
Academic Editor: Alexander Barkalov

Received: 29 December 2024

Revised: 15 January 2025

Accepted: 19 January 2025

Published: 21 January 2025

Citation: Kwon, J.; Park, D. MAIL:

Micro-Accelerator-in-the-Loop

Framework for MCU Integrated

Accelerator Peripheral Fast

Prototyping. Appl. Sci. 2025, 15, 1056.

https://doi.org/10.3390/

app15031056

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

MAIL: Micro-Accelerator-in-the-Loop Framework for MCU
Integrated Accelerator Peripheral Fast Prototyping
Jisu Kwon and Daejin Park *

School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea;
kjisu96@knu.ac.kr
* Correspondence: boltanut@knu.ac.kr; Tel.: +82-53-950-5548

Abstract: The resource-constrained MCU-based platform is unable to use high-performance
accelerators such as GPUs or servers due to insufficient resources for ML applications. We
define a Micro-Accelerator (MA) that can accelerate ML operations by being connected
to the on-chip bus peripheral of the MCU core. ML applications using general-purpose
accelerators have a well-equipped SDK environment, making design and verification
flow straightforward. In contrast, MA must be connected to the MCU core and on-chip
bus interface within the chip. However, evaluating the interaction between the MCU
core and an MA is challenging, as it requires the MA to connect with the core and the
on-chip bus interface during target software execution. The cost of fabricating physical
MA hardware is enormous, compounded by licensing issues with commercial cores. We
propose a MA-in-the-loop (MAIL) framework that integrates a custom-designed MA into an
emulation platform. This platform enables virtual execution by loading software onto the
MCU, allowing observation of hardware-software interactions during ML execution. The
proposed framework in this paper is a mixture of software that can emulate the environment
in which general ML applications run on the MCU and RTL simulations to profile the
acceleration on the MA. To evaluate the flow of ML software execution and performance
changes according to the various architectures of MA in the framework, the MA can
be reconfigured at runtime to explore the design space. To benchmark our proposed
framework, we compared TinyML application profiles to the pure software execution.
Experimental results show that the MA-accelerated framework performs comparably to
actual MCUs, validating the efficacy of the proposed approach.

Keywords: tiny machine learning; embedded system; microcontroller unit (MCU); accelerator;
system emulator

1. Introduction
Attempts to accelerate machine learning software to hardware accelerators have been

steadily considered important. It is necessary to ensure that the accelerator architecture
to overcome bottlenecks in machine learning applications is suitable for the target neural
computation and host system. Optimizing the accelerator architecture plays a huge role in
improving the performance of machine learning applications. To address this, we divided
the accelerators into three layers according to the weight parameter and the activation
memory size of the neural architecture that can be fitted.

The first layer is a high-performance GPU-based on-cloud layer [1]. Various large-
scale deep learning models can be applied with the device’s abundant resource and power
supply. The second layer is the on-board layer, and it has an accelerator connected with

Appl. Sci. 2025, 15, 1056 https://doi.org/10.3390/app15031056

https://doi.org/10.3390/app15031056
https://doi.org/10.3390/app15031056
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0433-9533
https://orcid.org/0000-0002-5560-873X
https://doi.org/10.3390/app15031056
https://www.mdpi.com/article/10.3390/app15031056?type=check_update&version=2


Appl. Sci. 2025, 15, 1056 2 of 15

interface protocol on the same system (e.g., PCB board) with the host device [2]. While the
on-board layer has lower capability compared to the on-cloud layer, it provides sufficient
resources to load and execute deep neural networks. The accelerator potential of deep
learning models has been proven on various platforms such as FPGAs and ASICs [3].
However, applying tiny machine learning (TinyML), which enables artificial intelligence
on low-cost, low-energy, resource-constrained microcontroller unit (MCU) devices, is a
significant challenge.

TinyML requires highly efficient neural architectures and optimized inference libraries
to operate within strict memory and power constraints [4,5]. These works evaluate acceler-
ation performance and accelerator structure for typical deep neural network computation
without considering internal MCU hardware characteristics. Therefore, we introduce a
third layer, which is an on-chip accelerator for TinyML. It connects to the core peripheral
bus inside the MCU chip and controls the accelerator behavior via memory-mapped special
function register (SFR) access. We define this peripheral-level accelerator for TinyML in the
on-chip layer as a Micro-Accelerator (MA).

Tensorflow Lite for Microcontrollers (TFLM) [6] and recently conducted works make
TinyML applications distributable to MCUs. These studies introduced a TinyML-optimized
network architecture search mechanism and inference library to address the memory, la-
tency, and energy constraints of MCUs [7,8]. The reason why it is difficult to apply the
aforementioned upper two acceleration layers to TinyML applications running on MCU is
the versatility of the accelerator. General-purpose accelerators like GPUs and NPUs are
offered to support various neural network models and deep learning architectures. TinyML
software (https://github.com/tensorflow/tflite-micro (accessed on 21 November 2024))
embedded in on-chip flash-memory has static behavior similar to the hardware. This is
because the software execution environment of an MCU exists in the form of firmware
stored in on-chip flash memory, and once deployed, the firmware executes the same code
repeatedly until it is reprogrammed using an external debugger device. To overcome
these limitations, we propose a micro-accelerator design for TinyML that integrates tightly
coupled software and hardware, enabling them to drive each other effectively. The in-
ternal hardware-software interaction of the MCU increases the complexity of the core
bus-connected peripheral design. Peripherals of the MCU do not have their functional
characteristics determined at design time but are determined at runtime by embedded
software in on-chip flash memory. For cycle-accurate verification of RTL-designed MA, it
is necessary to inspect the hardware triggers based on an understanding of the core bus
connections of the target MCU. In addition, dominant overheads from general accelerators
are memory transfers between host and device. To mitigate these challenges, the on-chip
MA leverages direct memory access (DMA) blocks, eliminating the need for sequential
register read/write operations and enhancing efficiency in neural computing tasks.

Figure 1 is the key idea for our approach. When designing accelerators, resource
constraints are always present, requiring careful consideration of the trade-off between
hardware area and delay. Therefore, it is necessary to design and evaluate the acceler-
ator RTL to determine how to allocate limited resources effectively to achieve optimal
performance. Applying the concept of pareto optimum, which represents the most optimal
point among resources with trade-offs, to accelerator design ensures a specification that
mitigates resource waste. To design a pareto-optimum MA architecture that is suitable for
the target MCU device neural computation, iterative parameter exploration is required for
accelerator RTL. MA parameters can be defined as memory-mapped register configurations
by neural computation scale and control flow scenarios. The parameter exploration is
required to find the pareto optimum in MA overhead and performance gain. Therefore,
the parameter exploration requests a compressive MCU system simulation that includes

https://github.com/tensorflow/tflite-micro


Appl. Sci. 2025, 15, 1056 3 of 15

iterative cycle-accurate MA RTL simulation. However, before reaching the interaction
stage between memory, DMA, and MA peripheral for neural computation acceleration, a
number of component initialization must be conducted in the core. A comprehensive RTL
simulation of a MA takes an excessively long time due to clocks consumed for instruction
fetching. Approaches using high-level abstracted hardware and analytical models to miti-
gate RTL simulation time costs have significantly reduced simulation times [9,10]. However,
this approach results in some loss of accuracy during the hardware abstraction process.
Therefore, we propose a micro-accelerator-in-the-loop (MAIL) framework by adopting a
software instruction executive emulators and RTL simulators mixed framework [11].

System Emulator RTL Simulator

MAIL Framework

CNN Workload

ConvNet;

⋯
MA_EN |= 0x1;
⋯

Output = MA_OUTPUT;

Virtual 

Peripheral for 

MA SFRs

Parameter 

Decode & 

MA RTL 

Generation

Testbench

MA RTL

CNN Model 

parameters for 

MA peripheral 

configuration

(Sched, Size, …)

TinyML

APP

Firmware

Flash

Memory

SRAM

AHB

Bus

Matrix APB

Bus

Peripheral #1

Peripheral #2

MA

⋯

DMA

Controller

Functional Emulation

Cycle-Accurate Simulation

Simulation 

Results

⋯

Full-system 

integrated on-chip 

bus accelerator 

prototyping 

Evaluation Result

Deploy

S
im

u
la

tio
n

WR

SW HW

Functional

Model for 

Binary 

ExecutionRD

G
e
n
e
ra

tio
n

Figure 1. Micro-Accelerator-in-the-Loop Framework Overview. MAIL framework inputs scalable
TinyML firmware and generates MA according to parameter from application. MAIL makes fast
MA prototyping and evaluating MA within the RTL simulator. The RTL simulation result becomes
feedback to the system emulator to be utilized as an MA parameter decision.

In this paper, we make the following specific contributions:

• We introduce the MA concept to represent MCU core bus attached peripheral-level
TinyML hardware accelerator with the DMA. The proposed MA can be inserted
for atomic neural network computation. The proposed MA supports atomic neural
network computations by facilitating data transactions directly through the memory-
mapped I/O (MMIO), eliminating the need for interface protocols on the PCB board.
We believe that our MA can overcome gap between TinyML and general purpose
accelerator for MCU, i.e., our MA can be used to allocate fine-grained acceleration for
TinyML software.



Appl. Sci. 2025, 15, 1056 4 of 15

• We propose MAIL framework for MA design parameter exploration. The proposed
framework takes as input (1) DMA controller clock, (2) memory access clock, and
(3) computation data. Based on these inputs, the framework outputs MA RTL profile
generated from cycle-accurate RTL simulation. A key challenge in our proposed
approach is to reduce the cost of iterative empirical MA parameter search according
to precise RTL hardware cost measurement, such as simulation.

• We tried to find a pareto-optimal point of area-delay product (ADP) using the pro-
posed framework. Therefore, we evaluate a trade-off between area and latency ac-
cording to the various MA RTL generation scenarios for MA insertion to neural
network computations.

2. Related Works
Accelerator Technologies and Applications in TinyML. DSORT-MCU [12] demon-

strates real-time small object detection by leveraging the built-in accelerator of RISC-V
core-based MCUs, with a focus on optimizing energy efficiency and latency. Deeploy [13]
proposes a methodology for efficiently deploying small language models across multiple
accelerators on heterogeneous MCUs, prioritizing energy efficiency. Ng et al. [14] explore
mixed-precision hardware accelerators designed for FPGA-based TinyML applications,
emphasizing a balance between accuracy and latency in resource-constrained environments.
Tensor Processing Unit (TPU), a systolic array-based DNN accelerator, is primarily designed
for cloud workloads. Its high computational requirements and lack of optimization for low-
power environments make it unsuitable for TinyML applications. Therefore, Section 3.2
introduces a parameterized approach to resizing the systolic array [15]. TNN [16] is in-
tegrated into a RISC-V-based SoC, demonstrating the capability to achieve low power
consumption alongside reasonable accuracy. iMCU [17] employs a 28 nm in-memory
computing architecture that integrates computation and memory access, thereby minimiz-
ing data movement and maximizing energy efficiency in TinyML environments. Manor
et al. [18] developed a custom hardware accelerator designed to accelerate real-time in-
ference for TensorFlow Lite for Microcontrollers models, achieving low latency and high
memory efficiency.

Frameworks for Systematic Evaluation of DNN Accelerators. CFU Playground [19]
proposes a fully open-source framework for leveraging FPGAs in TinyML acceleration. It
offers an integrated approach to designing hardware accelerators and software stacks,
enabling developers to deploy and optimize FPGA-based TinyML models efficiently.
TFApprox [20] is a framework designed for fast emulation of approximate hardware ac-
celerators for DNNs on GPUs. It supports various approximation techniques such as
quantization and pruning, allowing rapid performance evaluation of accelerators.

Frameworks for Accelerator Design and Evaluation. Gemmini [21] provides a
hardware–software-coupled framework for evaluating and optimizing DNN accelera-
tors. Based on modular hardware design integrated with RISC-V, it facilitates the analysis
of performance and energy efficiency for various DNN workloads. SCALE-Sim [22] is
a framework for simulating matrix multiplication-based systolic array accelerators. It
enables profiling of performance and energy efficiency for CNN workloads by adjusting
hardware parameters such as array size and memory hierarchy. Timeloop [23] provides
a comprehensive platform for optimizing memory hierarchy and dataflow mappings of
DNN accelerators. It supports custom hardware configurations and workload mapping to
explore various design scenarios. Accelergy [24] introduces a framework for fast and accu-
rate estimation of energy consumption at the architectural level for hardware accelerators.
Integrated with tools like Timeloop, it supports energy-efficient design space exploration.
MAESTRO [25] evaluates resource utilization across various dataflows (e.g., weight station-



Appl. Sci. 2025, 15, 1056 5 of 15

ary, output stationary) in DNN accelerators, facilitating analysis of trade-offs between data
reuse, performance, and hardware costs.

While simulator-based frameworks like those mentioned above provide rapid evalua-
tion of accelerator performance under static scenarios, there is a lack of research adopting a
full-system perspective that considers the interaction among CNN software, on-chip buses,
and accelerator hardware. Addressing this limitation could offer significant insights into
the holistic optimization of accelerator systems.

3. Micro-Accelerator-in-the-Loop Framework
Figure 1 shows the overall structure of the MAIL framework. MAIL evaluates simul-

taneously RTL-designed MAs used to accelerate TinyML firmware, and applications on
MCU-based platforms. Input data preprocessing and output handling dependent on the
MCU device in TinyML applications are functionally replicated with a high-level system
emulator. The bottleneck that needs acceleration in MA is neural network computation.
The MA designed in RTL simulates memory-mapped I/O access for data exchange in a
cycle-accurate simulator. The MCU emulator that makes up the MAIL framework was
implemented based on the open-source QEMU [26].

3.1. MA Peripheral Mixed Emulation

The MA defined in this paper is placed on-chip to act as a peripheral connected to
the MCU’s core bus. MA is used to accelerate TinyML software running on MCU. The on-
chip peripheral is configured and triggered by software embedded in MCU flash memory.
Similarly, the MA also accesses the necessary data for calculations by setting registers
from instruction executions in the on-chip flash memory. However, it is laborious to
integrate an MA designed in RTL into the already existing commercial MCU for evaluation.
Currently, most of the cores, target of the TinyML application, protect internal RTL code as
confidential for commercial purpose. Even if we implement a full MCU chip in RTL and
attach MA peripheral, there will be overhead in full RTL simulation for reflecting interaction
between software. A custom MA designed in RTL requires cycle-accurate simulation, while
accessing or initializing the remaining peripherals is sufficient for high-abstraction-level
functional emulation.

The existing project emulates the software execution of a genera-l-purpose MCU,
partially replicating memory access by instructions, generalpurpose I/O (GPIO), and some
interrupts. We propose the MAIL framework by modifying the emulator to emulate the
process of initializing the hardware in the MCU system emulator and accessing memory-
mapped registers from the TinyML firmware to the custom MA peripheral. The MAIL
emulates the MA peripheral attached to the core peripheral bus for Arm core-based MCU.
MCU manufacturers using Arm cores provide memory-mapped register address regions
and register bitfield information for all peripherals present in the MCU with the system
view description (SVD) format. The MAIL adopted a QEMU structure that parses SVD
and automatically generates a template for each peripheral that converts firmware-level
register access to an emulator program. Therefore, we added the MA peripheral register
information to the SVD file and enabled MA access with the TinyML firmware instruction
in the emulator, as shown in Figure 2.



Appl. Sci. 2025, 15, 1056 6 of 15

MA

MMIO

MA Peripheral

init();
feature();
⋯
ma_SFR_A=0x1;
ma_SFR_B=0x2;
ma_SFR_C=0x3;
⋯
return();

SVD

MA SFR Access

C
o

n
fig

Register R/W Access HandlerRegister R/W Access HandlerRegister R/W Access Handler

Parsing

S
y
s
te

m

E
m

u
la

to
r

MAIL

Framework

JSON
Template 

Generation

On-Chip Bus

Memory

Figure 2. Parse from SVD files to automatically generate MA special function register handlers.
Register handlers receive MA register access request occurred in TinyML application and generates
configurable MA peripheral inside microcontroller emulator.

3.2. MA RTL Generation and Cycle-Accurate Simulation

If the MA peripheral registers are accessible in the MAIL framework, we can define
the emulator behavior when a read or write access to each register occurs at the firmware
level. Like any other peripheral, the MA also triggers computations by writing enable
values to memory-mapped registers. At this time, the MAIL framework remotely executes
an external RTL simulator to cycle-accurately evaluate the operations performed within the
generated MA. The MAIL includes a MA RTL generation engine for flexible and scalable
MA evaluation when running RTL simulators remotely. The MAIL’s RTL simulator receives
information about the MA, e.g., channel, width, and height, from the system emulator
part, generates the MA RTL design, and runs the simulation. Since the parameters that
define the MA RTL structure are specific to the TinyML application, a register must be
defined to connect the firmware layer and the emulator layer. This register includes the
remote execution code required for the RTL simulator. When the TinyML firmware writes
a parameter to the MA’s SFR, the emulator transfers the written register value to the RTL
simulator. When transferring SFR values for MA to the RTL simulation, a file format
is utilized. Among MA’s SFRs, the Enable field in the CR register triggers a callback to
remotely execute the RTL simulator. Based on the SFR values written to the file, the RTL
simulator determines the data stream input policy for MA and executes the simulation
accordingly. MAIL evaluates the clock latency of using MA on Cortex-M4 architectures.

Figure 3 shows the process by which the MA RTL is generated according to the neural
network model information written in the MA’s four register fields. A four 32-bit area for
MA is reserved in the existing MCU register empty space. The MA RTL structure and the
DMA controller model are generated by the configured values in the register. The purpose
of the MAIL framework is to evaluate the performance of the MA when used in TinyML
firmware, rather than to obtain accurate classification results through the inference of actual
input data. Therefore, the actual data are not transferred to the MA’s INPUT, OUTPUT, and
WEIGHT registers, and only the column and row sizes of the matrix are passed to the RTL
simulator to reconstruct the matrix operation with dummy data. The INPUT and WEIGHT
registers of the MA are used to define the matrix size when generating the MA RTL. In
the 32-bit register, the most significant 16 bits (MSB) represent the row size, while the least
significant 16 bits (LSB) represent the column size. At this moment, the neural network



Appl. Sci. 2025, 15, 1056 7 of 15

components supported by MA in MAIL framework are convolution neural network (CNN)
and fully connected (FC) layer. Model information is also written in the CR register because
the structure of the generated RTL varies depending on the type of neural operation. The
remaining fields in the CR register are values to model clock timing due to DMA request
protocols and memory accesses between MA and DMA (discussed in Section 3.3).

TinyML Workload

for i in channel hw_init();

data_input();

⋯
cnn();

⋯
fc();

for j in input_col

for k in input_row

for l in filter_col

for m in filter_row

CNN

CNN per Channel Mapping

INPUT Register

Row Size Column Size

WEIGHT Register

Row Size Column Size

CR Register

Model

DMA

Controller

Cycle

Memory

Read

Cycle

Memory

Write

Cycle

Stride

for i in div

for j in input/div

FC

Input

Output +

⋯

+

Partial Sum * div FC Mapping

for k in output

: 1-cycle delay

Filter

RTL Generation Engine

PE

PE

Systolic 

Array for FC

Weight

Weight

Input

O
u
tp

u
t

Systolic 

Array for CNN

PE PE PE

PE PE

PE

Weight

Weight

Weight

O
u
tp

u
t

Input

Input

SFR

System Emulator in Framework Feedback 

MA RTL Evaluation Profile

Figure 3. MAIL framework MA RTL generation scheme: FC and CNN layer. Generated MA RTL
pass through cycle-accurate RTL evaluation and feedback profile result to system emulator.

The configurations written to the MA SFR are used to generate the MA RTL and
surrounding testbench. Currently, MAIL supports two fundamental neural computations:
FC and CNN. The RTL generation engine uses conventional systolic arrays to create
accelerators [27]. There are three registers inside the processing element (PE). The weight is
passed from the left side to the right side, and the input is passed from the top to the bottom.
The processing element then performs a multiply-and-accumulate (MAC) operation using
the weight and input values. The MA generated for the FC model has as many PEs as
the number of output nodes and computes the MAC of weight and input for each cycle.
There are clock cycle delays, depending on the column index of weight. The MAC result
for each PE is the output when all inputs and weights were consumed at the PEs. The MA
generated for the CNN model, the PE matrix is generated by the product of the output
column and row made by the filter and the filter column. A CNN MA sums each PE in
a row into one output value. Similar to FC MA, a delay written to the register is used
for weights and inputs flowing into the PE matrix. We employed a conventional systolic
accelerator structure, rather than state-of-the-art designs, for the RTL generation process
implemented by MAIL. Because the scope of this paper is not the accelerator design but
rather the introduction of a framework that enables performance evaluation by linking MA
and TinyML applications.

The internal PE structure of the systolic array generated as MA’s RTL is illustrated in
Figure 4. Considering the characteristics of TinyML, we assumed a typical systolic array
rather than a custom accelerator architecture dedicated to specific applications. Therefore,
MA utilizes PEs that employ a weight-stationary dataflow. The weights used for MAC
operations in each PE are preloaded from a buffer. The input data, including activations,



Appl. Sci. 2025, 15, 1056 8 of 15

flow from top to bottom, simultaneously being used for multiplication with the weights
and passing through to the next PE in the downward direction. The partial sum required
to generate the output flows from left to right.

⋯

W
e
ig

h
t B

u
ffe

r

Input Buffer

Weight

Input

Partial

Sum

PE

Preload⋯

PEPE

PE

PE PE

PE Input

Partial

Sum

Figure 4. MA internal PE’s weight and input buffer connection structure and dataflow direction.

3.3. MA and MCU Data Interaction

In this paper, MA is defined as peripherals connected to MCU core peripheral bus.
Access to this peripheral is through SFRs mapped to memory addresses. To connect the
MA to the core as a peripheral, we need to map a memory address space with registers
that enable TinyML software to configure the MA hardware. Registers are used to trigger
the MA operation start or to exchange data required for computations. However, for
neural network computation acceleration, a bulk of data transfer is required due to the
large amount of weights, activations, and output values. Conventional accelerator users in
on-cloud AI rarely need to consider physical memory addresses when transferring large
amounts of data between the device and host, as the operating system’s virtual memory
technique efficiently manages these transfers. However, MCU has memory constraints
compared to PC and server. Therefore, memory size constraints are important when
TinyML software uses SFR to transfer data required for computational processes from
memory to MA peripheral devices. If all the data used by the MA were mapped as register
addresses in memory, it would exceed the physical memory address range of the MCU.
Therefore, it is inevitable to use DMA controllers to access the data that MA needs for
neural network computations, and vice versa.

Figure 5 represents the data transfer modeling of MA connected to the peripheral bus.
When DMA transfers bulk data without CPU intervention, iterative transfer is required
because of the size of data that can be handled at once is fixed. Simultaneously, the source
or destination address of data can be fixed or auto incremented. Because, as mentioned
above, MA requires constrained register sector space, the DMA accesses with a single
peripheral address, and when a peripheral bus access occurs from DMA, the internal buffer
address is increased within MA. When the DMA stores data into the MA’s input and weight
buffers, and loads data from the output buffer, the MA can transfer sequential data over
the same peripheral address access. Such a DMA operation model is defined in the MA’s
CR register. When the MA is enabled by SFR configuration, DMA request is set to fill input
and weight buffer. DMAC Req. Clock Timing is the clock parameter until DMA respond
data to the peripheral bus in this request. Memory Read Clock, Memory Write Clock are
the clock parameters required to access memory in continuous DMA operations. The DMA



Appl. Sci. 2025, 15, 1056 9 of 15

configuration parameters are used for testbench generation that models the data transfer
process in MA and peripheral bus protocols. When a data transfer request is generated
from the MA, the data used for neural calculation is supplied to the MA or transferred to
the emulator, depending on the behavior of the configured DMA controller.

System

Emulator

Control Register

DMAC Req.

Clock Timing 

Memory

Read Clock

Memory

Write Clock

Remote

Execution

penable

paddr

psel

pwrite

On-Chip

Peripheral

Bus

⋯

DMA 

request

set

W
e

ig
h

t B
u

ffe
r

O
u

tp
u

t B
u

ffe
r

⋯

⋯

⋯

Input Buffer

⋯Internal Address Increment

+1 +1 +1

Generated

MA RTL

MA 

Computation 

Profile 

Result

Figure 5. MA peripheral and DMA controller model interaction in MAIL. The DMA controller model
is generated as a testbench to instantiate the MA RTL.

4. Evaluation
We select two TinyML cases to evaluate the MAIL framework, consisting of funda-

mental FC and CNN computations. The first case is a speech recognition application using
the TinyConv model architecture [28]. It consists of one CNN and one FC layer and outputs
the classification result using a spectrogram. The second case is a gesture recognition
(Gesture) model using a 3-axis accelerometer [29]. The detailed structure of each model is
illustrated in Figure 6. The max pooling operation is used only in the second Gesture model
in Figure 6b. It consists of two pairs of CNN and FC layers and includes a maxpooling
layer. The two workloads used in the evaluation are representative case models used in
TFLM. These neural network models were selected as evaluation workloads because they
are considered representative cases of TinyML. We performed int8 linear quantization
to deploy the model on MCU and simplify the MA RTL computation. In addition, all
activations use int16 format. We deployed the model to STM32F407 (Cortex-M4, 128 kB
SRAM/1 MB Flash) for MAIL and physical MCU comparison. The STM32F407 board uses
the STM32F407VGT6 MCU. The MCU is designed based on the Arm Cortex-M4 (CM4),
which is a mid-performance Cortex lineup between the CM0 and CM7. We selected the
CM4 as the target for evaluation because it can achieve a balance between performance
and power efficiency, making it suitable for embedded systems. The STM32F407 clock



Appl. Sci. 2025, 15, 1056 10 of 15

configuration was chosen to be 168 MHz and used for latency normalization. We utilized a
Cadence NCVerilog as the RTL simulator within MAIL for the experiment.

(a) TinyConv

49

40 F10

8

8

Conv

25

20

8

I
FC

4

F4

3

8

Conv

128

3

I
FC

4

126

3

8

MaxPool

P3

3 42

1

8

4
1

16

Conv

42

1

16

MaxPool

3

1

14

1

16
FC

16

(b) Gesture Recognition

Figure 6. Model architecture of the TinyML applications used in the evaluation: (a) TinyConv for
speech recognition, (b) gesture recognition.

The TinyML inference time includes not only the FC and CNN layers, but also the
pooling and softmax operations. Table 1 compared the proportions of the CNN, FC opera-
tion and the remaining operations in the evaluation cases. The results of the elapsed time
ratio of the part excluding the FC, CNN in two cases are under 1% and 6.7%, respectively.
The proportion of calculations other than CNN and FC in the entire TinyML process can be
negligible. Therefore, when we compared the acceleration result using MA in the MAIL
framework with the existing TinyML inference library, we only compared the CNN and FC
calculation parts.

Table 1. Executed TinyML models on STM32F407 device using TFLM and measured elapsed time.
Calculate the proportion of elapsed time for each type of neural network computation.

Model
Speech Recognition Gesture Recognition

Elapsed Time (µs) Ratio (%) Elapsed Time (µs) Ratio (%)
conv2d 23,049

99
4882

93.2
fc 302 91

pooling -
<1

336
6.7

non-linear 22 23

Figure 7 compares the cycle latency result obtained from TinyML software executed by
baremetal, existing inference library and MAIL by replacing MA within neural computation.
The inference library used to run TinyML is X-Cube-AI [30], which is inference library
for 32 bits STMicro MCUs, and TFLM [6]. In order to insert MA, we have to decompose
the atomic neural calculations of the internal source code, we inserted the MA register
enable code into the CNN and FC parts in baremetal instead of the existing libraries. The
graphs in Figure 7 plot the cycle latency for each CNN, FC layer for the two cases. DMAC
Req. Clock Timing, Memory Read Clock, Memory Write Clock are selected at 5, 3, 3 clock.
conv2d, fc denote a CNN, FC layers within the first application, conv2d1, conv2d2, fc1,
fc2 denote a pair of CNN, FC layers within the second application. If the MA is inserted in
the CNN layer, it replaces the convolution of the single-channel input and the filter, and if
it is inserted in the FC layer, it replaces the input vector and weight matrix multiplication.



Appl. Sci. 2025, 15, 1056 11 of 15

As a result of comparing the clock latency in each layer, the CNN layer decreased the clock
latency up to 94.25%. These MAIL framework results help determine the MAs configuration
used in TinyML. Table 2 shows the combined cycle latency across layers compared to other
existing libraries. Despite the cycle latency overhead in the FC layer, the reduction in the
CNN layer was dominant, decreasing by −84.32% and −61.32% in the first and second
cases, respectively.

(a)

(b)

0
.0
7
1
1

0
.0
7
5
9

0
,0
0
4
1

0
.0
2
4
1

0
.0
2
4
4

0
.1
7
6
8

0
.1
4
3
4

0
.1
1
4
3

0
.0
2
4
4

0
.0
9
5
4

0
.0
4
7
6

0
.0
4
2
5

0
.0
3
3
8

0
.0
3
2
9

0
.1
6
9
8

0
.3
1
2
1

0
.3
1
1
3

0
.2
6
2
6

N
o
rm

a
liz

e
d
 L

a
te

n
c
y
 (

c
y
c
le

)

N
o
rm

a
liz

e
d
 L

a
te

n
c
y
 (

c
y
c
le

)

Figure 7. MAIL framework cycle latency measurement for each neural architecture layer of the MA
inserted TinyML applications: (a) speech recognition; (b) gesture recognition.

Table 2. Measurement of the neural network total cycle latency when using baremetal firmware,
existing inference libraries implemented for TinyML application, and MA inserted TinyML firmware.
Total cycle latency reduction was compared to the smallest value, e.g., X-Cube-AI selected in speech
recognition application to comparison.

Model
Total Latency (Cycle)

Speech Recognition Gesture Recognition
Baremetal 53,099,517 9,298,534
X-Cube-AI 3,677,731 1,151,904

TFLM 3,959,653 895,776
MA (ours) 576,399 (−84.32%) 346,534 (−61.32%)

In the FC layer with input and output nodes, the delay due to iterative MA enable
varies according to the area size that supports the input vector and weight matrix product.
Hardware accelerators inherently exhibit a trade-off between performance and resource
utilization. Therefore, when evaluating MA, it is essential to consider both performance,
represented by delay, and resource utilization, such as hardware area, simultaneously. To
address this, we decided to use the area-delay product (ADP) metric, calculated as the
product of hardware area and delay. The designer utilizing MAIL can rapidly conduct
design exploration based on the prototype’s ADP. Figure 8 shows the ADP results with the



Appl. Sci. 2025, 15, 1056 12 of 15

area and cycle latency of the generated MA RTL for the MA coverage size sweep of the FC
layer computation. We used Synopsys Design Compiler as the synthesis tool to measure
the area of the MA RTL. The first case has 4000 × 4 size FC layer fc, and we generated
a size of MA that divides input nodes into 1, 5, 10, 50, 100, 250, 500 times. When these
MA replaced into the TinyML software, we measured the clock latency at MAIL due to
repeated calls, and calculated the ADP between the synthesized area from generated MA
RTL. Second case has 224 × 16 size FC layer fc1. We varied the divide values to 1, 7, 8,
14, 28 and measured ADP by MA. The results show that iteratively using smaller-sized
MAs to accumulate the output achieves better ADP than increasing the area based on the
acceptable size of the input vector and weight matrix.

MA Input Divide Value

fc Layer @ Speech Recognition fc1 Layer @ Gesture Recognition

Figure 8. ADP of various MA insertion results by computation scenario of TinyML application FC
layer. Iterative calls from divided MAs achieve better ADP.

Table 3 compares the state-of-the-art accelerator prototyping frameworks with the
proposed MAIL framework. Ref. [21] targets RISC-V SoC and controls accelerators via
MMIO or custom ISA, while [22] is designed for functional profiling of standalone CNN
accelerators. Unlike other frameworks that provide only one approach—either RTL simula-
tion or function modeling—based on their abstraction level, MAIL offers a mixed level of
abstraction. Unlike the other two frameworks, MAIL targets MCUs and therefore does not
utilize DRAM. The workload in [21] replaces neural network models with matrix multi-
plication due to the substantial time required for full RTL simulation. In the evaluation,
all cases used a 16 × 16 systolic array. The elapsed time measured for each case includes
the duration from the framework’s initiation to the completion of accelerator operations
(either software-controlled or standalone), profiling of the results, and the termination of
the framework. The evaluation results demonstrate that MAIL can perform cycle-accurate
RTL simulations for hardware accelerator design while significantly reducing simulation
time. Consequently, MAIL enables rapid design exploration of accelerators, considering
both performance and resource usage.

As we take into account these evaluation results, the MAIL framework makes it
easy to iteratively profile hardware and software interactions when using peripheral-
level accelerator MAs in various TinyML scenarios. In addition, MAIL enables effect
calculation by inserting MA in TinyML software during continuous framework execution
flow. Therefore, MAIL mitigates RTL design and embedded software complexity for
peripheral-level accelerator evaluate.



Appl. Sci. 2025, 15, 1056 13 of 15

Table 3. Comparison of other state-of-the-art accelerator prototyping frameworks with MAIL.

Gemmini [21]
SCALE-Sim [22] MAIL (Ours)

TinyConv Gesture TinyConv Gesture
Target System RISC-V SoC N/A 1 Arm SoC
Abstraction-level Low (RTL) High (Functional Model) Mixed
DRAM Usage ✓ ✓ ✗

RTL Simulator Verilator N/A 2 Cadence NCVerilog
Workload MatMul 3 Conv + FC Conv + FC Conv + FC Conv + FC
Model Architecture (16, 16) × (16, 16) Figure 6a Figure 6b Figure 6a Figure 6a
Systolic Array Size (16, 16) (16, 16) (16, 16)
Elapsed Time (s) 4 130.53 2.54 0.89 23.74 20.64

1 Standalone accelerator model that cannot load operations. 2 Not including RTL part. 3 The result represents the
average calculated from 10 measurements. 4 Matrix Multiplication.

5. Conclusions and Future Work
In this paper, we have defined the accelerator concept, which is connected to the core

peripheral bus, MA. In addition, we propose a MAIL framework that can perform an
acceleration profile of MA inserted TinyML applications. MAIL is a coupled architecture
of system emulators and RTL simulators designed to handle the complex register con-
figuration flows required for embedded software and neural computational acceleration
using MA. The MAIL framework offers practical value by enabling cost-effective and
comprehensive evaluation prior to integrating accelerators into MCUs designed for edge
AI and IoT applications. The MAIL framework addresses hardware area and delay for
accelerators connected via MMIO. However, in resource-constrained systems like MCUs,
energy consumption is also a critical factor, necessitating evaluation in this dimension. In
future work, we plan to develop an energy consumption model for the MAIL framework
to provide energy profiling for accelerators utilized in MCUs. We profiled performance
and ADP by inserting MA into various neural computations of TinyML applications, and
verified the effectiveness of MAIL, which makes TinyML software combined with MA
evaluation accessible.

Author Contributions: Entire core architecture designing and performing the numerical analysis,
J.K.; corresponding author, D.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the Brain Korea 21 4th Generation (BK21 FOUR)
Project 4199990113966, in part by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education (10%, 10%, respectively) under
Grant NRF-2018R1A6A1A03025109, and Grant NRF-2022R1I1A3069260, in part by the Institute of
Information and Communications Technology Planning and Evaluation (IITP) funded by Korean
Government [Ministry of Science and Information Communication Technology (MSIT)] through the
Processing-in-Memory Computing (PIM) Semiconductor Design Research Center (30%) under Grant
2022-0-01170, in part by the Development of Flexible Software-Hardware (SW-HW) Conjunctive
Solution for On-Edge Self-Supervised Learning (50%) under Grant RS-2023-00228970.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original data presented in the study are openly available in
tflite-micro at https://github.com/tensorflow/tflite-micro.git (accessed on 21 November 2024).

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, and in the decision to publish the results.

https://github.com/tensorflow/tflite-micro.git


Appl. Sci. 2025, 15, 1056 14 of 15

Abbreviations
The following abbreviations are used in this manuscript:

MA micro-accelerator
SDK software development kit
ML machine learning
MCU microcontroller unit
SFR special function register
DMA direct memory access
FPGA field programmable gate array
CPU central processing unit
GPU graphics processing unit
CNN convolutional neural network
FC fully-connected
RTL register transfer level
PE processing element
ADP area-delay product
SVD system view description

References
1. Nurvitadhi, E.; Sheffield, D.; Sim, J.; Mishra, A.; Venkatesh, G.; Marr, D. Accelerating Binarized Neural Networks: Comparison of

FPGA, CPU, GPU, and ASIC. In Proceedings of the 2016 International Conference on Field-Programmable Technology (FPT),
Xi’an, China, 7–9 December 2016; pp. 77–84. [CrossRef]

2. Xiong, Y.; Liu, H.; Gupta, S.; Akin, B.; Bender, G.; Wang, Y.; Kindermans, P.J.; Tan, M.; Singh, V.; Chen, B. MobileDets: Searching
for Object Detection Architectures for Mobile Accelerators. In Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3824–3833. [CrossRef]

3. Chen, Y.H.; Yang, T.J.; Emer, J.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

4. Saha, S.S.; Sandha, S.S.; Srivastava, M. Machine Learning for Microcontroller-Class Hardware: A Review. IEEE Sens. J. 2022,
22, 21362–21390. [CrossRef] [PubMed]

5. Novac, P.E.; Boukli Hacene, G.; Pegatoquet, A.; Miramond, B.; Gripon, V. Quantization and Deployment of Deep Neural
Networks on Microcontrollers. Sensors 2021, 21, 2984. [CrossRef] [PubMed]

6. Google Inc. TensorFlow Lite for Microcontrollers. Available online: https://github.com/tensorflow/tflite-micro (accessed on
21 November 2024).

7. Lin, J.; Chen, W.M.; Cohn, J.; Gan, C.; Han, S. MCUNet: Tiny Deep Learning on IoT Devices. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), Online, 6–12 December 2020.

8. Banbury, C.; Zhou, C.; Fedorov, I.; Matas, R.; Thakker, U.; Gope, D.; Janapa Reddi, V.; Mattina, M.; Whatmough, P. MicroNets:
Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. In Proceedings of the
Machine Learning and Systems (MLSys), Online, 5–9 April 2021.

9. Kwon, H.; Chatarasi, P.; Sarkar, V.; Krishna, T.; Pellauer, M.; Parashar, A. MAESTRO: A Data-Centric Approach to Understand
Reuse, Performance, and Hardware Cost of DNN Mappings. IEEE Micro 2020, 40, 20–29. [CrossRef]

10. Seok, M.G.; Sarjoughian, H.S.; Park, D. A High-Level Modeling and Simulation Approach Using Test-Driven Cellular Automata
for Fast Performance Analysis of RTL NoC Designs. In Proceedings of the 24th Asia and South Pacific Design Automation
Conference, ASPDAC’19, Tokyo, Japan, 21–24 January 2019; pp. 382–387. [CrossRef]

11. Kwon, J.; Oh, S.; Park, D. Metamorphic Edge Processor Simulation Framework Using Flexible Runtime Partial Replacement of
Software-Embedded Verilog RTL Models. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [CrossRef]

12. Boyle, L.; Moosmann, J.; Baumann, N.; Heo, S.; Magno, M. DSORT-MCU: Detecting Small Objects in Real-Time on Microcontroller
Units. IEEE Sens. J. 2024, 24, 40231–40239.
[CrossRef]

13. Scherer, M.; Macan, L.; Jung, V.J.B.; Wiese, P.; Bompani, L.; Burrello, A.; Conti, F.; Benini, L. Deeploy: Enabling Energy-Efficient
Deployment of Small Language Models on Heterogeneous Microcontrollers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
2024, 43, 4009–4020. [CrossRef]

http://doi.org/10.1109/FPT.2016.7929192
http://dx.doi.org/10.1109/CVPR46437.2021.00382
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.1109/JSEN.2022.3210773
http://www.ncbi.nlm.nih.gov/pubmed/36439060
http://dx.doi.org/10.3390/s21092984
http://www.ncbi.nlm.nih.gov/pubmed/33922868
https://github.com/tensorflow/tflite-micro
http://dx.doi.org/10.1109/MM.2020.2985963
http://dx.doi.org/10.1145/3287624.3287648
http://dx.doi.org/10.1109/ISCAS51556.2021.9401354
http://dx.doi.org/10.1109/JSEN.2024.3425904
http://dx.doi.org/10.1109/TCAD.2024.3443718


Appl. Sci. 2025, 15, 1056 15 of 15

14. Ng, W.S.; Goh, W.L.; Gao, Y. High Accuracy and Low Latency Mixed Precision Neural Network Acceleration for TinyML
Applications on Resource-Constrained FPGAs. In Proceedings of the 2024 IEEE International Symposium on Circuits and
Systems (ISCAS), Singapore, 19–22 May 2024. [CrossRef]

15. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, ISCA ’17, Toronto, ON, Canada, 24–28 June 2017; pp. 1–12. [CrossRef]

16. Scherer, M.; Di Mauro, A.; Rutishauser, G.; Fischer, T.; Benini, L. A 1036 TOp/s/W, 12.2 mW, 2.72 uJ/Inference All Digital TNN
Accelerator in 22 nm FDX Technology for TinyML Applications. In Proceedings of the 2022 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), Tokyo, Japan, 20–22 April 2022; pp. 1–3. [CrossRef]

17. Lin, C.T.; Huang, P.X.; Oh, J.; Wang, D.; Seok, M. iMCU: A 28-nm Digital In-Memory Computing-Based Microcontroller Unit for
TinyML. IEEE J. Solid State Circuits 2024, 59, 2684–2693. [CrossRef]

18. Manor, E.; Greenberg, S. Custom Hardware Inference Accelerator for TensorFlow Lite for Microcontrollers. IEEE Access 2022,
10, 73484–73493. [CrossRef]

19. Prakash, S.; Callahan, T.; Bushagour, J.; Banbury, C.; Green, A.V.; Warden, P.; Ansell, T.; Reddi, V.J. CFU Playground: Full-Stack
Open-Source Framework for Tiny Machine Learning (TinyML) Acceleration on FPGAs. In Proceedings of the 2023 IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS 2023, Raleigh, NC, USA, 23–25 April 2023;
pp. 157–167. [CrossRef]

20. Vaverka, F.; Mrazek, V.; Vasicek, Z.; Sekanina, L. TFApprox: Towards a Fast Emulation of DNN Approximate Hardware
Accelerators on GPU. In Proceedings of the 2020 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble,
France, 9–13 March 2020; pp. 294–297. [CrossRef]

21. Genc, H.; Kim, S.; Amid, A.; Haj-Ali, A.; Iyer, V.; Prakash, P.; Zhao, J.; Grubb, D.; Liew, H.; Mao, H.; et al. Gemmini: Enabling
Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration. In Proceedings of the 2021 58th ACM/IEEE Design
Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 769–774. [CrossRef]

22. Samajdar, A.; Joseph, J.M.; Zhu, Y.; Whatmough, P.; Mattina, M.; Krishna, T. A Systematic Methodology for Characterizing
Scalability of DNN Accelerators using SCALE-Sim. In Proceedings of the 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Boston, MA, USA, 23–25 August 2020; pp. 58–68. [CrossRef]

23. Parashar, A.; Raina, P.; Shao, Y.S.; Chen, Y.H.; Ying, V.A.; Mukkara, A.; Venkatesan, R.; Khailany, B.; Keckler, S.W.; Emer, J.
Timeloop: A Systematic Approach to DNN Accelerator Evaluation. In Proceedings of the 2019 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Madison, WI, USA, 24–26 March 2019; pp. 304–315. [CrossRef]

24. Wu, Y.N.; Emer, J.S.; Sze, V. Accelergy: An Architecture-Level Energy Estimation Methodology for Accelerator Designs. In
Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA,
4–7 November 2019; pp. 1–8. [CrossRef]

25. Kwon, H.; Chatarasi, P.; Pellauer, M.; Parashar, A.; Sarkar, V.; Krishna, T. Understanding reuse, performance, and hardware
cost of DNN dataflows: A data-centric approach. In Proceedings of the MICRO ’52: 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, Columbus, OH, USA, 12–16 October 2019; pp. 754–768. [CrossRef]

26. [xPack QEMU Arm]. Available online: https://xpack.github.io/qemu-arm/ (accessed on 21 November 2024).
27. Wang, S.; Zhou, D.; Han, X.; Yoshimura, T. Chain-NN: An energy-efficient 1D chain architecture for accelerating deep convo-

lutional neural networks. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
Lausanne, Switzerland, 27–31 March 2017; pp. 1032–1037. [CrossRef]

28. TensorFlow Lite for Microcontrollers (Micro Speech Example). Available online: https://github.com/tensorflow/tflite-micro/tree/
1b68490dcfd087c308a1f8d14012ab1cb39c9ac0/tensorflow/lite/micro/examples/magic_wand (accessed on 21 November 2024).

29. TensorFlow Lite for Microcontrollers (Magic Wand Example). Available online: https://github.com/tensorflow/tflite-micro/
tree/main/tensorflow/lite/micro/examples/micro_speech (accessed on 28 March 2023).

30. STMicroelectronics. AI Expansion Pack for STM32CubeMX. Available online: https://www.st.com/en/embedded-software/
x-cube-ai.html (accessed on 21 November 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCAS58744.2024.10558440
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1109/COOLCHIPS54332.2022.9772668
http://dx.doi.org/10.1109/JSSC.2024.3362274
http://dx.doi.org/10.1109/ACCESS.2022.3189776
http://dx.doi.org/10.1109/ISPASS57527.2023.00024
http://dx.doi.org/10.23919/DATE48585.2020.9116299
http://dx.doi.org/10.1109/DAC18074.2021.9586216
http://dx.doi.org/10.1109/ISPASS48437.2020.00016
http://dx.doi.org/10.1109/ISPASS.2019.00042
http://dx.doi.org/10.1109/ICCAD45719.2019.8942149
http://dx.doi.org/10.1145/3352460.3358252
https://xpack.github.io/qemu-arm/
http://dx.doi.org/10.23919/DATE.2017.7927142
https://github.com/tensorflow/tflite-micro/tree/1b68490dcfd087c308a1f8d14012ab1cb39c9ac0/tensorflow/lite/micro/examples/magic_wand
https://github.com/tensorflow/tflite-micro/tree/1b68490dcfd087c308a1f8d14012ab1cb39c9ac0/tensorflow/lite/micro/examples/magic_wand
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://github.com/tensorflow/tflite-micro/tree/main/tensorflow/lite/micro/examples/micro_speech
https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html

	Introduction
	Related Works
	Micro-Accelerator-in-the-Loop Framework
	MA Peripheral Mixed Emulation
	MA RTL Generation and Cycle-Accurate Simulation
	MA and MCU Data Interaction

	Evaluation
	Conclusions and Future Work
	References

