pour Rahimian, F.; Glesk, I.; Roper, M. Machine learning for estimation of building energy consumption and
performance: A review. Vis. Eng. 2018, 6, 5. [CrossRef]

37. Mhlanga, D. Artificial Intelligence and Machine Learning for Energy Consumption and Production in Emerging Markets: A
Review. Energies 2023, 16, 745. [CrossRef]

38. Saheb, T.; Dehghani, M.; Saheb, T. Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis.
Sustain. Comput. Inform. Syst. 2022, 35, 100699. [CrossRef]
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