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Abstract: Emotion recognition is becoming increasingly important for accurately under-
standing and responding to user emotions, driven by the rapid proliferation of non-face-to-
face environments and advancements in conversational AI technologies. Existing studies
on multimodal emotion recognition, which utilize text and speech, have aimed to improve
performance by integrating the information from both modalities. However, these ap-
proaches have faced limitations such as restricted information exchange and the omission
of critical cues. To address these challenges, this study proposes a Hybrid Multimodal
Transformer, which combines Intermediate Layer Fusion and Last Fusion. Text features are
extracted using KoELECTRA, while speech features are extracted using HuBERT. These
features are processed through a transformer encoder, and Dual Cross Modal Attention
is applied to enhance the interaction between text and speech. Finally, the predicted re-
sults from each modality are aggregated using an average ensemble method to recognize
the final emotion. The experimental results indicate that the proposed model achieves
superior emotion recognition performance compared to existing models, demonstrating
significant progress in improving both the accuracy and reliability of emotion recognition.
In the future, incorporating additional modalities, such as facial expression recognition, is
expected to further strengthen multimodal emotion recognition capabilities and open new
possibilities for application across diverse fields.

Keywords: KoELECTRA; HuBERT; Dual Cross Modal Attention; Hybrid Multimodal
Transformer; emotion recognition

1. Introduction
Emotion recognition has emerged as a critical element in the field of human–computer

interaction (HCI), enabling precise understanding of user emotions and appropriate re-
sponses. Recently, with the widespread adoption of non-face-to-face environments, con-
versational AI systems have become essential across various industries, including remote
education, healthcare, and emotional labor support. These systems actively interact with
users, provide information, solve problems, and deliver personalized experiences tailored
to individual needs and preferences, thereby enhancing user satisfaction. In the field of re-
mote education, emotion recognition plays a vital role in understanding learners’ emotional
states and motivations in real time, enabling the provision of the most suitable learning
environment. By analyzing student focus or engagement levels, it becomes possible to
offer personalized learning content, maximizing learning outcomes. A study developed
instructional design principles incorporating multimodal elements to improve student
concentration in remote learning contexts [1]. Another study explored changes in teachers’
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perceptions of online classes following the COVID-19 pandemic, systematically identifying
the strengths and weaknesses of online education and seeking new educational possibilities
based on these insights [2]. In healthcare, the potential applications of emotion recognition
technology are significant. By continuously monitoring patients’ psychological and emo-
tional states, this technology can propose optimized healthcare and treatment strategies
tailored to individuals. Research on IoT-based smart healthcare systems has demonstrated
their ability to collect and analyze personalized health data, enabling customized medical
care and status monitoring [3]. Additionally, AI-based well-being support systems for
the elderly have been shown to induce psychological stability, alleviate depression, and
improve quality of life in older adults [4]. Emotion recognition also plays a crucial role
in systems supporting emotional labor. Due to the inherently emotionally demanding
nature of their work, emotional laborers require appropriate feedback to manage stress
and fatigue effectively. One study introduced an AI-powered smart healthcare exercise
management system that monitors individuals’ health in real time and provides solutions
to reduce fatigue [5]. Research on personalized health management systems for home
patients has also highlighted their effectiveness in monitoring daily health conditions and
facilitating medical intervention when necessary, creating a more efficient environment for
both patients and healthcare providers [6]. These prior studies underscore the importance
of emotion recognition models capable of accurately capturing user emotions. The model
proposed in this study reflects this necessity and is expected to contribute significantly
to enhancing user-centric services across various domains, including remote education,
healthcare, and emotional labor support.

Existing studies on multimodal emotion recognition, which simultaneously utilize text
and speech, have aimed to enhance the accuracy and reliability of emotion recognition by
complementing subtle emotional signals that are difficult to capture with a single modality.
For example, Seunghyun Yoon’s study [7] extracted features such as MFCC (mel-frequency
cepstral coefficients), energy, and pitch from speech data, while text was processed as tran-
scriptions using a Bag-of-Words approach, with feature vectors from both modalities simply
concatenated. Young-Jun Kim’s study [8] converted speech signals into spectrograms, ex-
tracting features through CNN, while the text modality employed word embeddings
processed via a CNN-LSTM architecture to learn sequential information. By averaging the
output values of the two models, the study effectively combined time–frequency domain
features with linguistic contextual information to predict emotions. Similarly, H. Park’s
study [9] combined text embeddings generated by KoBERT with CNN-based speech analy-
sis, using a weighted average ensemble method to comprehensively understand user states.
These multimodal approaches share the common goal of improving learning performance
by integrating complementary information provided by text and speech. However, they
often face limitations, such as restricted information exchange between modalities or the
omission of critical cues, leading to reduced performance improvements. To overcome
these challenges, this study proposes the HyFusER (Hybrid Multimodal Transformer for
Emotion Recognition Using Dual Cross Modal Attention) model. Unlike previous studies
that relied on simple concatenation or independent learning structures between modalities,
the HyFusER model strengthens interactions between text and speech to effectively inte-
grate information without losing key cues. Specifically, the Dual Cross Modal Attention
mechanism focuses on maximizing the exchange of information by reinterpreting text and
speech data in each other’s contexts. This approach enables the model to fully exploit the
complementary characteristics of the two modalities, paving the way for more accurate
and reliable emotion recognition.

The proposed model in this study begins by independently processing text and speech
data through separate transformer encoders for each modality. Subsequently, the Dual
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Cross Modal Attention mechanism is employed to strengthen interactions between text
and speech. In the first stage, text is set as the primary input (Query), while speech serves
as the auxiliary input (Key and Value). This configuration allows text to effectively learn
the acoustic characteristics and speech patterns embedded in the speech data. In the second
stage, the roles are reversed. speech becomes the primary input (Query), and text serves
as the auxiliary input (Key and Value). This enables speech to learn the linguistic context
and semantic structure of the text data. This iterative process enhances the interaction
between text and speech, facilitating efficient exchange and fusion of modality-specific
information. As a result, the model maximizes integrated representation learning. Finally,
the learned features of text and speech are combined using an average ensemble method to
predict the final emotional state. The proposed HyFusER model leverages the strengths
of both text and speech, significantly improving the accuracy and reliability of emotion
recognition. It is anticipated to make meaningful contributions to various applications,
including emotion-based conversational AI, healthcare, remote education, and emotional
labor support. Future research aims to expand the scope by incorporating additional
modalities, such as facial images, to enhance the performance of multimodal emotion
recognition technologies capable of identifying more complex and diverse emotional states.
The main strengths of the proposed HyFusER model are as follows:

• Integration of Complementary Information: By employing Dual Cross Modal At-
tention, the model effectively combines information from text and speech, en-
abling recognition of complex emotional signals that are difficult to capture using a
single modality.

• High Learning Efficiency: The design allows each modality to learn features within
the context of the other, ensuring that critical cues essential for emotion recognition
are not missed.

• Improved Prediction Accuracy and Reliability: By fully leveraging the strengths of
both text and speech, the model significantly enhances the accuracy and reliability of
emotion prediction.

• Applicability to Various Domains: The model demonstrates high performance in
practical applications requiring emotion recognition, including emotion-based conver-
sational AI, healthcare, remote education, and emotional labor support.

The structure of this paper is as follows. Section 2 defines and reviews the contents of
previous studies related to multimodal emotion recognition. Section 3 explains the details
of the technologies used in this study. Section 4 describes the experimental procedures of
the proposed emotion recognition model. Section 5 evaluates the experimental results of
the proposed model. Finally, Section 6 presents the conclusion of this study and discusses
its significance and future research directions.

2. Related Work
This chapter covers recent trends and key insights in multimodal emotion recognition

studies utilizing text and speech. Methods based on single modalities are limited in captur-
ing subtle emotional signals due to the inherent constraints of each modality. In contrast,
multimodal approaches that integrate various modalities—such as linguistic, acoustic,
or visual information—can significantly improve the accuracy of emotion recognition by
leveraging the complementary strengths of different data types. Consequently, recent
studies in emotion recognition have actively explored multimodal approaches to more
precisely identify emotional states. Among these, this paper focuses on multimodal emo-
tion recognition that combines text and speech. The complementary interaction between
linguistic context and non-verbal acoustic signals allows for the recognition of complex
emotional states that are difficult to capture with a single modality.
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Seunghyun Yoon’s study [7] proposed a simple concatenation approach for combin-
ing text and speech modalities. Acoustic features such as MFCC, energy, and pitch were
extracted from speech data, while transcription data from text was processed using the Bag-
of-Words method to extract key emotion-relevant keywords. The resulting feature vectors
from both modalities were concatenated and fed into a multilayer perceptron (MLP)-based
model for emotion classification. This study demonstrated higher accuracy in emotion
recognition compared to single-modality approaches, highlighting the complementary
relationship between speech and text. Young-Jun Kim’s study [8] converted speech signals
into spectrograms, which were processed using CNN to extract acoustic features. For the
text modality, word embeddings were generated and fed into a CNN-LSTM architecture
to capture sequential information. The final outputs of the text and speech models were
combined using an average ensemble method for emotion prediction. This process, which
considers both temporal-frequency domain features of speech and contextual informa-
tion from text, showed that more refined emotion recognition is achievable compared to
simple concatenation.

H. Park’s study [9] proposed an algorithm combining text-based and speech-based
emotion recognition to comprehensively understand user states. Text data underwent
preprocessing steps such as tokenization, neutral data removal, and label mapping, fol-
lowed by embedding using KoBERT. Speech data features were extracted using MFCC
and analyzed with a CNN-based model. The results from both modalities were combined
using a weighted average ensemble method, reflecting the importance of each modality.
This integration significantly improved emotion recognition accuracy and provided higher
reliability in assessing actual user states. Sung-Sik Kim’s study [10] utilized RoBERTa for
sentence-level text embeddings to incorporate rich linguistic context and applied MFCC
and HuBERT for deep acoustic feature extraction in the speech modality. These feature
vectors were combined to construct multimodal representations, and the final emotion class
was predicted. The study demonstrated superior performance compared to single-modality
approaches by maximizing the interaction between text embeddings that convey diverse
contextual meanings and speech embeddings that reflect speaker tone, pitch, and prosody.

Yuchul Byun’s study [11] proposed Early Fusion, Late Fusion, and Hybrid Fusion
methods for combining text and speech modalities in multimodal emotion recognition,
comparing and analyzing their performance. Text embeddings were extracted using
LLaMa2, and acoustic features were obtained using HuBERT. In the Late Fusion method,
softmax probability values from modality-specific models were averaged to predict the final
emotion. This method achieved over 11% higher accuracy than single-modality approaches,
effectively combining information from text and speech to produce excellent results in
complex emotion recognition scenarios. Jayashree Agarkhed’s study [12] focused on the
interaction between modalities in multimodal emotion recognition. Text embeddings were
generated using a Recurrent Text Encoder (TRE), capturing sentence-level information and
sequential characteristics, while speech features were learned through an Audio Recurrent
Encoder (ARE). The extracted text and speech vectors were concatenated into a unified
vector, which was fed into an RNN-based final network for emotion classification. This
approach achieved significant improvements in emotion recognition recall and precision
by finely integrating the non-verbal elements of speech with the contextual information
from text.

Makhmudov’s study [13] proposed a method to enhance multimodal emotion recog-
nition by applying an attention mechanism to a BERT and CNN architecture. The text
modality utilized a BERT-based model to extract linguistic features, while the speech modal-
ity employed a CNN to analyze acoustic features. An attention mechanism was then used
to effectively fuse information from both modalities for emotion classification. Lin Feng’s
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study [14] introduced a model leveraging multi-scale MFCCs and a multi-view attention
mechanism. In the speech modality, rich emotional features were extracted using MFCCs
at different scales. For interaction with the text modality, emotional features were compre-
hensively fused across four aspects: speech self-attention, text self-attention, text-guided
speech attention, and speech-guided text attention. Additionally, gender recognition was
incorporated as an auxiliary task to enhance learning of gender-specific emotional cues.
A combined loss function, integrating softmax cross-entropy loss and center loss, further
improved emotion recognition accuracy.

Jiachen Luo’s study [15] proposed the Cross-Modal RoBERTa (CM-RoBERTa) model for
utterance-level emotion recognition. This model dynamically captured interactions between
speech and text modalities using parallel self-attention and cross-attention mechanisms,
effectively learning intra-modal and inter-modal features. The use of mid-level fusion
and residual connections enabled modeling of long-term contextual dependencies and
modality-specific patterns, achieving superior performance. Rutherford Agbeshi Patamia’s
study [16] suggested a multimodal emotion recognition model employing pre-trained
transformer frameworks for self-supervised learning of speech and text representations,
augmented by motion capture data. Speech features were extracted using wav2vec 2.0,
text features using BERT, and motion capture data added non-verbal behavioral cues.
These features were fused at the feature level for emotion classification, demonstrating
excellent results.

Peiying Wang’s study [17] proposed a novel approach for multimodal emotion recog-
nition by leveraging label information. Representative label embeddings were generated
for both text and speech modalities, and label-token and label-frame interactions were em-
ployed to learn label-enhanced representations for each utterance. A label-based attention
fusion module was designed to integrate these enriched text and speech representations,
achieving superior classification performance. Zhen Wu’s study [18] conducted an em-
pirical analysis of the impact of fusion strategies on the performance of audio and text
modalities in multimodal emotion recognition. The study explored various fusion meth-
ods, identifying effective approaches while preserving the unique emotional expression
characteristics of each modality. To further enhance model performance, a Perspective Loss
function was introduced to maintain modality-specific emotional features during fusion.

Recent multimodal emotion recognition studies have been progressing toward mod-
eling interactions between modalities more precisely to improve the accuracy of emotion
recognition. Initially, research focused on processing each modality independently or com-
bining text and speech modalities through simple concatenation or ensemble techniques.
However, these approaches have limitations in adequately capturing the unique characteris-
tics of each modality, leading to missed critical information exchanged between modalities.
In particular, failure to effectively model the information exchange occurring at interme-
diate layers can result in performance constraints at the final emotion classification stage.
Recently, methods combining attention mechanisms with self-supervised learning have
enabled more precise emotion recognition while enhancing data efficiency. Furthermore,
studies leveraging label information or improving fusion mechanisms between modalities
have opened new possibilities for recognizing complex emotional states. In line with these
advancements, this study proposes a hybrid multimodal emotion recognition model that
combines Intermediate Layer Fusion and Last Fusion using Dual Cross Modal Attention to
integrate the text and speech modalities, enabling precise emotion recognition.
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3. Background
3.1. Text Feature Extraction: The KoELECTRA Modal

KoELECTRA is a transformer-based pre-trained language model developed to effec-
tively process and analyze Korean text. It is built upon ELECTRA (Enhanced Representation
through Clustering) [19] and is specifically optimized to reflect the grammatical features
and lexical diversity of the Korean language. Unlike traditional masking techniques em-
ployed by models like BERT, ELECTRA adopts a training strategy that involves two models:
a generator and a discriminator. This approach generates fake data and performs a process
where the discriminator distinguishes between real and fake tokens, leading to more refined
representation learning. Specifically, during training, the generator predicts masked tokens
in the input sentence, as shown in Equation (1), while the discriminator differentiates
between tokens restored by the generator and actual tokens, as shown in Equation (2). As
this process is repeated, the discriminator becomes increasingly adept at identifying fake
tokens, and the generator learns to produce natural tokens that can deceive the discrimi-
nator. Consequently, the ELECTRA architecture facilitates a deeper understanding of the
contextual meaning of text, enabling the learning of rich linguistic representations.

LG = −
n

∑
i=1

logpG(xi|x) (1)

LD = −
n

∑
i=1

[yilogpD(yi|x) + (1 − yi)log(1 − pD(yi|x))] (2)

KoELECTRA is a language model optimized to effectively process the grammatical
characteristics and lexical diversity of the Korean language, building upon the architecture
of ELECTRA. Its core structure, like ELECTRA, consists of two models: a Generator and a
Discriminator. The model achieves refined contextual understanding by predicting masked
words in text data and determining whether the predicted words match the original ones.
Inheriting this structure, KoELECTRA is designed to handle the complex contextual and
grammatical structures of Korean effectively. For instance, in the sentence ‘내가실력이
부족한건맞아’ (‘It is true that I lack skill’), KoELECTRA masks specific words, allowing
the Generator to restore the masked words based on the context, while the Discriminator
assesses the authenticity of the restored words. Since this study is conducted in Korean, the
examples are provided to align with Korean text embeddings. Figure 1 visually summarizes
the structure and operation of the Generator and Discriminator in KoELECTRA.
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KoELECTRA places a strong emphasis on reflecting the unique linguistic character-
istics and grammatical structures of the Korean language, enabling high performance in
Korean-specific tasks such as emotion recognition. As an agglutinative language, Korean
exhibits variations in the meaning of words depending on context, particles, and verb
endings, which directly influence the emotions conveyed in a sentence. KoELECTRA ad-
dresses these features by effectively deconstructing sentences through morpheme analysis
and incorporating embeddings that capture complex particle and verb transformations,
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resulting in high accuracy in Korean emotion recognition. Furthermore, KoELECTRA is
pre-trained on a large-scale Korean emotion dataset, allowing it to learn text patterns that
represent a wide range of emotional states. This capability enables the model to accurately
capture not only positive and negative emotions but also subtle emotional nuances arising
from differences in expression. As a result, KoELECTRA demonstrates high accuracy and
precision in analyzing emotions in Korean text and has established itself as a key tool for
building Korean emotion analysis systems. In this study, the KoELECTRA Base-V3 model
is utilized, and its performance is summarized in Table 1.

Table 1. KoELECTRA base model performance table.

NSMC
(acc)

Naver
NER
(F1)

PAWS
(acc)

KorNLI
(acc)

KorSTS
(spearman)

Question
Pair
(acc)

KorQuaD
(Dev)

(EM/F1)

Korean-
Hate-Speech

KoBERT 89.59 87.92 81.25 79.62 81.59 94.85 51.75/
79.15 66.21

XLM-
Roberta-Base 89.03 86.65 82.80 80.23 78.45 93.80 64.70/

88.94 64.06

HanBERT 90.06 87.70 82.95 80.32 82.73 94.72 78.74/
92.02 68.32

KoELECTRA-
Base 90.33 87.18 81.70 80.64 82.00 93.54 60.86/

89.28 66.09

KoELECTRA-
Base-V2 89.56 87.16 80.70 80.72 82.30 94.85 84.01/

92.40 67.45

KoELECTRA-
Base-V3 90.63 88.11 84.45 82.24 85.53 95.25 84.83/

93.45 67.61

3.2. Speech Feature Extraction: HuBERT Modal

HuBERT (Hidden Unit BERT) [20] is a self-supervised learning-based model designed
to extract high-dimensional and multifaceted features from speech signals. It is specifically
developed to efficiently learn both linguistic and non-linguistic information from speech
representations. The core idea of HuBERT is to effectively capture the inherent structure and
complex acoustic characteristics of speech signals, enabling it to learn rich representations
that achieve superior performance in various downstream tasks. To achieve this, HuBERT
undergoes a two-stage learning process and leverages CNNs and transformer encoders to
extract both low-level and high-level features from input speech. Figure 2 illustrates the
architecture of the HuBERT model.
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The first stage, Offline Clustering, involves dividing speech data into multiple clusters
based on acoustic similarity using unsupervised learning techniques. The K-Means algo-
rithm is commonly employed for this process, assigning segments with similar acoustic
features to the same cluster, thereby automatically learning representative ‘acoustic units
(labels)’ for each segment. These cluster labels are later used as learning targets during the
masked prediction stage. The second stage, Masked Prediction Learning, is the core mecha-
nism of HuBERT training. After setting the acoustic unit labels obtained through offline
clustering as the learning targets, specific regions of the input speech data are intentionally
masked, making them inaccessible to the model. The model is then trained to infer the clus-
ter labels of the masked regions using only the information from the unmasked segments.
This process is mathematically represented by Equation (3). Through this learning process,
the model acquires the ability to reconstruct missing parts based on partial information,
ultimately gaining a deeper understanding of the structural characteristics and contextual
relationships within speech signals.

Lm( f ; X, M, Z) = ∑
t∈M

logp f (zt|X̂, t) (3)

In terms of feature extraction, HuBERT employs a multi-stage approach. First, raw
audio signals are transformed into low-level acoustic features using a Convolutional Neural
Network (CNN). The CNN effectively captures local patterns along the time and frequency
axes (e.g., energy distribution, frequency variations, and intensity of articulation), gener-
ating initial feature vectors. Next, a transformer-based encoder processes these low-level
features, learning to infer high-level characteristics such as utterance context, speaker
intent, emotion, and style. By leveraging multi-head attention mechanisms, the transformer
encoder captures long-term dependencies and reconstructs rich representation vectors that
reflect the interactions between various elements within the speech data. This learning
strategy enables HuBERT to achieve high performance across a range of speech-based
applications, including speech recognition, speaker classification, and emotion analysis.
The acoustic units automatically obtained during the offline clustering stage serve as ro-
bust targets for self-supervised learning. During the masked prediction stage, the model
develops the ability to infer the full characteristics of speech signals from partial informa-
tion. As a result, HuBERT internalizes the multidimensional and complex features within
speech data, making it an exceptionally useful tool for various downstream tasks related to
speech processing.

3.3. Cross Modal Attention in Multimodal Environments

In a multimodal environment, effectively modeling the interactions between hetero-
geneous modalities such as text, speech, and images requires a structure that not only
preserves the unique information of each modality but also facilitates their meaningful
integration. One prominent technique for achieving this is Cross Modal Attention. This
method uses ‘query information’ extracted from one modality (e.g., text) to combine the
features (key and value) generated by another modality (e.g., speech), enabling the model
to learn complex interactions and semantic structures that are difficult to capture with a
single modality [21,22]. For instance, in learning the relationships between text and speech,
text serves as the ‘query’ specifying what information is being sought, while detailed
and non-verbal features from speech (e.g., intonation, emotion, pitch variations) act as
the key and value. This enables a semantic fusion that organically integrates text and
speech. However, in traditional structures where the query is fixed to text and the key and
value are sourced from speech, a text-dominant bias can arise. This configuration, while
advantageous for its fast learning and consistency, risks underrepresenting critical non-
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verbal information from speech in tasks like emotion recognition. Ideally, in a multimodal
environment, text and speech should interact bidirectionally, with speech complementing
text and text interpreting or realigning speech. Unfortunately, in a structure where text is
always the query, speech is limited in its ability to rearrange or adjust textual representa-
tions actively. To address this bias, this paper proposes a Hybrid Multimodal Transformer
structure that enables text and speech to play equal roles. By mitigating text-dominant bias,
this approach ensures richer incorporation of non-verbal information embedded in speech,
facilitating true cross modal learning and delivering more balanced and comprehensive
multimodal integration.

4. Hybrid Multimodal Transformer for Emotion Recognition
4.1. Overall Process

This paper proposes the HyFusER (Hybrid Multimodal Transformer for Emotion
Recognition Using Dual Cross Modal Attention) model. The proposed model is explained
in three stages. In the Feature Extraction stage, text and speech data are transformed into
feature vectors using KoELECTRA and HuBERT, respectively. In the Intermediate Layer
Fusion stage, text and speech data are processed through separate transformer encoders,
followed by complementary learning between the two modalities using Dual Cross Modal
Attention. Finally, in the Last Fusion stage, the results learned in the previous stage are
combined using average ensemble to recognize the final emotion. Figure 3 illustrates the
overall structure of the proposed method.
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4.2. Extract Text and Speech Features

This section includes the preprocessing steps for embedding text and speech data to
effectively learn the features of different modalities. This process enhances interaction by
transforming both modalities to have the same dimensions and categories.

To accurately capture the grammatical and semantic context of the Korean language,
text data are embedded using the KoELECTRA base-v3 model. KoELECTRA is a pre-
trained language model specialized for Korean, transforming each word within a sentence
into a 768-dimensional vector. Consequently, the embedded output for a given sentence is
a vector with dimensions corresponding to the number of tokens in the sentence and the
embedding dimension of KoELECTRA (768). For instance, a sentence with 10 tokens is
converted to a (10,768) vector, while one with 30 tokens becomes a (30,768) vector. To train
deep learning models, all sentences must have consistent dimensions. First, the maximum
number of tokens across the dataset is determined. The text data are then tokenized using
KoELECTRA’s tokenizer, and each sentence is padded to match the maximum token count.
Padding involves adding [PAD] tokens to sentences with fewer tokens, ensuring uniform
lengths. The maximum token count identified is 126, and all sentences are normalized to
this length. As a result, the final text data are transformed into fixed-dimensional vectors
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of size (number of samples, 126,768), where 126 represents the number of tokens and 768 is
the embedding dimension of KoELECTRA. This preprocessing ensures that the text data
have a consistent input format for deep learning model training.

Speech data are embedded using the HuBERT ls960 model. HuBERT learns temporal
and spectral characteristics of speech, generating refined speech representation vectors.
The vectors extracted by HuBERT vary in dimensions depending on the temporal length of
the speech data. To input both text and speech data into the same deep learning model, the
embedding sizes of the two modalities must match. To achieve this, linear interpolation is
applied, where data with insufficient length are expanded by filling data points between
existing ones, and data with excess length are compressed by reducing intervals between
data points. Consequently, the speech data are reshaped to match the dimensions of the
text data, resulting in vectors of size (number of samples, 126,768). Through this process,
both text and speech data are aligned to identical dimensions, ensuring compatibility for
model training.

To accurately learn the interaction between text and speech, a scaling process is
required to standardize the categories of the two data modalities. The proposed method
employs Standard Scaling, which adjusts the mean to 0 and variance to 1. To verify the
consistency of the three-dimensional modalities, the mean is calculated along the first
dimension (number of samples N) and the second dimension (sequence length T). This
calculation summarizes the data into a one-dimensional array for each feature dimension
D in the third axis. The summarized results are then analyzed and visualized to extract
meaningful information. The process of this calculation is expressed by Equation (4) in the
paper. This ensures that the features from both text and speech are normalized, enabling
precise and balanced learning of cross modal interactions.

X =
1

NT

N

∑
n=1

T

∑
t=1

Xnt (4)

The analysis of each dataset reveals that the text data range from −6.4 to 9.97, while the
speech data range from −1.91 to 0.94. If Standard Scaling is applied independently to each
modality, the data will be adjusted based on their respective means and standard deviations,
resulting in different ranges even after scaling. To address this issue, the proposed method
merges the two datasets into a single combined set and then applies Standard Scaling as
described in Equation (5). This ensures that both text and speech data are scaled uniformly,
aligning their ranges and enabling effective cross modal learning.

X = concat(XT , XS)

S = (X−µ)
σ

(5)

Using this method, the two datasets share the same mean and standard deviation,
resulting in standardized data with identical ranges and statistical properties. Consequently,
both text and speech data are scaled to the range of −1 to 1. Finally, for input into the deep
learning model, the text and speech data are separated again as described in Equation (6).
The visualization results of each process are presented in Figure 4, illustrating the alignment
and consistency achieved through this scaling approach. This ensures the model receives
uniformly processed data, facilitating effective joint learning.

X′
T = S[:, 0 : m]

X′
S = S[:, m : n]

(6)
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The feature-extracted text and speech data are transformed into vectors of shape
(number of samples, 126,768) and then passed into the transformer encoder within the
proposed model. The text data, embedded with features learned through KoELECTRA,
and the speech data, embedded with features learned through HuBERT, are individually
processed by separate transformer encoders. Subsequently, the Dual Cross Modal Attention
mechanism facilitates the learning of interactions between the two modalities, enabling
effective integration of their complementary features.
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4.3. Hybrid Multimodal Transformer for Emotion Recognition Model

The objective of this section is to explain the process of recognizing emotions by ef-
fectively learning the features of different modalities, namely, text and speech data. The
Multimodal Transformer utilizes Intermediate Layer Fusion and Last Fusion to optimize
the interactions between text and speech, ultimately enhancing emotion recognition per-
formance. The proposed model is a multimodal deep learning framework based on text
and speech data. Through feature learning and integration at each stage, it overcomes
the limitations of existing models and improves accuracy. By leveraging these fusion
mechanisms, the model achieves a more refined understanding of cross modal features,
contributing to superior emotion recognition capabilities.

4.3.1. Intermediate Layer Fusion

The embedded text and speech data are each passed through a transformer encoder,
which is used to learn the contextual and structural features of the input data. The trans-
former encoder used in this study consists of three layers, with each layer comprising
Multi-Head Attention and a Position-Wise Feed Forward Network. Multi-Head Attention
performs multiple attention heads in parallel, learning the input data from various per-
spectives. This reduces dependency on specific parts of the data and enables the learning
of more comprehensive features. The Position-Wise Feed Forward Network applies a
non-linear transformation to the attention output to learn more complex patterns, which is
applied independently to each sequence element. Through this process, the text and speech
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data maintain their unique characteristics while being effectively learned. The structure of
the transformer encoder is shown in Figure 5.
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Cross Modal Attention is utilized to learn the interactions between text and speech,
extracting the most significant information from both modalities simultaneously. However,
the learning direction in Cross Modal Attention depends on the configuration of Query (Q),
Key (K), and Value (V). For example, if text is set as the Query and speech as the Key and
Value, the model learns to interpret speech based on text information. This unidirectional
learning approach may limit the complementary learning between text and speech. To
address this limitation, a Dual Cross Modal Attention learning strategy is introduced,
dividing the learning process into Step 1 and Step 2 to enable bidirectional and more
effective cross modal learning.

1. Step 1: In this step, the text embeddings are set as the Query, and the speech embed-
dings are set as the Key and Value. The learning process, as described in Equation (7),
complements the features of speech based on the contextual information from the
text. This approach enhances emotion recognition performance by focusing on text-
centric features.

CrossModalAttention(QT , KS, VS) = softmax(
QTKT

S√
dk

)VS (7)

2. Step 2: In this step, the speech embeddings are set as the Query, and the text embed-
dings are set as the Key and Value. The learning process, as described in Equation (8),
leverages the temporal and acoustic characteristics of speech to learn the semantic
information from text. This approach improves emotion recognition performance by
focusing on speech-centric features.

CrossModalAttention(QS, KT , VT) = softmax(
QSKT

T√
dk

)VT (8)

The results learned through Step 1 and Step 2 are reflected as two distinct probability
distributions: a text-centric probability distribution that primarily captures the nuances
of emotions perceived through text, and a speech-centric probability distribution that
embodies the unique characteristics of speech, such as tone, pitch, and intensity. Each of
these probability distributions represents the unique perspectives of text and speech, acting
complementarily to enhance emotion recognition performance. These distributions serve
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as key inputs for the subsequent stages, leveraging the strengths of both modalities to
achieve a more comprehensive understanding of emotions.

4.3.2. Last Fusion

In the Last Fusion stage, the two outputs derived from the Intermediate Layer Fusion
are combined to predict the final emotion. This stage aggregates the characteristic infor-
mation from the text-centric probability distribution and the speech-centric probability
distribution using a GlobalAveragePooling1D Layer and a Dense Layer, subsequently
predicting emotions as probabilities. The final emotion is determined through an average
ensemble of these probabilities. The GlobalAveragePooling1D Layer compresses the se-
quence information of each modality, extracting global features. The Dense Layer uses the
softmax function to calculate probabilities for each emotion. This structure preserves the
unique characteristics of each data type while providing suitable vector representations
for emotion classification. The detailed architecture of the Last Fusion stage can be seen in
Figure 6.
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The average ensemble is used to merge the emotion predictions, calculated as proba-
bilities, to produce more refined emotion predictions. This process integrates the learning
results of text and speech data with equal weights, reflecting the strengths of both data
modalities while minimizing biases from individual learning. The average ensemble is
defined in Equation (9), which represents the process of generating the final prediction
by taking the simple average of the emotion probability distributions derived from each
modality. This approach ensures balanced contributions from both text and speech, leading
to a more robust and accurate emotion recognition outcome.

Y = argmax(
YY + YS

2
) (9)

This ensemble strategy is particularly effective in addressing discrepancies that may
arise from the inherent characteristics of text and speech data. For example, text data often
excel in capturing the semantic meaning of emotions, while speech data provide valuable
paralinguistic cues such as tone and pitch. By equally weighting these two modalities, the
model avoids over-reliance on either modality, ensuring a more holistic understanding of
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emotional expressions. Furthermore, this method enhances the generalization capability of
the model, as it leverages complementary information from both modalities rather than
treating them independently. This approach enhances the prediction consistency across
various emotion classes and improves the model’s stability. For instance, if the prediction
probabilities for a specific emotion are 0.85 and 0.80 from text and speech, respectively,
the average ensemble calculates the final prediction probability as (0.85 + 0.80)/2 = 0.825.
Among the calculated probabilities for each emotion, the highest probability determines
the final emotion. This simple yet effective technique not only smoothens prediction
fluctuations across modalities but also ensures that less confident predictions from one
modality are supplemented by the strengths of the other. Table 2 provides an example of
the prediction results for a sentence. This method more accurately reflects the interaction
between the two modalities, thereby improving the reliability and accuracy of emotion
recognition. As such, the Last Fusion stage plays a pivotal role in synthesizing the outcomes
of multimodal learning, maximizing the complementary learning between text and speech.
For example, in cases where a speech signal may lack clarity due to noise, the text-based
analysis can compensate by providing accurate semantic context, and vice versa. This cross
modal interaction highlights the model’s ability to handle real-world data variability and
ensures that the final emotion prediction is both consistent and robust.

Table 2. Final emotion prediction example.

Emotion Step 1 Model Step 2 Model Average Ensemble Final Emotion

Angry 0.0110 0.0052 0.0081

neutral

Disgust 0.0012 0.0015 0.0013
Fear 0.0079 0.0111 0.0095

Happy 0.2358 0.3191 0.2775
Neutral 0.5105 0.625 0.5677

Sad 0.0196 0.0088 0.0142
Surprise 0.2137 0.0290 0.1213

Algorithm 1 explains the entire process of the proposed model.

Algorithm 1. Hybrid Multimodal Transformer Emotion Recognition Model

Input: Text data DT , Speech data DS

Output: Emotion Classification Y
//Modal Definition
CrossModalAttention(Q, K, V) : softmax

(
QKT
√

dk

)
V, GlobalAveragePooling1D : 1

T ∑T
t=1 Ht

//Feature Extraction
XT = KoELECTRA(DT), XS = HuBERT(DS)

X = concat(XT , XS), S = (X−µ)
σ

X′
T = S[:, 0 : m], X′

S = S[:, m : n]
//Step 1: Intermediate Layer Fusion
ET = TransformerEncoder(X′

T), ES = TransformerEncoder(X′
S)

QT = ET , KS = ES, VS = ES, HT = CrossModalAttention(QT , KS, VS)

GT = GlobalAveragePooling1D(HT)

YT = softmax(WTGT + bT)

//Step 2: Intermediate Layer Fusion
ET = TransformerEncoder(X′

T), ES = TransformerEncoder(X′
S)

QS = ES, KT = ET , VT = ET , HS = CrossModalAttention(QS, KT , VT)

GS = GlobalAveragePooling1D(HS)

YS = softmax(WSGS + bS)

//Last Fusion
Y = argmax

(
YT+YS

2

)
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4.3.3. Hyperparameter Settings

The proposed multimodal emotion recognition model was trained with a well-
structured configuration to ensure robust performance and strong generalization capa-
bilities. The Adam optimizer, with a learning rate of 0.0001 chosen through empirical
evaluation, balanced convergence speed and model stability. A batch size of 32 ensured
efficient training while maintaining the ability to capture representative gradients for pa-
rameter updates. The model was trained for a maximum of 30 epochs, with early stopping
applied to prevent overfitting by halting training when validation accuracy failed to im-
prove for three consecutive epochs. This approach reduced unnecessary computations
while preserving generalization performance. Additionally, a ModelCheckpoint mecha-
nism saved the model weights corresponding to the best validation accuracy, ensuring the
optimal model was preserved for subsequent evaluations. Activation functions played a
pivotal role in capturing the nonlinear relationships inherent in multimodal data. The ReLU
activation function, applied within the feed-forward layers of the transformer encoder and
CrossModalAttention components, introduced nonlinearity and facilitated the learning
of complex patterns. In the output layer, a softmax activation function computed class
probabilities for the seven emotion categories. These probabilities from both modalities
were combined through an ensemble averaging approach, leveraging complementary
information to produce the final emotion recognition outputs.

To stabilize training and mitigate overfitting, regularization techniques were inte-
grated. Layer normalization, with an epsilon value of 0.000001, was applied after attention
and feed-forward computations within the transformer encoder, ensuring numerical stabil-
ity and consistent activation magnitudes. This contributed to improved training dynamics
and performance reliability. The Sparse Categorical Crossentropy loss function was em-
ployed, as the emotion labels were represented as integers rather than one-hot encodings,
aligning effectively with the dataset’s multiclass classification structure. Architecturally,
each modality—audio and text—was processed through three transformer encoder layers,
enabling the extraction and refinement of hierarchical feature representations. A single
attention head in each encoder simplified the model design while maintaining the capacity
to capture essential cross modal interactions. The feed-forward network dimension was
set to 768, providing sufficient capacity to represent rich multimodal features without
incurring excessive computational overhead.

In summary, the proposed training configuration and architectural design collectively
optimized the model’s ability to recognize emotions from multimodal inputs. The thought-
ful selection of hyperparameters, combined with robust regularization and optimization
strategies, ensured the model achieved both efficiency and state-of-the-art performance.
These results underscore the effectiveness of the proposed approach and provide a strong
foundation for future extensions and real-world applications in multimodal emotion recog-
nition. The detailed configuration is summarized in Table 3.

Table 3. Hyperparameter details.

Parameter Value

Input Shape (126, 768)
Feed-Forward Dimension 768

Number of Layers 3
Number of Attention Heads 1
Layer Normalization Epsilon 0.000001

Activation Function ReLU
Optimizer Adam (Learning Rate 0.0001)

Early Stopping Monitor Val Sparse Categorical Accuracy
Early Stopping Patience 3
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Table 3. Cont.

Parameter Value

Loss Sparse Categorical Crossentropy
Model Checkpoint Monitor Val Sparse Categorical Accuracy

Batch Size 32
Epochs 30

5. Experimental Evaluation
5.1. Dataset

The data used in this study include the Korean multimodal emotion datasets
KEMDy19 [23] and KEMDy20 [24], provided by the Electronics and Telecommunications
Research Institute (ETRI). The KEMDy19 dataset was collected from 40 Korean voice actors,
where pairs of participants participated in one session per pair to collect data. Similarly,
KEMDy20 was collected from 80 adults aged 19–39 fluent in Korean speech, with pairs
participating in one session each to collect data. The collected datasets include various
modalities such as speech utterances, contextual meaning of the utterances, and physiologi-
cal signals (e.g., skin conductance, pulse intervals, wrist skin temperature). However, this
study only used text and speech data.

Upon analyzing the KEMDy20 dataset by emotion category, it was observed that
there were 11,120 samples for the neutral emotion, while disgust and fear emotions had
only 61 and 43 samples, respectively. This imbalance in emotion data poses challenges for
accurate analysis. To address this issue, the KEMDy19 dataset was additionally used to
augment the dataset. After merging the data, duplicate text entries and sentences with
fewer than two syllables were removed. Furthermore, to resolve the imbalance among
emotion categories, the number of neutral emotion samples was reduced to match the
count of the emotion category with the highest number of samples.

The total number of samples for each emotion category is summarized in Table 4. To
further evaluate the reliability of the proposed model, the Korean emotion recognition
dataset provided by AI-HUB [25] was used, following the same preprocessing procedures.

Table 4. KEMDy data number by emotion.

Emotion Collected Data Final Data Used

Angry 1352 1352
Disgust 446 446

Fear 840 840
Happy 2643 2643
Neutral 15,082 2643

Sad 1028 1028
Surprise 1429 1429

Total 22,820 10,381

5.2. Experimental Results

In this section, the proposed HyFusER model was evaluated using 10,381 text and
speech data samples from the KEMDy dataset. The dataset was split into an 8:2 ratio for
training and validation, with a primary focus on assessing the model’s performance using
text data. The performance evaluation was conducted using metrics such as Accuracy,
Recall, Precision, and F1-Score. To address the imbalance in the number of samples across
classes, this study utilized a weighted average approach. This method calculates the
average performance metric by weighting the metric of each class by its sample size and
dividing by the total number of samples. The formula is presented in Equation (10), where
wi denotes the sample size of the i-th class, and mi represents the performance metric of the
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i-th class. This approach ensures that the evaluation of model performance fairly accounts
for the class imbalance within the dataset, allowing each class to contribute equitably to the
overall assessment.

WeightedAverage =
∑n

i=1(wi × mi)

∑n
i=1 wi

(10)

To evaluate the performance of the proposed model, comparative experiments were
conducted with existing emotion recognition methodologies. The comparative models in-
cluded an LSTM model for text data; a CNN model for speech data; and several multimodal
approaches: an average ensemble model that predicts the final emotion by averaging the
results of single-modality models, a model utilizing Bidirectional Cross Modal Attention,
and the KoHMT [26] model. The experimental results are summarized in Table 5. The
results show that single-modality models demonstrated relatively lower performance. In
contrast, multimodal models, particularly the proposed HyFusER model, achieved superior
performance by leveraging the complementary learning between text and speech data.
These results validate that the hybrid approach, combining Intermediate Layer Fusion and
Last Fusion, is highly effective for emotion recognition. This approach provides critical
insights and contributes to advancing the field of emotion recognition.

Table 5. Performance evaluation for each model.

Model Accuracy (%) Recall
(Weighted)

Precision
(Weighted)

F1-Score
(Weighted)

LSTM (Text) 59.22 0.5922 0.6278 0.6046
CNN (Speech) 51.85 0.5185 0.6243 0.5584

Single modality
average ensemble 60.85 0.6085 0.6660 0.6292

Single modality
weighted average

ensemble
61.00 0.6100 0.6638 0.6292

Bidirectional Cross
Modal Attention 64.08 0.6408 0.6604 0.6419

KoHMT 65.62 0.6562 0.6739 0.6628
HyFusER 67.83 0.6783 0.6890 0.6823

To verify the reliability and generalization capability of the proposed HyFusER model,
the Korean Emotion Recognition Dataset provided by AI-HUB, composed of text and
speech, was additionally utilized. This dataset enabled the evaluation of the generalizability
of the results obtained from the KEMDy dataset and allowed the measurement of model
performance when applied to data from a different source. The experimental setup for the
AI-HUB dataset was consistent with that used for the KEMDy dataset. The data were split
into training and validation sets in an 8:2 ratio, and all comparative models, including the
proposed HyFusER model, were trained under identical conditions. This ensured a fair
performance comparison across the two datasets. Performance evaluation was conducted
using metrics such as Accuracy, Recall, Precision, and F1-Score, with results presented in
Table 6. Each metric was calculated as a weighted average to account for class imbalance.
Notably, by comparing the performance of the proposed model with that of single-modality
models and other multimodal models, the superiority and robustness of the HyFusER
model were demonstrated. These results highlight its effectiveness in emotion recognition
across datasets with different characteristics.

The Confusion Matrix analysis for evaluating the emotion recognition performance of
the proposed model clearly demonstrates how the model classifies each emotional state.
Figure 7 visually presents the accurate classifications and errors made by the model in
recognizing seven primary emotional states: ‘angry’, ‘disgust’, ‘fear’, ‘happy’, ‘neutral’,
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‘sad’, and ‘surprise’. The diagonal elements of the Confusion Matrix represent the number
of correctly classified instances for each emotion. For example, the model correctly classified
the ‘angry’ emotion 154 times and the ‘happy’ emotion 410 times. These numbers indicate
that the model shows relatively high accuracy in recognizing these emotions. In particular,
the ‘happy’ and ‘neutral’ emotions were the most accurately recognized, possibly due to
a sufficient amount of data for these emotions compared to others or because the model
effectively learned the features of these two emotions.

Table 6. Comparative experimental performance evaluation.

Model Accuracy (%) Recall
(Weighted)

Precision
(Weighted)

F1-Score
(Weighted)

LSTM (Text) 70.38 0.7038 0.7086 0.7039
CNN (Speech) 56.38 0.5638 0.5958 0.5703

Single modality
average ensemble 70.52 0.7052 0.7232 0.7075

Single modality
weighted average

ensemble
71.52 0.7152 0.7247 0.7164

Bidirectional Cross
Modal Attention 77.63 0.7763 0.7827 0.7770

KoHMT 77.45 0.7745 0.7780 0.7744
HyFusER 79.77 0.7977 0.7975 0.7975
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On the other hand, the off-diagonal elements represent the number of misclassified
instances for each emotion. For example, ‘angry’ was misclassified as ‘disgust’ 18 times,
and ‘happy’ was misclassified as ‘surprise’ 24 times. These misclassifications suggest that
certain emotions have overlapping characteristics or that the model has not sufficiently
learned the distinguishing features between some emotions. Additionally, emotions such
as ‘disgust’ and ‘fear’ showed relatively lower numbers of correct classifications, with
only 24 and 78 correctly classified instances, respectively. Furthermore, ‘disgust’ was
misclassified as ‘angry’ 16 times, and ‘fear’ was misclassified as ‘angry’ 54 times. This
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indicates that ‘disgust’ and ‘fear’ are either less distinct in their expression or that the
model has not effectively learned the features necessary to differentiate these emotions.
The high confusion between ‘fear’ and ‘angry’ emotions, with 54 instances of ‘fear’ being
misclassified as ‘angry’, highlights the overlapping characteristics of these emotions in
vocal and textual features.

For instance, trembling or heightened voices associated with ‘fear’ may be misinter-
preted as the aggressive tone characteristic of ‘angry’. This overlap demonstrates that the
model struggles to distinguish paralinguistic features such as tone modulation or energy
levels, which often blur the line between these emotions. Additionally, ‘fear’ appears to be
underrepresented compared to ‘angry’ in the dataset, leading to biased feature learning.
As a result, the model may prioritize the dominant ‘angry’ emotion features, inadvertently
reducing its ability to recognize ‘fear’ accurately. Strengthening spectral analysis can help
the model better capture subtle differences in vocal patterns. For example, trembling vocal
cords associated with ‘fear’ might display distinct frequency dynamics compared to the
sharp pitch shifts of ‘angry’, allowing the model to separate overlapping paralinguistic
cues more effectively. Furthermore, utilizing data augmentation methods to generate syn-
thetic data that mimics the vocal and textual characteristics of ‘fear’ can mitigate dataset
imbalance and provide a more comprehensive representation of underrepresented emo-
tions. By implementing these strategies, the model’s ability to differentiate between similar
emotions like ‘fear’ and ‘angry’ can be significantly improved, reducing misclassifications
and enhancing the overall robustness of the emotion recognition system. The Confusion
Matrix reveals lower classification accuracy for emotions like ‘disgust’ and ‘fear’, with
frequent misclassifications such as ‘fear’ being mistaken for ‘angry’. These errors highlight
challenges in distinguishing subtle emotional expressions and the limitations of imbalanced
datasets. While emotions like ‘happy’ and ‘neutral’ benefit from sufficient data represen-
tation, underrepresented emotions like ‘fear’ and ‘disgust’ suffer from biased learning.
Addressing these issues requires enhancing spectral analysis to better capture subtle vocal
differences and applying data augmentation methods to generate synthetic examples of
underrepresented emotions. These improvements can reduce misclassifications, balance
learning across emotions, and enhance the overall robustness and accuracy of the emotion
recognition system.

Figure 8 provides a comprehensive bar chart visualizing the performance of each
multimodal emotion recognition model across four key metrics: Accuracy, Recall, Precision,
and F1-Score. The performance values for these four key metrics were derived from Table 5.
The models selected for comparison include the average ensemble of single models, the
weighted average ensemble of single models, the Bidirectional Cross Modal Attention
model, the KoHMT model, and the proposed HyFusER model. Each model is evaluated
based on these performance metrics, enabling a direct comparison of their effectiveness.
Notably, the HyFusER model achieved the highest scores across all key performance metrics,
clearly outperforming existing multimodal models by a significant margin. The success of
the HyFusER model is attributed to the effective fusion of text and speech data, advanced
feature extraction techniques, and the application of efficient learning mechanisms. These
results demonstrate that the HyFusER model represents a substantial advancement in
the field of emotion recognition, suggesting its potential applicability in diverse domains
such as emotion-based conversational AI, healthcare, and remote education. In conclusion,
the performance comparison of multimodal emotion recognition models reaffirms the
effectiveness and superiority of multimodal approaches in recognizing and interpreting
complex emotional states. This analysis provides essential foundational data for the future
development and improvement of emotion recognition technologies.
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6. Conclusions
This paper proposes HyFusER: Hybrid Multimodal Transformer Emotion Recogni-

tion Model Combining Intermediate Layer and Last Fusion, a novel emotion recognition
model. Moving beyond traditional approaches that process text and speech data indepen-
dently, the model introduces an innovative hybrid fusion strategy that combines Interme-
diate Layer Fusion and Last Fusion to deeply and effectively integrate information from
both modalities.

At the core of the HyFusER model, features extracted from each data modality are first
processed through their respective transformer encoders. These features are then integrated
during the Intermediate Layer Fusion stage using the Cross Modal Attention mechanism,
which enables complementary learning of information between text and speech. This stage
maximizes the strengths of both modalities through their interaction, allowing for more
precise emotion recognition.

In the Last Fusion stage, the outcomes of the intermediate stage are combined using
an Average Ensemble approach to produce the final emotion recognition results. The
combination of these two fusion stages enhances the model’s performance and improves
the accuracy of emotion recognition. Experimental results demonstrate that the HyFusER
model outperforms existing multimodal models.

This superior performance validates the effectiveness of the proposed hybrid fusion
approach in integrating information from both modalities and minimizing potential infor-
mation loss during the emotion recognition process, enabling more accurate predictions.

Future research will expand this model by incorporating additional modalities, such
as facial expression recognition, to enable a deeper understanding of complex emotional
states. Moreover, it will explore the use of diverse datasets, covering variations in lan-
guage, cultural contexts, and emotional expressions, to enhance the model’s robustness
and applicability.

To achieve more nuanced and precise emotion detection, particularly in interactive
AI systems, the integration of facial video datasets alongside text and speech data will
be prioritized. Furthermore, research efforts will focus on ensuring the model’s practical
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usability by developing techniques for robust emotion recognition in challenging real-world
scenarios, such as noisy or dynamic environments.
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