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Abstract: In recent years, irrational land development has caused significant habitat quality
problems. Previous habitat quality studies have mainly concentrated on medium- and
small-sized areas, and few studies have conducted a comprehensive long-term analysis of
terrestrial habitat quality in large countries. Accordingly, this research aimed to identify
the changes in land use and habitat quality in China during the last four decades. The
InVEST method was employed for evaluating China’s habitat quality. This evaluation
included both habitat degradation and habitat quality scores. Then, the FLUS and InVEST
methods were combined to project future land use evolution in China through 2050 and
assess its effect on habitat quality. Our study demonstrated a robust connection between
habitat quality and the spatial distribution of land use classes, topography, and resource
availability. Furthermore, over the past four decades, high-quality habitats in the country
have been degrading and shrinking, while low-quality habitats have been expanding. The
projection results indicate that the habitat problems in China will become increasingly
severe over the coming decades. Our study suggests that the habitat quality in China
should be improved by optimizing land use patterns, stabilizing areas with optimal habitat
conditions, and restoring degraded habitats.

Keywords: habitat quality; wildlife habitat; land use and cover change; conservation; urban
sprawl; China

1. Introduction

Irrational land use development is a major cause of land degradation [1-3]. This
phenomenon involves a range of inappropriate land use practices, including inefficient
land resource allocation, unbalanced land use, and unsustainable land management strate-
gies. In particular, China’s urbanization has been gradually speeding up since the reform
and opening up [4-6]. A considerable proportion of the country’s ecological resources,
including forests, cropland, and grassland, have been encroached upon by construction
land [7-10]. Habitat quality is defined as the capacity of an ecosystem to offer desirable
living environments for species [11-13]. Habitat quality is a critical indicator of the func-
tionality and integrity of ecosystem services. Nevertheless, the intensification of land use
development has resulted in a notable degradation of habitat quality [14-17].

Related studies have focused on two main parts: habitat quality for a single species
and overall habitat quality. While species-specific assessments provide detailed insights,
they are often limited in scope and scalability [18-20]. Consequently, an increasing number
of studies are using mathematical methods, including habitat suitability, the SOlVES model,
and the InVEST model, to assess regional habitat quality. Among them, InVEST is the most
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extensively used and has reached a high level of maturity [21-23]. This model includes
a wide range of tools, including habitat quality, carbon storage, and soil conservation. The
habitat quality tool is capable of deriving grid-scale habitat quality results according to land
use and threat factors. The methodology has been applied by numerous studies in a variety
of regions [24-26]. Nevertheless, the INVEST method is insufficient to project future habitat
quality conditions. It needs to be further coupled with land use simulation models.

Among the various land use simulation approaches, cellular automata (CA) are the
most prevalent [27-31]. The CA approach effectively simulates complex land use evo-
lution by applying simple transition rules [32-35]. Notably, Liu et al. [36] proposed an
advanced FLUS model, which builds upon the traditional CA, to account for the complex
interaction among various land use classes and to improve the accuracy of land use pro-
jection. Currently, the FLUS method has been extensively utilized to simulate land use
evolution [37-39]. Consequently, the FLUS and InVEST models can be integrated to project
future changes in habitat quality.

In particular, given the scarcity of available land resources and the equally important
need to protect and develop them, it is of particular significance to combine habitat quality
assessment and land use projection [40-42]. Recent studies have demonstrated that the
integration of INVEST and FLUS models has significant value for predicting future changes
in habitat quality. However, the majority of relevant studies have been limited to medium-
and small-sized regions, including watersheds, provinces, municipalities, and ecological
zones. Few studies have analyzed the spatial and temporal evolution of habitat quality at
a large national scale over a long period of time.

At the regional scale, Gomes et al. [43] employed these two models to assess the
dynamic changes in habitat quality under different scenarios in Lithuania, highlighting the
influence of land use on habitat quality. Raji et al. [44] used these two models to simulate
habitat quality trends under four land use scenarios in the Sokoto-Rima Basin, Nigeria,
and found that sustainable development scenarios could significantly improve biodiversity.
Fida et al. [45] projected the impact of land use evolution on habitat quality in southwestern
Ethiopia by combining InVEST and FLUS models. Rahimi et al. [46] projected future habitat
quality and its response to land use evolution in southwestern Iran based on InVEST and
CA models. Overall, these regional studies indicate that while the integration of INVEST
and FLUS models provides effective tools for predicting habitat quality, further refinement
and validation are needed for long-term and large-scale applications.

In this regard, this research endeavors to fill the knowledge gaps in the literature from
two perspectives. First, we aim to provide a long-term and nationwide assessment of the
evolution of habitat quality in China over the past four decades. Second, we aim to project
future land use evolution and its effect on the spatiotemporal patterns of habitat quality in
China. This nationwide analysis will provide insights into both historical trends and future
scenarios, supporting evidence-based conservation planning and policy development.

To this end, we employed the INVEST method to analyze the effect of China’s land
use evolution on habitat quality during 1980-2020. The FLUS-InVEST model was then
utilized to project China’s future land use evolution and its effect on habitat quality in 2050.
Additionally, the causes of habitat quality changes were investigated, and corresponding
recommendations were proposed. The objective of our study is to establish a foundation
for decision makers to formulate sound land use and ecological design.

2. Data and Methods
2.1. Data

The national land use datasets were sourced from the Chinese Academy of Sciences [47].
This institution produced high-quality land use datasets from 1980 to 2020, with a resolution
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of 1 km. Six land use classes have been identified from the datasets, including cropland,
forests, grassland, water, construction land, and unused land. The remaining datasets
required for the land use projection are the spatial driving factors, including climate and
socioeconomic data from the Chinese Academy of Sciences, the elevation dataset from
the Geographic and Spatial Data Cloud, and transportation and water system data from
OpenStreetMap (Table 1). Furthermore, the technical framework of our research comprises
two aspects: habitat quality assessment and land use projection (Figure 1).

Table 1. Attributes and sources of the datasets.

Category Factor Cell Size Source
Cl; Mean annual temperature
imate Mean annual precipitation Chinese Academy
1 km :
Soci . GDP of Sciences
ocioeconomic Pooulati
opulation
Elevation .
Geographic and
Topography Slope 250m Spatial Data Cloud
Aspect
Expressway
Traffic Railway
Road Vector OpenStreetMap
Limitation factor Rivers and reservoirs
Cropland
Urban land Chinese Academy
Threat factor Rural land 1 km of Sciences
Other construction
777777777777777777777777777777777777 N

Socioeconomic

factors

Habitat
degradation
degree

ANN suitability
matrix

GeoSOS
-Flus

Kappa
& Topography
test = °

LUUC

factors

INVEST CA with adaptive

inertia

1980,1990,
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Transportation
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Figure 1. Technical framework of our research.

OpenStreetMap was selected due to three main advantages over China’s official trans-
portation data: First, its crowdsourced nature ensures a higher frequency of transportation
information updates. Second, it offers comprehensive coverage of geographical features
with detailed transportation networks. Third, its open-access nature allows unrestricted
use of the data for research purposes.

2.2. Methods
2.2.1. Investigation of Land Use

The evolution of different land use classes was analyzed from both spatial and tem-
poral perspectives using transformation matrices. Subsequently, two land use indicators,
the trend state index and the mean annual net change rate, were employed to assess the
dynamic conditions of land use evolution. The trend state index can reveal the increas-
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ing and decreasing states of land use over time. The calculation for this index (Ps) is as

follows [48,49]:
_ A]/Vvin — AWout

B AVvin + Awout’

where AWj, is the total area of other land use classes transformed to the targeted land use

PS (Awin + AI/vout 7é 0) (1)

class, and AWy is the total area of the targeted land use class transformed to other land
use classes.

Furthermore, the annual net change rate (S;) reveals the speed of variation for
a targeted land use class over time. This (S;) is calculated as follows [50,51]:

1 AVvin AV\fout

== 100% 2
Sy ( T W > x 100% (2)
where T means the time span, and W; means the initial area of land use class i.

2.2.2. Investigation of Habitat Quality

The habitat quality tool of the IN'VEST method was adopted. This tool can effec-
tively estimate the magnitude of habitat degradation at a fine scale, thereby enabling the
calculation of habitat quality levels [52,53]:

D2,
_ 17, _ )
Qyj = H; x [1 (Dij‘FkZ)

where Q,; is the habitat quality in grid x within land use class j, H; is the habitat resilience for

©)

land use class j, k is a fixed parameter typically set to 0.5, and Dj; is the habitat degradation
level in grid x within land use class j:

R Y, W, .
ij = 21’21 Zyzl (ZR ;W >}’y1rxy,BXSjr (4)
r=

r

where R is the number of threat factors, y represents a grid in threat factor r, Y; is the
number of grids in that factor, W, is the weight for threat factor r, r, is the value of factor r
in grid y, irxy is the threat degree of ry to grid x, By is the accessibility to grid x, and Sj; is
the susceptibility of land use j to threat factor , where i,y is assessed using the linear or
exponential decay formula:

irxy =1- (dxy/dr max) (linear) (5)

irxy = exp[—(2.99/dy max)-dxy| (exponential) (6)

where d,, means the straight-line distance from grid x to grid v, dr max means the maximum
threat range for factor r.

The extensive use of chemical fertilizers and pesticides on cropland has become
a significant threat to surrounding habitat quality in China. In addition, construction land
and traffic networks have profound detrimental impacts on the environment. Therefore,
considering both prior studies and the distinctive context in China, this research identified
seven threat factors: cropland, three classes of construction land, and traffic networks.

The parameter settings for the threat factors in this study were primarily based on
existing research findings. Urban land has the most significant impact on habitat, with
multiple studies setting its weight between 0.8 and 1.0 [54-57]. Cropland was given
a weight of 0.6, which aligns with the range of 0.5-0.68 established in existing studies [56],
and rural land was also given a weight of 0.6, which is consistent with the findings in the
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literature [58,59]. The weights for expressways and railways were set at 0.7 based on the
findings of previous studies [56], while roads were assigned a lower weight of 0.5 [58,60].

In terms of spatial decay characteristics, an exponential decay function was adopted
on the basis that the influence of point-source threats, such as urban land and rural land,
decreases rapidly with distance. In comparison, a linear decay function was selected for
linear features, such as cropland and transportation infrastructure [54,55,59]. The maximum
influence distances for various factors were taken from related studies [55,56,60]: 10 km
for urban land, 5-6 km for rural land, 1-3 km for cropland, and 3-8 km for transportation
facilities. All these parameter settings are within reasonable ranges established by previous
research. The maximum threat range, weight, and distance decay function were assigned
to each threat factor based on previous studies (Table 2) [11,13,21,26,61,62].

Table 2. Features of threat factors.

Factor Maximum Threat Range (Kilometer) Weight Distance Decay

Cropland 1 0.6 Linear

Urban land 10 1 Exponential

Rural land 5 0.6 Exponential

Other construction 7 1 Exponential
Expressway 5 0.7 Linear
Railway 5 0.7 Linear
Road 3 0.5 Linear

The direct validation of the accuracy of the assessment results is a very challenging
and difficult task due to the lack of well-recognized ground-truth habitat quality datasets.
Nevertheless, it should be noted that both the FLUS and InVEST models adopted in
this research are well-established and widely used methods with proven computational
workflows and generally accepted input factors. The assessment factors in this study were
selected with reference to related research in China [57], thereby ensuring the comparability
of results.

The susceptibility of various land use classes to each threat factor exhibited notable
variability. The susceptibility scores ranged from 0 (lowest susceptibility) to 1 (high-
est susceptibility). For example, the susceptibility of forest to road was 0.7, indicating
a relatively high threat from the latter. Based on previous studies, the habitat resilience for
different land use classes and their susceptibility to each threat factor were determined
(Table 3) [11,13,21,26,61,62].

Table 3. Habitat resilience and threat factor susceptibility.

Susceptibility
Habitat
Class e Urban Rural Other .
Resilience Cropland Land Land Construction Expressway Railway Road

Cropland 0.4 0 0.5 0.4 0.2 0.3 0.2 0.2
Forest 1 0.5 0.7 0.6 0.4 0.6 0.6 0.7
Grassland 0.7 0.4 0.6 0.5 0.4 0.3 0.2 0.2
Water 0.9 0.6 0.9 0.7 0.6 0.6 0.5 0.6
Construction land 0 0 0 0 0 0 0 0
Unused land 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.1

2.2.3. FLUS Model

Liu et al. [36] put forth a future land use simulation (FLUS) approach by integrating
a geographic modeling system with a neural network-based module. The FLUS method
is able to accurately simulate land use evolution and project future changes. Given the
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significant role of natural and socioeconomic variables in the land use evolution of China,
key spatial factors were adopted based on related studies (Table 1) [15,32,34,40,48,63-65].
First, the probability of land use suitability was calculated on the basis of historical land
use information. Then, the well-calibrated model was used for projecting future land use
evolution in China by 2050.

3. Results

3.1. Land Use Evolution
3.1.1. Area Change in Land Use over 40 Years

Figure 2 illustrates the evolution of land use in China over the last four decades.
Grassland, which consistently occupied the top position, showed a continuous decline,
especially between 2010 and 2020. Forest coverage showed resilience despite initial chal-
lenges, exhibiting a recovery pattern in later years. The unused land remained relatively
stable for three decades before showing a marked increase in the last period, indicating
a growing trend of desertification and salinization. Among the other land use classes, crop-
land showed fluctuation patterns, while construction land exhibited consistent expansion
throughout the study period.
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Figure 2. Evolution of land use area in China (1980-2020).

3.1.2. Spatial Evolution of Land Use over 40 Years

Transformation matrices, trend state index, and annual average net change rate were
calculated to further analyze the degree of land use evolution (Tables 4 and 5). The trans-
formation matrices revealed several noteworthy patterns during the study period. The
conversion dynamics remained relatively stable during 1980-2000, followed by signifi-
cant changes during 2010-2020 with increased transformation intensity. An asymmetric
conversion relationship was observed between cropland and forests, while construction
land showed a distinct one-way transformation pattern. Notably, two critical transitions
emerged: a sharp increase in grassland-to-unused land conversion during 2010-2020 after
three decades of stability, and the diversification of construction land sources from pre-
dominantly cropland to multiple land classes. Although the water area maintained overall
stability, it exhibited persistent minor transformations throughout the study period.
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Table 4. Land use transformation matrices (1980-2020).
Period Class a b c d e f
a 77.47% 11.80% 5.99% 1.21% 2.70% 0.81%
b 9.13% 82.44% 7.34% 0.44% 0.29% 0.36%
C 3.20% 5.45% 90.19% 0.30% 0.09% 0.76%
1980-1990 d 8.79% 3.64% 1.92% 83.69% 0.89% 1.07%
e 33.75% 4.75% 2.51% 2.26% 56.04% 0.68%
f 0.49% 0.38% 1.03% 0.79% 0.02% 97.29%
a 86.52% 5.74% 4.69% 0.71% 2.88% 0.25%
b 6.90% 87.19% 5.06% 0.23% 0.17% 0.44%
C 3.52% 5.08% 85.88% 0.64% 0.12% 4.76%
1990-2000 d 6.79% 1.93% 4.34% 80.32% 0.61% 6.01%
e 16.04% 1.84% 1.73% 0.80% 79.37% 0.21%
f 0.48% 0.63% 6.78% 0.83% 0.04% 91.23%
a 80.06% 9.13% 6.17% 1.21% 3.17% 0.26%
b 7.14% 84.57% 7.10% 0.43% 0.51% 0.25%
C 3.87% 5.43% 86.89% 0.40% 0.20% 3.22%
2000-2010 d 7.19% 3.31% 4.27% 80.51% 1.85% 2.86%
e 23.28% 4.84% 2.57% 1.93% 67.07% 0.31%
f 0.50% 0.28% 4.87% 0.39% 0.08% 93.88%
a 62.59% 16.32% 9.51% 2.38% 8.04% 1.16%
b 9.29% 80.92% 6.26% 0.90% 1.17% 1.46%
2010-2020 C 6.44% 10.30% 63.31% 1.86% 0.64% 17.45%
o d 12.18% 4.47% 5.64% 70.09% 3.55% 4.07%
e 31.64% 7.95% 4.53% 5.40% 49.43% 1.06%
f 1.80% 1.53% 6.14% 1.79% 0.29% 88.45%
a 63.28% 15.33% 12.18% 2.03% 4.52% 2.66%
b 7.33% 83.37% 6.97% 0.66% 0.40% 1.27%
C 5.87% 9.39% 71.16% 1.47% 0.24% 11.87%
1980-2020 d 9.51% 6.25% 4.43% 74.56% 2.02% 3.23%
e 16.81% 8.88% 7.90% 3.15% 60.84% 2.43%
f 0.69% 1.32% 4.43% 2.37% 0.07% 89.12%
Note: a—Cropland, b—forest, c—grassland, d—water, e—construction land, and f—unused land. Blue value
indicates the percentage of land area that remained unchanged. Red value indicates the largest percentage of area
for a given land use class that was transformed into another class.
Table 5. Area and proportion of different habitat degradation levels (1980-2020).
Very Slight Slight Moderate High Severe
S P (%) S P (%) S P (%) S P (%) S P (%)
1980 404.60 42.60 325.01 34.22 115.02 12.11 104.10 10.96 13.78 1.45
1990 404.81 42.62 326.11 34.33 110.87 11.67 103.66 1091 16.04 1.69
2000 402.11 42.33 312.36 32.88 114.74 12.08 103.25 10.87 16.22 1.71
2010 394.30 41.51 310.86 32.73 111.40 11.73 105.29 11.08 17.09 1.80
2020 389.88 41.05 308.59 32.49 116.65 12.28 105.40 11.10 17.24 1.81
Shet —14.72 —13.64 11642 —15.05 1.63 1.42 1.30 1.25 3.46 25.11

Note: S means area (10,000 kmz), P means proportion; Spet means the net area change (Spet = Send — Sbeginning ;
PoNet = Snef/sbegirming X 1000/0)'

Between 1980 and 1990, the greatest net increase was seen in cropland, followed by
construction and unused land. Construction land exhibited the highest trend index (0.07)
and net change rate (0.62%), indicating a rapid expansion over the past 10 years. Between
1990 and 2000, forests and grassland declined, while cropland and construction land ex-
panded most notably (0.16% and 0.90%, respectively). Between 2000 and 2010, construction
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land continued to expand significantly, while other land use classes decreased, with water
experiencing the largest decline (—0.16%). Between 2010 and 2020, construction land expe-
rienced its peak expansion (3.60%), while grassland continued to decline (—285,600 km?,
—0.96%). Cropland also decreased, but at a slower rate (—15,000 km?), while forest and
unused land expanded (0.08% and 0.98%, respectively). In summary, construction land
has seen the most dramatic growth over the past 40 years, in contrast to the steady decline
in grassland and water. Unused land expanded throughout the study period, except for
a slight decrease during 2000-2010. The most rapid expansion occurred between 2010 and
2020. Cropland and forest land have maintained a relatively constant level.

3.1.3. Projection of Land Use Evolution by 2050

Given that the FLUS model was designed to be calibrated and simulated using only
the most recent two years of data, the land use projections for 2050 were based on the data
from the 2010 to 2020 period. Specifically, this research began with an investigation of land
use information from 2010. The suitability probability of every land use class was computed
using the FLUS method’s neural network module, and then the land use evolution during
2010-2020 was simulated. The modeling results were validated against the real land use
information in 2020. A satisfactory kappa coefficient of 0.736 was yielded, demonstrating
high simulation accuracy. This value is higher than the kappa coefficient (0.67) obtained by
the original FLUS research for China’s national simulation [36], and the kappa coefficients
(0.76 in 2015) and (0.72 in 2018) obtained by a regional application in Hengyang City [66].
Our model shows comparable accuracy despite covering a much larger geographical extent.
This validation supports the reliability of the FLUS model in simulating future land use
evolution at the national scale.

Subsequently, a Markov Chain approach was employed for projecting the area change
in land use by 2050. Finally, we projected the land use status in 2050 with the support of
the well-calibrated model (Figure 3).

L o ¥
[ Cropland ) > g ,m:/r_,\;u
I Forest -
[ Grassland “\/_.'.: P
I Water
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[ Unused land
0 1000

2000 = :
1 km @)

Figure 3. Land use projection results in 2050.

The spatial analysis reveals several critical transformation patterns. The reduction
in grassland is predominantly concentrated in northwestern China’s ecologically fragile
regions, while construction land expansion exhibits a continuous sprawl pattern along the
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eastern coastal areas. Notably, there is a high spatial correlation between grassland loss
and unused land expansion, suggesting potential ecological degradation risks. Although
unused land shows the largest absolute increase, construction land demonstrates the
highest annual rate of change (1.90%), indicating that urbanization remains the dominant
driving force. The reciprocal relationship between grassland and forests decline suggests
a structural transformation of ecosystems. Furthermore, the simultaneous expansion of
construction and unused land, coupled with the reduction in ecological land (grassland
and forests), forms a self-reinforcing trend that may accelerate the deterioration of regional

ecosystem services.

3.2. Habitat Quality Change
3.2.1. Spatiotemporal Change in Habitat Degradation

The average habitat degradation degree from 1980 to 2020 was evaluated through
the InVEST method. As illustrated in Figure 4, the temporal pattern reveals three distinct
phases of habitat degradation. The sharp increase in the 1980s coincided with rapid economic
development, followed by a relatively stable period in the 1990s despite continued degradation.
While the acceleration resumed in the 2000s, the recent plateauing trend suggests a potential
transition in environmental pressure, though at persistently high levels.
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Figure 4. Change in the average habitat degradation degree (1980-2020).

Subsequently, the degradation degree was classified as five levels through the natural
breaks: very slight (0-0.015), slight (0.015-0.03), moderate (0.03-0.09), high (0.09-0.17), and
severe (0.17-0.34) (Figure 5). Table 5 presents the area and proportion of each level. Over the
last four decades, the analysis reveals a concerning shift in habitat quality distribution. The
systematic decrease in better-preserved habitats alongside the expansion of degraded areas
suggests a continuous environmental pressure pattern. The most notable transformation
occurred in the conversion from very slightly degraded to more severe levels, indicating
a gradual erosion of excellent-quality habitats.

Over the last four decades, China’s habitat degradation has generally exhibited
a west-to-east gradient of increasing severity, closely aligned with the country’s topo-
graphic variation. The spatial pattern of habitat degradation demonstrates a clear associa-
tion with China’s development patterns. A distinct degradation gradient emerges from the
relatively preserved western plateaus to the intensively developed eastern regions, aligned
with the nation’s economic geography. The spatial concentration of severe degradation
is particularly evident in urban agglomerations and their surrounding areas, where the
urban-rural transition zones show the most significant habitat degradation.
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Figure 5. Spatial pattern of habitat degradation degree (1980-2020).

3.2.2. Spatiotemporal Change in Habitat Quality

Next, the average habitat quality indices in China from 1980 to 2020 (Figure 6) reveal
a decreasing tendency in habitat quality. This decline was initially slight over the first
two decades, followed by a sharp decrease between 2000 and 2010. A slight improvement
was observed after 2010, but overall, the habitat quality in China has declined during the
last four decades.

0.686 0.6845  0.6841 0.6836
0.683 1

0.680 1

0.677 7 0.6749
0%6741

0.674 +

0.671 1

Habitat quality index

0.668 1 1 L L L )
1980 1990 2000 2010 2020 year

Figure 6. Average habitat quality indices (1980-2020).
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The natural break approach was utilized for classifying the habitat quality index into
five levels (Table 6 and Figure 7). The spatial pattern of habitat quality has changed signifi-
cantly over the past 40 years, with the largest values in the eastern and southern regions
and the smallest in the northwest. The good-quality habitats were initially concentrated in
Inner Mongolia and the Qinghai-Tibet Plateau. However, in the last decade, a small part of
the Qinghai-Tibet Plateau has dropped from good to medium quality. The Heilongjiang
Basin, the Greater Khingan Range, the Yunnan-Guizhou Plateau, and the southern Yangtze
River region, characterized by lush vegetation and developed water systems, had excellent
habitat quality. Moderate-quality habitats were often adjacent to excellent habitats, such
as the Northeast Plain, North China Plain, and Pearl River Delta, which were dominated
by cropland. Conversely, habitats with very poor quality were concentrated in the Tarim
and Junggar Basins, with the remaining habitats dispersed within urban agglomerations.
Poor-quality habitats were primarily located in the northwest, often adjacent to those with
very poor quality. Overall, China’s habitat quality was closely linked to land use, terrain,
and resource availability.

Habitat quality level
M Excellent
‘Good
B Medium
Poor
" Very poor

[CISeven geographic regions

0 2000 4000
[ ee—

Figure 7. Spatial pattern of habitat quality levels (1980-2020).
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Table 6. Area and percentage of different habitat quality levels (1980-2020).
Excellent Good Medium Poor Very Poor

S P (%) S P (%) S P (%) S P (%) S P (%)
1980 235.62 24.85 158.22 16.69 284.81 30.04 78.09 8.24 191.26 20.18
1990 233.06 24.58 157.44 16.60 287.72 30.34 76.72 8.09 193.26 20.38
2000 229.32 24.17 155.14 16.35 289.76 30.53 78.16 8.24 193.59 20.40
2010 225.47 23.80 153.60 16.21 288.75 30.48 81.41 8.59 195.25 20.61
2020 224.05 23.62 146.64 15.46 266.35 28.08 85.39 9.00 224.19 23.63
Shet —11.56 —4.91 —11.58 —7.32 —18.45 —6.48 7.30 9.35 32.93 17.22

Over the 40-year period, the size of excellent-, good-, and medium-quality habitats all
decreased. This simultaneous decrease in medium-quality habitats and the expansion of
very poor habitats suggests a concerning polarization trend. Despite the overall declining
trend, certain regions like the Greater Khingan Range maintained their excellent quality,
suggesting the effectiveness of ecological protection in these areas. These trends, along
with the patterns observed in Figures 6 and 7, indicate an overall decline in China’s average
habitat quality from good to medium.

Next, a transformation matrix analysis was performed for quantifying the spatial
changes in habitat quality levels (Table 7). The transformation outcomes were classified
into three categories: increased, decreased, and unchanged habitat quality (Figure 8).
Overall, most habitats exhibited no discernible change in quality, but the habitats displaying
a decline in quality exceeded those demonstrating an improvement. Unchanged habitats
accounted for the largest proportion, concentrated in the Tarim Basin, Sichuan Basin, and
Inner Mongolia Plateau. Increased quality habitats (blue value in Table 7) comprised the
study area, primarily located around northwestern and southwestern zones, with the
remainder dispersed throughout China. In contrast, decreased quality habitats (red value
in Table 7) comprised the study area, mostly distributed in small clusters in alpine regions
such as the Junggar Basin, the Qinghai-Tibet Plateau, and coastal urbanized zones.

Furthermore, substantial changes were observed across habitats with varying quality
levels. The excellent habitats were the most stable, remaining unchanged, degrading to
good quality, and a minor proportion degrading to medium, poor, and very poor quality.
The transformation showed a “jumping” pattern of degradation, with habitats often degrad-
ing beyond the adjacent quality level. Good-quality habitats were particularly vulnerable,
with a significant proportion experiencing severe degradation. Notably, medium-quality
habitats showed the highest instability, suggesting that they may serve as a critical thresh-
old in the degradation process. Transformation patterns showed a “one-way” degradation
tendency, with very poor habitats showing the greatest resistance to quality improvement.

Table 7. Habitat quality transformation matrix (1980-2020).

2020
Quality Level Excellent Good Medium Poor Very Poor
Excellent 84.73% 10.51% 2.22% 1.87% 0.67%
1980 Good 61.01%  9.60%  3658%  6.33%
Medium 57.78% 14.39% 18.41%
Poor 8.91% 62.37% 10.38%
Very poor 71.41%

Note: Blue value indicates the percentage of area with increased habitat quality. Red value indicates the percentage
of area with decreased habitat quality.
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Figure 8. Transformation in habitat quality levels (1980-2020).

3.2.3. Habitat Quality Change Across Different Land Use Classes

Given the considerable variation in the development characteristics and protection
levels of the different land use classes, a further investigation was conducted to identify
the underlying cause of the change in habitat quality across the different land use classes
(Figure 9). Despite relative stability in cropland habitat quality over the past 40 years,
the slight improvement suggests successful agricultural land management practices. In
addition, forest land is the dominant land use class in regions with excellent and good
habitat quality. More notably, forest quality showed a concerning polarization trend,
with accelerated degradation particularly after 2010, suggesting that a potential ecological
threshold was reached.

Moreover, the quality of grasslands showed a critical tipping point in 2010, after which
all quality levels showed a significant decline, indicating a cascading degradation process.
Meanwhile, unlike other land classes, water bodies showed fluctuating quality patterns
rather than unidirectional degradation, with relative stability in excellent- and good-quality
areas after 2010, possibly reflecting the effectiveness of water resource management mea-
sures. The synchronized expansion of construction land and the degradation of unused
land quality during 2010-2020 reveal the compound effects of urbanization on habitat qual-
ity. In summary, forests and grassland are important sources of excellent-quality habitats
in China, and the interconnected degradation patterns across different land use classes
suggest a complex web of ecological interactions that warrant immediate attention.



Appl. Sci. 2025, 15, 1042

14 of 23

Area of the level Area of the level

Area of the level

Cropland Forest =
. B excellent © good ™ medium ™ poor
 medium ™ poor N
a @ & 8 =
o o o\
8 & = = 2 R - = 3 =
| i | | £ o S ; ~ -
s 2 8 8 8
I 5] < o < =
3 2 a a % o IS &en Qo B~ Q-
- S 2 2 2 e =2 %2 w62 oo S
alIiv F9S Iies e o=
| | < < b4 f| o
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020
year year
Grassland Watel
M excellent ' good ¥ medium ® poor M excellent ' good ™ medium ™ poor
o —
O\Mi V<rtv:; Mvg o\a\§ o % r<2
ool (902 |98 Q98 (@9t | || &S | % oz g 3
oS | 3] (ST (S | Sg8 | | & 18 0% 935 | S%3 | 2%
| ° © © ~ e \o\o".\
g © 38 3 3 p
3 o =y 3 8 2 o o I o~ bk
. ' . . 2
bl | | (2 1) RN A | T
1980 1990 2000 2010 2020 1980 1990 2000 2010 2020,
year year
Construction land Unused land
M very poor B excellent ™ medium ™ poor M very poor
)
2 g 9| g g| g 3
o o ) . . : d ~
w ~ ~ W N 3 2 = = 2 2
0 = ~ o ua — = — -
s | & | g i
gm;\ ;‘m% gm% goom mw%
* y Nen 1 da q i .
wg; ooge t\o'.n: t\oﬁf:ﬁ n\g?
1980 1990 2000 2010 2020 year 1980 1990 2000 2010 zozoyem_

Figure 9. Area of habitat quality levels by land use classes (unit: 10,000 km?).

3.2.4. Future Habitat Quality Projection

The InVEST method was employed for assessing habitat quality in accordance with
the land use projection results in 2050 (Figure 10). While acknowledging the uncertainty
of future changes to the transport network, we focused on major roads as they repre-
sented the primary infrastructure impact on habitat quality, an approach validated by
previous research.

Our analysis shows a decline in excellent- and good-quality habitats within natural
areas, while very poor-quality habitats will increase around urban and high-altitude zones.
The Qinghai-Tibet Plateau demonstrated enhanced habitat quality. From 2020 to 2050,
excellent habitats displayed an “island effect” in coastal areas, while medium-quality
habitats formed a belt-like pattern across central China.

We used the aforementioned methodology to analyze the habitat quality levels in 2050
(Table 8). The 2050 projection reveals concerning patterns in different land use classes.
Cropland will be dominated by medium-quality habitats, with no excellent- or good-quality
areas remaining. Unused land showed polarization between minimal good-quality areas
and extensive poor-quality regions, indicating challenges for ecological preservation.



Appl. Sci. 2025, 15, 1042 15 of 23
N
Habitat quality
I Excellent T ]
[ Good (\A_{:‘”’f , '
I Medium ~ ‘
[ Poor & 4 N\ |
[ Very poor ;i e ) /
[ Seven peographic regions & ,
ey !
0 1000 2000 a 3
Figure 10. Projected habitat quality in China in 2050.
Table 8. Area of different habitat quality levels in 2050 (unit: 10,000 km?).
Cropland  Forest  Grassland  Water Construction Land  Unused Land Sum
Excellent 0 120.77 70.76 412 0 0 195.65
Good 0 43.97 76.54 6.54 0 6.12 133.17
Medium 135.89 30.74 79.15 741 0 0 253.19
Poor 48.79 16.00 721 8.92 0 20.12 101.04
Very poor 0 0 0 0 41.66 219.54 261.20

This projected degradation of habitat quality poses a significant threat to biodiversity,
particularly in the urban-rural transition zones, where habitat fragmentation is most
severe. The conversion of excellent- and good-quality habitats could have a significant
impact on species migration corridors and ecosystem stability, with forests and grasslands
experiencing the most significant losses in terms of both area and quality. These changes
are primarily driven by urban expansion and insufficient ecological restoration.

4. Discussion
4.1. Causes of Habitat Quality Degradation

Over the last forty years, China has undergone a notable decline in habitat quality,
primarily driven by unreasonable land use evolution. Construction land continued to en-
croach upon key land use classes involving forests, grassland, and water. The severely and
highly degraded habitats were concentrated in the urban agglomerations and urban-rural
fringes of southeastern China, which have undergone significant urbanization and indus-
trialization. The anthropogenic pressures have significantly altered land use patterns, with
extensive land use becoming a prominent issue in these zones [57,67,68].

Over the past four decades, China’s economic development policies have, to some
extent, failed to adequately address the importance of ecological and environmental pro-
tection. In order to achieve economic growth and catch up with developed countries,
some regions have adopted a development pattern that involves a trade-off between high
resource consumption and high environmental costs on the one hand, and economic
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prosperity on the other. This short-sighted economic strategy has resulted in long-term,
cumulative consequences for the ecological environment. Notably, this has resulted in
substantial urbanization and habitat degradation in regions such as the Pearl River Delta
and the Yangtze River Delta [69]. Despite national government initiatives to promote
habitat restoration through policies such as urban development boundaries and ecological
compensation, challenges persist, particularly in the context of legal frameworks for habitat
conservation, which remain inadequate and lack cross-sectoral coordination [70]. Grassland
has experienced the most substantial decline over the past 40 years, with a large proportion
being converted to unused land. The degradation of grasslands, caused by factors such
as overgrazing, overcultivation, and irrational irrigation, has resulted in land siltation
and a reduction in pasture production. Furthermore, the deterioration of grasslands has
contributed to an increase in the frequency and intensity of natural disasters, including
sandstorms and dust storms. The cascading effects of grassland degradation extend beyond
local ecosystems, creating interconnected environmental challenges across regions. This
highlights the need for an integrated approach to habitat conservation that considers both
the direct and indirect impacts of land use changes.

Historically, cropland and forests have maintained a mutually beneficial relationship in
China. The largest type of land transferred from cropland is forests, which is also the largest
source of transfers from cropland. However, the increasing pressure for food has caused the
excessive conversion of ecological resources, including forests and grassland, into cropland.
This has resulted in adverse consequences such as soil erosion, forest cover loss, and land
desertification [2,71,72]. Some farmers have exacerbated the issue by clearing forests and
cropland to plant high-profit fruit trees. Recent studies using advanced remote sensing and
GIS technologies have revealed complex patterns of forest-cropland interactions. These
patterns suggest that successful habitat restoration requires not only increasing forest cover
but also maintaining landscape connectivity and ecological corridors [73-75]. Additionally,
the quality of restored habitats varies significantly based on local environmental conditions
and restoration approaches [76,77]. This highlights that maintaining or increasing forest
cover alone does not guarantee improved habitat quality, and underscores the importance
of considering other factors, such as landscape connectivity and habitat heterogeneity, in
conservation efforts.

The proportion of water, although relatively small, has also been declining. First, the
accelerated disappearance of lakes can be attributed to long-term land reclamation and
overfishing [78-80]. Second, a significant proportion of wetland has been damaged and
degraded, resulting in the transformation of these ecosystems into barren beaches. Third,
the excessive exploitation and irrational utilization of water resources have resulted in the
emergence of water scarcity issues, including the desiccation of rivers and the reduction
in reservoir levels. This not only affects the productivity and well-being of individuals
but also contributes to the deterioration of the ecological environment. Furthermore, the
implementation of water conservation and waterway regulation projects has inadvertently
contributed to ecosystem degradation and water pollution, resulting in a decline in water
quality [81-83]. The most striking phenomenon is the expansion of unused land, which
consists mainly of poor- and very poor-quality habitats. Particularly, the very poor-quality
habitats, which were concentrated in the Tarim and Junggar Basins and were characterized
by sandy, saline-alkaline, and bare soils, have increased significantly over the last decade
due to low rainfall and poor soil quality [84-87].

4.2. Countermeasures to Improve Habitat Quality

First, the optimization of land use patterns and the strict adherence to land use quotas
are of paramount importance. Governments must rigorously enforce policies to safeguard
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high-quality cropland and return low-quality cropland to forests, ensuring an optimal
balance between these resources [88-90]. To safeguard high-quality cropland, it is crucial
to enhance the system for balancing cropland occupation and replenishment. Given the
moderate quality of cropland habitats, promoting organic fertilization can improve soil
health without the necessity of expanding cropland [91-93]. The effective protection of
dominant habitats (e.g., forests, grassland, and water) is vital to prevent land degrada-
tion. Regarding construction land, efficient and intensive land use patterns should be
implemented. Additionally, assessing land carrying capacity and suitability can reveal the
current state of regional land use, thereby promoting ecological balance and enhancing
land use efficiency [63,94-96].

Second, it is also essential to stabilize high-quality habitats and restore degraded
habitats. In high-quality habitats, enhancing resilience to climate change is crucial for
strengthening regional ecosystems and enriching biodiversity [97-99]. Currently, China’s
ecological restoration efforts can be categorized into three main types: restoration, regula-
tion, and reconstruction [64,100-102]. A variety of restoration methods should be employed
based on specific habitat conditions. In habitats with slight degradation and good quality
(e.g., the Qinghai-Tibet Plateau), the focus is on facilitating the natural recovery of ecosys-
tems, supplemented by artificial restoration projects. Habitats with high degradation and
average habitat quality, such as the middle reaches of the Changjiang Plain, rely primarily
on land restoration and ecological engineering to restore regional ecosystem functionality.
For habitats with severe degradation and poor quality, such as the Loess Plateau, large-scale
ecological reconstruction is necessary.

Third, it is essential to establish a robust partnership between governments and cit-
izens for advancing conservation initiatives and raising public awareness of ecological
issues. This requires a shift from managing individual regions in isolation to a more
integrated approach that recognizes the interdependence of diverse ecological elements
across China [103-105]. This includes optimizing China’s land use patterns from a macro
perspective and promoting the systematic restoration and holistic protection of the en-
vironment [106-108]. Raising public awareness is paramount in this endeavor. Govern-
ments should educate citizens about environmental laws and promote habitat conservation
through documentaries and case studies [109,110]. By fostering ecological awareness, citi-
zens will be empowered to consciously fulfill their environmental protection obligations.
This collaborative effort between governments and citizens is essential for achieving more
effective conservation outcomes.

4.3. Strengths and Limitations

The limited regional scope of previous studies has constrained our understanding of
habitat quality changes and interregional interactions. For example, Ren et al. [111] focused
specifically on the influence of threat factors within a medium-sized region, which may
result in an underestimation of the role of inter-regional factors. In addition, the findings
of studies conducted in medium- and small-sized regions may be constrained in their
generalizability. For example, Hack et al. [112] observed that the impacts of threat factors
in the Pochote River Basin exhibited considerable variation from areas in close proximity
to the city center to those situated downstream. This finding highlights the limitations of
localized studies in capturing broader ecological processes and inter-regional interactions.

Regional protection strategies must be coordinated at the national scale to effectively in-
fluence habitat quality and inform conservation strategies. In particular, Sallustio et al. [113]
conducted a nationwide research project on habitat quality in Italy. This study successfully
identified priority conservation areas and supported large-scale strategic conservation
measures, which demonstrates the benefits of national-scale assessment. In consideration
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of the findings of the national-scale assessment presented in this study, we propose the
following countermeasures for enhancing habitat quality with the objective of optimizing
land use patterns and achieving sustainable development in China.

In addition, long-term research provides a comprehensive understanding of habi-
tat quality trends, particularly given the complex and dynamic nature of ecosystems.
Long-term research, on the other hand, is much more appropriate for determining the di-
rection and rate of change in habitat quality by analyzing and comparing data over several
decades. This provides a more reliable foundation for large-scale ecological conservation
and management.

This research has several limitations that warrant further investigation. First, the
assessment of habitat quality should incorporate a wider range of threat factors to enhance
the rationality of factor selection. Second, this research considered solely the effect of land
use on habitat quality, neglecting other essential ecological factors including soil and water
conservation, the establishment of protected areas, and forest restoration processes due to
data availability. Third, while distinguishing between planted and natural forests would
be advantageous for a more comprehensive examination of habitat quality, these forest
categories were not distinguished in this study due to data limitations. Existing national
land cover datasets lack the necessary detail to consistently and accurately distinguish
between these forest categories. Future research should incorporate multiple data sources
to enable finer-scale forest classification. Finally, the large study area and model complexity
led to difficulties in data collection and potential differences between projected and actual
land use results. Future research could integrate additional spatial factors and policy
conditions into multi-scenario simulations.

Conservation incentives should be incorporated into future ecological projections for
2050. Policy instruments such as ecological compensation and green credits can promote
sustainable practices in agriculture, forestry, and fisheries. Additionally, expanding pro-
tected areas and promoting afforestation could enhance biodiversity conservation. These
factors would provide valuable insights for environmental protection measures.

5. Conclusions

This study analyzed the evolution of habitat quality in China over the last forty years
and projected future quality levels for 2050. The results revealed a graded spatial pattern of
habitat degradation across different terrain levels, with severe degradation in first-level
terrain, moderate degradation in second-level terrain, and slight degradation in third-level
terrain. The FLUS model (kappa coefficient = 0.736) projected the significant encroachment
of construction land upon forests and grassland by 2050, indicating an urgent need for
targeted conservation measures.

Based on our findings, the following conservation strategies are recommended to en-
hance and safeguard habitat quality. First, natural recovery should be prioritized for high-
quality habitats (e.g., Qinghai-Tibet Plateau) while enhancing climate resilience through
habitat protection. Second, land restoration and ecological engineering should be imple-
mented in moderately degraded areas (e.g., Changjiang Plain), with a focus on organic
fertilization to improve soil health. Third, ecological restoration and the strict control of
urban sprawl should be implemented in severely degraded regions (e.g., Loess Plateau).

The successful implementation of these strategies requires the strengthening of land
use quotas, the development of integrated conservation approaches, and the enhancement
of government—citizen partnerships through environmental education. Future research
should incorporate conservation incentives and ecological compensation mechanisms to
better support China’s sustainable development goals.
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