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Abstract: Large-space high-precision attitude dynamic measurement technology has urgent
application needs in large equipment manufacturing fields, such as aerospace, rail trans-
portation, automobiles, and ships. In this paper, taking laser tracking equipment as the base
station, a backpropagation algorithm based on neighborhood search is proposed, which is
applied to the fusion of multi-source information for solving the dynamic attitude angle.
This paper firstly established a mathematical model of laser tracking attitude dynamic
measurement based on IMU and CCD multi-sensor, designed a 6-11-3 back propagation
network structure and algorithm flow, and realized the prediction of attitude angle through
model training. Secondly, the method based on neighborhood search realizes the deter-
mination of the optimal training target value of the model, of which the MSE has a 34%
reduction compared to the IMU determination method. Finally, the experimental platform
is set up with the precision rotary table as the motion carrier to verify the effectiveness of the
research method in this paper. The experimental results show that with the neighborhood-
based backpropagation algorithm, the measurement results have a higher data update rate
and a certain inhibition effect on the error accumulation of IMU. The absolute value of the
system angle error can be less than 0.4◦ within 8 m and 0–50◦, with an angle update rate of
100 Hz. The research method in this paper can be applied to the dynamic measurement of
laser tracking attitude angles, which provides a new reference for the angle measurement
method based on the fusion of multi-source information.

Keywords: laser tracking; attitude measurement; dynamic measurement; back propagation;
neighborhood search; artificial neural network

1. Introduction
With the rapid development of high-end intelligent manufacturing and large-scale

scientific engineering fields, there is an increasing demand for high-precision six-degree-of-
freedom measurement technology for spatial dynamics [1,2]. In addition, roll-pitch-yaw
angles in aeronautics, navigation, and robotics are now being incorporated into the field of
six-degree-of-freedom interferometry [3]. The acquisition of pose information for moving
targets and the development of pose measurement methods that meet the needs of dynamic
measurement are currently urgent issues that need to be resolved in the fields of intelligent
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manufacturing, large-scale scientific engineering construction, and digital assembly [4–6].
The six-degree-of-freedom measurement method based on laser tracking equipment is a
promising solution [7]. This system typically consists of laser tracking equipment, an upper
computer, and cooperative targets, using laser technology to track and measure the pose
information of moving targets [8]. It features high precision, a large measurement range,
and on-site measurement capabilities, making it a core detection system for large high-end
equipment manufacturing. This system is widely used in various industrial fields such as
aviation, aerospace, automotive, shipbuilding, and manufacturing [9,10].

The T-Mac Sensor system from Leica integrates laser tracking devices, high-speed
cameras, and Mac target units. This system is capable of real-time online measurement and
tracking, making it suitable for high-precision measurements in dynamic environments [11].
When used in conjunction with laser tracking devices, it can cover ranges from several me-
ters to tens of meters while providing sub-millimeter measurement accuracy. However, due
to its reliance on visual equipment, the system cannot perform continuous measurements
when the field of view is obstructed [12]. On the other hand, the STS from API is another
device designed for high-precision six-degree-of-freedom measurements [13]. Compared to
the T-Mac, STS overcomes the limitation of interrupted measurements when the visual line
is blocked, thereby adapting better to complex and variable measurement environments.
Nonetheless, the use of inclinometers constrains its dynamic performance.

Research has been conducted on six-degree-of-freedom measurements based on the
guidance system used in shield machines, including the Huazhong University of Science
and Technology [14,15], which investigated the use of high-resolution CCDs to improve
the positioning accuracy of the center of the spot and effectively improve the measurement
accuracy of the shield attitude angle. Zhengzhou University [16], based on the kinematic
model of the equivalent mechanism, used a hybrid neural network–Newton algorithm
to solve the shield position and found that the accuracy of the shield tunneling position
control was improved. The error value of the prediction using a single neural network is up
to 30 mm, and the error value using the hybrid neural network–Newton iterative algorithm
is stabilized around 1 × 10−5 mm. Li Wei [17] from Tangshan College developed a laser-
guiding target for shield machines. The shield guiding system is mainly composed of a
total station, a reference prism, and a laser target [18], employing a CCD camera, tilt sensor,
and prism to accurately determine the shield’s attitude angle and position coordinates. The
system has a simple structure, easy calculation, as well as higher accuracy. In the system
mentioned above, the laser target is mainly composed of a pinhole prism, an inclinometer,
and a CCD industrial camera. This method has the advantages of simple operation, large
measurement range, good portability, real-time measurement, and strong environmental
adaptability, but it has the problems of low measurement update rate and slow response.
Additionally, to ensure measurement accuracy, the inclinometer requires a certain range of
measurement angles, which significantly restricts the system’s angle measurement range,
particularly the roll angle [19,20].

H. Zhang from Hubei University of Technology [21] conducted a study on monocular
visual attitude measurement methods, where feature points on the cooperative target
were captured using a CCD camera to complete the attitude angle measurement and the
measurement accuracy was evaluated using a high-precision two-dimensional turntable.
Yan, K; Xiong, Z [22] posed measurement method based on 2DPSD and monocular vision
is proposed, and the SVD method is used to calculate the relative attitude between the laser
tracker coordinate system and the camera coordinate system. This method can control the
maximum error of attitude angle measurement to be less than 2◦ within the effective angle
range of [−25◦, 25◦] and at a distance range of 3 m. L. Zhang [23] proposed a laser-tracking
attitude measurement method that combines a PSD with monocular vision. This method
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overcomes the issues of a slow update rate for the roll angle and limited measurement range,
showing good measurement performance over long distances. Compared to traditional
methods, such as the POSIT algorithm, the accuracy of both azimuth and elevation angles
has been improved by more than 75%. To further improve the measurement accuracy
of vision, Wu, C and Xiong, Z [24] proposed a method for pose calculation based on
the WAOI algorithm. This algorithm uses the OI algorithm as its core to solve visual
measurements. Within an angular measurement range of −20◦ to 20◦ and a measurement
distance of 3 to 15 m, the accuracy of the azimuth and elevation angles of the laser tracking
measurement system using the WAOI algorithm can be better than 0.26◦. Compared to the
POSIT algorithm, the accuracy of both azimuth and elevation angles has been improved
by more than 75%. However, there is still considerable room for improvement in terms of
system measurement accuracy and dynamic performance [25].

Tianjin University [26–30] proposed a six-degree-of-freedom measurement method
based on a laser tracker and inertial navigation. An FKF based on the residual chi-square
test is proposed in order to solve the fatal problem of inclinometer failure under dynamic
conditions. Finally, comparison experiments with Leica T-MAC were conducted to ver-
ify the accuracy and dynamic performance of the method. The method verifies that the
attitude accuracy of the integrated system is better than 0.15◦ while the three-coordinate
accuracy can reach 0.3 mm under dynamic conditions. In summary, the laser tracking
attitude measurement system utilizes the visual measurement method, which is recognized
for its compact size, low cost, and flexible measurement capabilities, yet is not without
its drawbacks. The accuracy of the measurement is observed to diminish as the distance
increases, with limited potential for enhanced precision in long-distance attitude measure-
ments. Additionally, visual measurement, being quasi-static, is susceptible to frame loss
when tracking rapidly moving objects, thereby constraining its dynamic measurement capa-
bilities. The attitude measurement method based on a pinhole prism, photoelectric position
sensor, and inclinometer solves the problem of the low sensitivity of yaw and pitch angles,
but it is still not suitable for dynamic measurement due to the problems of low measure-
ment update rate, slow response, and limited incident angle. The multi-sensor data fusion
based on inertial navigation with good complementarity and autonomy is a new research
hotspot and an important development direction in the field of industrial measurement.

Leveraging the laser tracking equipment as the central station, this paper introduces a
dynamic attitude measurement method that integrates visual and inertial measurement
units and conducts an in-depth study with the data fusion methods derived from both
visual and inertial data sources. Ultimately, the effectiveness of the methods proposed in
this paper has been substantiated through experimental validation.

The key highlights of this study are as follows:

(1) A laser tracking attitude dynamic measurement method combining CCD and IMU is
proposed. By training neural network models, high-precision dynamic measurements
have been achieved.

(2) Applying machine learning algorithms to solve attitude measurement problems.
Machine learning techniques are used to optimize the process of determining attitude
angles from the fused sensor data, improving the accuracy and robustness of the
measurement system.

(3) An innovative method based on neighborhood search was proposed to determine
the true values of training. This approach optimizes the training process by selecting
the most relevant and accurate data points for training the machine learning model,
leading to an optimized design of the training model.
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2. Measurement System Composition and Principles
The laser tracking attitude measurement system is primarily led by laser tracking

equipment, combined with cameras, an IMU, and cooperative targets to complete the task
of dynamic attitude measurement. As is shown in Figure 1, this system aims to measure
the attitude of cooperative targets relative to the laser tracking equipment. The system
integrates the high precision of vision with the high frequency of IMU data comprehensively
to ensure the dynamic performance of the combined attitude angle measurement.
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As shown in Figure 1, the positions of the laser tracking equipment and the camera are
relatively fixed. The origin of the laser tracking equipment coordinate system (OL-XLYLZL)
is located at the laser head of the laser tracking equipment, where the XL-axis is perpen-
dicular to the horizontal code disk, and the YL-axis is perpendicular to the vertical code
disk. The origin of the camera coordinate system (OC-XCYCZC) is positioned at the optical
center of the camera, with the XC-axis, YC-axis, and ZC-axis parallel to the three axes of the
laser tracking equipment coordinate system. The cooperative target is fixed with the target
to be measured, and the origin of the target coordinate system (OT-XTYTZT) is located at
the center of the target sphere with the ZT-axis perpendicular to the plane pointing to the
IMU, and the XT-axis and YT-axis determined by the right-hand rule. The origin of the IMU
coordinate system (OI-XIYIZI) is located at the sensitive center of the IMU, with the XI-axis,
YI-axis, and ZI-axis parallel to the three axes of the target coordinate system. The distance
between the center of the target sphere and the IMU is l. The IMU is fixedly installed
inside the cooperative target, and the rotational and translational relationship between its
coordinate system and the target coordinate system is determined by system calibration.

Taking the initial position of the laser tracking device coordinate system as the refer-
ence coordinate system, we define C

L R as the rotation matrix between the camera coordinate
system and the laser tracker coordinate system, C

TR as the rotation matrix between the cam-
era coordinate system and the cooperative target coordinate system, and I

TR as the rotation
matrix between the IMU coordinate system and the cooperative target coordinate system.
After rotating around its own Z axis, X axis and Y axis, the cooperative target coordinate
system coincides with the camera coordinate system. According to the definition of Euler
angles, the rotation matrix representing the relationship between these two coordinate
systems can be expressed as
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C
TR = RϕRθRφ =

 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ


 1 0 0

0 cos θ − sin θ

0 sin θ cos θ


 cos φ − sin φ 0

sin φ cos φ 0
0 0 1


=

 cos ϕ · cos φ + sin θ · sin ϕ · sin φ cos φ · sin θ · sin ϕ − cos ϕ · sin φ cos θ · sin ϕ

cos θ · sin φ cos θ · cos φ − sin θ

cos ϕ · sin θ · sin φ − cos · sin ϕ sin ϕ · sin φ + cos ϕ · cos φ · sin θ cos θ · cos ϕ


(1)

Using the initial position of the laser tracking device coordinate system as the reference
coordinate system, the rotation relationship between the laser tracking device coordinate
system and the target coordinate system can be calculated through changes in the rotation
matrices, as shown in the following equation:

L
TR = L

CR × C
TR (2)

Expressed in the form of a 3 × 3 matrix

L
TR =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3)

Using the mathematical relationships between rotation matrices and Euler angles,
one can calculate the azimuth angle (rotation around the X-axis), elevation angle (rotation
around the Y-axis), and roll angle (rotation around the Z-axis) of the target in the laser
tracking device coordinate system.

α = −arcsin(r23)

β = arctan
(

r13
r33

)
γ = arctan

(
r12
r22

) (4)

In the aforementioned attitude dynamic measurement system, C
TR’s data consist of

two parts: first, attitude tracking measurements of the target in the camera coordinate
system obtained through visual means, resulting in attitude angle 1; second, integrated mea-
surements of the target’s attitude relative to its initial position using the IMU, followed by
refinement with real-time relative pose information from vision to obtain attitude angle 2 in
the camera coordinate system. The visual system is able to provide highly accurate target at-
titude information due to its superior spatial resolution, especially achieving high precision
for targets at short distances. The IMU provides real-time acceleration and angular velocity
information, offering significant advantages in tracking fast-moving targets. However, the
visual system may experience interference from factors like ambient light and occlusion
during prolonged tracking, slightly compromising its dynamic performance compared to
the IMU. Therefore, effectively integrating multi-source sensor data using a combination of
visual and IMU-based measurements to enhance system dynamic performance is a critical
focus of the subsequent research.

3. Data Fusion Method Based on Self-Adaptive
Backpropagation Algorithm
3.1. Combined Measurement Fusion Method

As mentioned above, the attitude angle measurement data come from visual and
inertial units, which have different sampling frequencies. Due to the strong learning
capability, adaptability, and flexibility of the backpropagation algorithm, it was chosen to
fuse the data from visual and inertial measurement units. The fusion process is illustrated
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in Figure 2 below. Based on the principle of time alignment, first, the visual measurement
data with a lower sampling frequency is linearly interpolated. Next, the interpolated data
is fused with the inertial measurement unit data using a backpropagation algorithm.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 6 of 19 
 

Figure 2 below. Based on the principle of time alignment, first, the visual measurement 

data with a lower sampling frequency is linearly interpolated. Next, the interpolated data 

is fused with the inertial measurement unit data using a backpropagation algorithm. 

 

Figure 2. Fusion method of visual and inertial combined measurements. 

3.2. BackPropagation Algorithm Based on Neighborhood Search Structure Design 

The main function of the backpropagation algorithm based on neighborhood search 

is to learn the mapping relationship between inputs and outputs, demonstrating powerful 

nonlinear mapping capabilities even with a three-layer network. In this paper, a three-

layer neural network structure is designed for the fusion method of attitude information 

based on visual and inertial measurements. The network structure includes an input layer, 

a hidden layer, and an output layer. The input layer comprises six nodes corresponding 

to three attitude angles derived from visual estimation and three attitude angles from in-

ertial measurement (namely azimuth, pitch, and roll angles). The output layer consists of 

three nodes representing the fused final output attitude angles. 

The scale of the backpropagation network is determined by the depth of the hidden 

layer and the number of neurons per layer, which directly affects the performance of the 

network. Therefore, determining the number of hidden layer neurons is crucial for build-

ing a training model. In general, the formula for determining the number of hidden layer 

neurons is as follows: 

2log

2

2

hidden input output

hidden input

hidden input output

input output

hidden

count count count a

count count

count count count

count count
count

 = + +


=

 = +


+
=

 (5) 

where  and  represent the number of neurons in the input layer and 

the output layer.  is the regulatory parameter between 0 and 10.  represents 

the number of neurons in the hidden layer. The number of nodes in the input layer is 

usually determined according to the dimension of the input data, and the number of 

nodes in the output layer is determined according to the dimension of the output data. 

For the backpropagation algorithm of this system, there are six nodes in the input layer 

Figure 2. Fusion method of visual and inertial combined measurements.

3.2. BackPropagation Algorithm Based on Neighborhood Search Structure Design

The main function of the backpropagation algorithm based on neighborhood search is
to learn the mapping relationship between inputs and outputs, demonstrating powerful
nonlinear mapping capabilities even with a three-layer network. In this paper, a three-layer
neural network structure is designed for the fusion method of attitude information based
on visual and inertial measurements. The network structure includes an input layer, a
hidden layer, and an output layer. The input layer comprises six nodes corresponding to
three attitude angles derived from visual estimation and three attitude angles from inertial
measurement (namely azimuth, pitch, and roll angles). The output layer consists of three
nodes representing the fused final output attitude angles.

The scale of the backpropagation network is determined by the depth of the hidden
layer and the number of neurons per layer, which directly affects the performance of the
network. Therefore, determining the number of hidden layer neurons is crucial for building
a training model. In general, the formula for determining the number of hidden layer
neurons is as follows: 

counthidden =
√

countinput + countoutput + a
counthidden = log2 countinput

counthidden = 2countinput + countoutput

counthidden =
countinput+countoutput

2

(5)
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where countinput and countoutput represent the number of neurons in the input layer and
the output layer. α is the regulatory parameter between 0 and 10. counthidden represents
the number of neurons in the hidden layer. The number of nodes in the input layer is
usually determined according to the dimension of the input data, and the number of nodes
in the output layer is determined according to the dimension of the output data. For the
backpropagation algorithm of this system, there are six nodes in the input layer and three
nodes in the output layer. Using Formula (5), the number of hidden layer neurons in the
backpropagation algorithm can be obtained, and the value range should be between 3 and
15. In the design of neural network structure, the number of neurons in the hidden layer
is typically greater than that in the input layer, a phenomenon widely documented in the
literature [17]. Based on this, the present study sets the range of neuron numbers in the
hidden layer from 6 to 15. This range is selected based on a comprehensive consideration
of network complexity and computational efficiency. Specifically, the minimum number of
neurons in the hidden layer is set to 6 to ensure that the network has sufficient capacity
to capture the basic features of the input data; the maximum is set to 15 to maintain the
model’s generalization ability while avoiding overfitting. This range of neuron numbers is
intended to balance the learning ability of the model with the consumption of computational
resources, aiming to achieve optimal network performance.

In this study, to implement the backpropagation algorithm, we adopted MATLAB
R2022b as the main software tool. We utilized its built-in Deep Learning Toolbox to
construct and train the backpropagation algorithm structure. When training a neural
network, the maximum number of iterations is set to 600, and the learning rate is set to 0.01.
At the same time, in order to optimize the network parameters, we used Gradient Descent
with Momentum as an optimizer.

We utilized a dataset comprising 10,000 samples. To evaluate the predictive perfor-
mance of the model, the dataset was partitioned into training, testing, and validation sets.
The training set consisted of 7000 samples, accounting for 70% of the total dataset. The
testing set included 1500 samples, representing 15% of the total dataset. Similarly, the
validation set also comprised 1500 samples, making up the remaining 15% of the dataset.
To ensure the representativeness and randomness of the datasets, we employed a random
partitioning method.

Under the condition of setting other error terms, the neural network is trained by
simulating different numbers of neurons one by one, and the simulation results of the
maximum error curve and training time corresponding to different numbers of neurons are
obtained, which is shown in Figure 3.

As can be seen from Figure 3, the training time will increase with the increasing
number of hidden neurons, and the attitude angle error will decrease with the increase
in the number of hidden neurons. When the number of hidden neurons is 11, the error
is smaller and the training time is shorter. As the number of neurons increases, when the
number of hidden neurons reaches 11, there is a significant reduction in error, while the
training time of the network also begins to increase sharply. When the number of neurons
exceeds 11, although the training time continues to increase, the improvement in model
accuracy is relatively small. Although increasing the number of hidden layer neurons can
enhance model precision, in order to ensure the generalization capability of the model and
reduce the risk of overfitting, the number of hidden layer nodes of the backpropagation
algorithm is set to 11 in this paper.
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Optimization of the number of neurons is conducted based on the training time and
attitude angle standard deviation, resulting in the chosen backpropagation algorithm
structure for this study. In addition, the sigmoid function is chosen as the activation
function for the hidden layer, and a linear function is used as the activation function for the
output layer. By defining the basic parameters of the backpropagation algorithm structure,
training sample data can be input into the neural network for the training and learning
process. The trained model structure is illustrated in Figure 4.
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Figure 4. Backpropagation algorithm training structure model.

In this model, the input to the hidden layer can be written as

Qinput = w1 ∗ x + b1 (6)

the output of the hidden layer, where x represents the combined attitude angles from visual
and IMU measurements, can be expressed as

Qoutput = sigmoid(Qinput) (7)

the input to the output layer can be represented as

Uinput = w2 ∗ Qoutput + b2 (8)
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and the output of the output layer can be written as

Uoutput = Uinput (9)

where w1 and b1 are the weight matrix and bias vector between the input layer and the
hidden layer, and w2 and b2 are the weight matrix and bias vector between the hidden layer
and the output layer. Through the backpropagation algorithm, these weight matrices and
bias vectors are iteratively optimized to better fit the training data in order to improve the
predictive performance of the model.

To optimize the network parameters, we used Gradient Descent (GD) as the optimizer.
The maximum number of iterations was set to 600, and the learning rate was set to 0.01.
And the training process of the network model based on back propagation is shown in
Figure 5.
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Figures 6–8 show the training process of a backpropagation-based network with
11 hidden layer neurons. The regression function fit for all processes during training a
backpropagation-based network (training, validation, and test) was R = 0.97855 (Figure 6).
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Figure 6. Regression function for the learning process.

The regression function for training was R = 0.97853; for validation, it was R = 0.97983;
while for the test process, it was R = 0.97724. The MSE in this model was 0.039407 and was
reached in the 600th epoch (Figure 7).
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Figure 8 is an error histogram for the training process showing the difference between
the targets and the output values from the network. The chart shows errors in the neural
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network training, testing, and validation process. Most cases oscillate in a range from
−0.1926 to 0.1864.
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3.3. Determination of Training Target Values Based on Neighborhood Search

When confronting the challenge of selecting target values during the data fusion
process using a backpropagation algorithm, the neighborhood search method is employed
due to its capability to locate optimal or near-optimal solutions within the solution space.
This paper adopts a method to determine the training target values based on neighborhood
search. Utilizing the neighborhood search approach involves exploring the vicinity of
current parameter settings to find values that minimize the objective function. The steps of
the neighborhood search are illustrated in Figure 9.
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Let Xt
i.j be the input dataset for the backpropagation neural network, where i is the

input sensor (i = 1 for visual sensor, i = 2 for inertial measurement sensor), and j represents
the attitude angle corresponding to a sensor at time t (j = 1 for azimuth angle, j = 2 for
elevation angle, j = 3 for roll angle). F(.) is the minimum value function. The training set
error matrix is defined as Yt

i.j, which is shown in Equation (10):

Yt
i.j = F

(∣∣∣Xt+1
i.j − Xt

i.j

∣∣∣, ∣∣∣Xt
i.j − Xt−1

i.j

∣∣∣) i = 1, 2; j = 1, 2, 3 (10)

After performing the neighborhood search, the comparative error data between the
visual and inertial measurement sensors at time t are obtained as shown in Equation (11):

∆et
i.j =

[∣∣∣Yt
1.j

∣∣∣, ∣∣∣Yt
2.j −

∣∣∣Yt
1.j

∣∣∣∣∣∣] (11)

Transposing the above equation and solving for the minimum value, we obtain

∆Et
i.j = F(

[
∆et

i.j

]T
) (12)

By solving the above equation, the minimum error value between the adjacent data
of the three sensors is obtained. Due to the high precision of visual measurements, the
minimum error from visual data serves as the reference value. Through inverse search cal-
culation, the training target value at a certain time is derived as vt

j shown in Equation (13):

vt
j = a × Xt−1

1.j + b × Xt
1.j + c × Xt+1

1.j (13)

where a, b, and c are linear weighting coefficients adjusted continuously during network
training. The neighborhood search method aims to analyze the temporal variation trends
in sensor data to determine the target values to be used during neural network training.

In summary, training sample data are input into the neural network training model for
learning and training. This process yields parameters for the backpropagation algorithm
structure. Subsequently, actual measurement data are fed into the network structure to
achieve predictions of attitude angles.

To assess the effectiveness of the neighborhood search method in the training of
backpropagation algorithm models, this study conducted a simulation experiment. In
this experiment, we set up the output of the neural network training set in three different
ways: the first was set to the calculated output values of the IMU; the second was set to
the target values obtained through the neighborhood search method; and the third was
set to the true rotation angle values in the simulation analysis. Subsequently, we used
another set of simulation data generated under the same conditions for the verification
experiment, aiming to explore whether the neighborhood search method can serve as an
effective output target value for neural network training data.

The training results are shown in Table 1: the network with the output of the neural
network training using true value is Net 1, the network using the value of the IMU is Net 2,
and the network using neighborhood search is Net 3. From Table 1, we can see that the MSE
of Net 3 decreased to 0.196, which is a 34% reduction compared to the MSE of Net 2. The R
of Net 3 has increased from 0.901 to 0.929. The neighborhood search method can effectively
improve the performance of the model when the true value cannot be determined.
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Table 1. Summary of the results of different outputs of the neural network training.

Net No. Input Output Number of
Neurons

The Source of the Theoretical Value Training

True Value IMU Neighborhood
Search MSE R

1 6 3 11
√

0.039 0.976
2 6 3 11

√
0.296 0.901

3 6 3 11
√

0.196
0.929
0.956
0.956

By analyzing the results shown in Figure 10, it can be observed that as the rotation
angle increases, the angular error tends to increase when the training output value is
set to the IMU solution value. In contrast, when the training output value is set to the
target value obtained by the neighborhood search method, the rotation error is reduced
compared to the IMU solution value and is closer to the situation where the true rotation
angle value is used as the training output value. This finding indicates that using the
target values obtained by the neighborhood search method as the output target values
in backpropagation algorithm model training can more effectively determine the target
values during training, thereby optimizing the performance of the model. Therefore, the
results of this simulation experiment support the use of the target values obtained by the
neighborhood search method as the output target values in the training process of the
backpropagation algorithm to improve the model’s accuracy and robustness.
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4. Experimental Verification and Results Analysis
4.1. Experimental Platform

To validate the measurement performance of the attitude measurement system in
practical applications, experiments were conducted using a precision turntable for dynamic
attitude measurement verification. As shown in Figure 11, the attitude measurement
system consists of a total station, camera, cooperative target, and upper computer. The
precision two-dimensional turntable has a measurement accuracy of 2 arcseconds and a
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displayed angular velocity of 5◦/s. The azimuth angle can rotate from 50◦ to 330◦, and
the elevation angle can rotate from 0◦ to 360◦. However, the precision two-dimensional
turntable can rotate only in azimuth and elevation directions, and the roll angle accuracy
is higher than that of the azimuth and elevation angles based on the literature. Therefore,
this study only focuses on validating the azimuth and elevation angles experimentally. The
IMU frequency is 100 Hz, and the visual measurement frequency is 1 Hz.
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4.2. Experimental Steps

The procedure for attitude measurement based on a rotary table system is outlined
as follows:

Step 1: Establish a dynamic attitude measurement system platform by positioning
the laser tracking device (total station) and camera at predetermined locations. Conduct
calibration for the IMU error model and the camera intrinsic parameter model.

Step 2: Mount a cooperative target equipped with an IMU onto a precision two-
dimensional rotary table, ensuring that the target coordinate system aligns with the rotary
table coordinate system. Through calibration, ascertain the rotational relationship between
the laser tracking device’s coordinate system and the camera’s coordinate system, as well
as the rotation relationship between the IMU and the rotary table’s coordinate system.

Step 3: Utilize an upper computer to control the precision two-dimensional rotary
table for pre-set single-axis rotations. Set the azimuth angle rotation range from 15◦ to 55◦,
starting at 15◦, with intervals of 10◦ for a total of 5 sets, each repeated 10 times. For the
pitch angle, the rotation range is set from 10◦ to 50◦, with 10◦ intervals across five sets, also
repeated 10 times per set. At measurement distances of both 4 m and 8 m, continuously
capture images of the moving cooperative target using camera control software while
simultaneously recording IMU data.

Step 4: Transform the visual information and IMU-acquired data into attitude angles
within the laser tracking device’s coordinate system. Following the preprocessing of the
visual and IMU data (including solving for attitude angles from both sources and time
synchronization of the collected data), employ an improved backpropagation algorithm for
data fusion to derive the attitude angles in the laser tracking device’s frame of reference.

4.3. Experimental Results and Analysis

The following figure shows the effect graphs after the cooperative target is mounted
on the rotary table, with the rotary table rotating in the azimuth range of 50◦ and the pitch
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angle rotating in the range of 55◦, using the IMU alone measurement, the vision alone
measurement, and the fusion based on the backpropagation algorithm, respectively. From
Figure 12, we can see that the fused measurements have a higher data update rate and have
a certain suppression effect on the error accumulation of the IMU.
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The absolute values of the errors of repeated multiple measurements at different
distances and angles were statistically analyzed to obtain their average absolute value of
error and maximum absolute value of error, as shown in Tables 2 and 3.

Table 2. Standard deviation of azimuth measurement results at different distances and angles.

Distance 4 m 8 m

Azimuth Average Error Max Error Average Error Max Error

15◦ 0.037◦ 0.120◦ 0.046◦ 0.105◦

25◦ 0.039◦ 0.042◦ 0.042◦ 0.093◦

35◦ 0.057◦ 0.114◦ 0.065◦ 0.136◦

45◦ 0.031◦ 0.059◦ 0.053◦ 0.092◦

55◦ 0.027◦ 0.060◦ 0.101◦ 0.147◦

Table 3. Standard deviation of pitch angle measurements at different distances and angles.

Distance 4 m 8 m

Pitch Average Error Max Error Average Error Max Error

10◦ 0.094◦ 0.129◦ 0.114◦ 0.201◦

20◦ 0.143◦ 0.189◦ 0.174◦ 0.231◦

30◦ 0.156◦ 0.196◦ 0.160◦ 0.202◦

40◦ 0.145◦ 0.197◦ 0.219◦ 0.263◦

50◦ 0.168◦ 0.250◦ 0.317◦ 0.393◦

From the measurement results in Tables 2 and 3, we can see that the absolute value
of the fused error shows an upward trend with the increase in the measured angle, and
the error becomes larger with the increase in the measurement distance. For the azimuth
angle, the average absolute value of the error at 4 m is 0.057◦, the maximum absolute
value of the error is 0.120◦, the average absolute value of the error at 8 m is 0.101◦, and the
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maximum absolute value of the error is 0.147◦. For pitch angle, the maximum absolute
value of the mean error is 0.168◦, the maximum absolute value of the error is 0.250◦ at 4 m,
the maximum absolute value of the error is 0.317◦ and 0.393◦ at 8 m.

Figure 13 shows the comparative analysis chart between the results of the IMU-
integrated solution and the data fusion solution. The horizontal axis of the chart represents
the rotation angles of azimuth and pitch, with azimuth rotation angles at 15◦, 25◦, 35◦,
45◦, 55◦, and pitch rotation angles at 10◦, 20◦, 30◦, 40◦, 50◦. The vertical axis indicates the
angular error between the IMU-integrated solution and the data fusion solution relative to
the rotation values of a precision turntable. This angular error is calculated based on the
mean error obtained from 10 independent experiments.
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fusion solution.

From Tables 2 and 3 and Figure 13, it can be observed that the average measurement
error and the maximum measurement error of the system at a measurement distance of 8 m
have almost all increased compared to those at 4 m. This is because, in the system described
in this article, the distance of measurement only affects the measurement accuracy of the
vision system and has almost no impact on the measurement accuracy of the IMU. As the
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measurement distance increases, the number of pixels occupied by the feature points on the
target in the camera image will decrease, leading to a relative increase in the positioning
error of the feature points and a decline in the imaging quality of the camera. Moreover,
with the increase in the measurement distance, the shape and size of the feature points in
the images captured by the camera will also change, resulting in a decrease in the matching
accuracy of the feature points, which in turn further affects the measurement accuracy of
the camera. Therefore, the measurement accuracy of the system decreases with the increase
in the measurement distance.

By analyzing the comparison chart, it is evident that as the rotation angle increases,
the cumulative error of the IMU-integrated solution shows a gradually increasing trend.
In contrast, the attitude angles obtained from the data fusion solution do not exhibit
significant cumulative error even at larger rotation angles. This phenomenon indicates
that the employed data fusion algorithm effectively suppresses the cumulative error of
the IMU. Therefore, the data fusion algorithm holds significant value in the field of high-
precision attitude estimation, significantly enhancing the accuracy and reliability of IMU
solutions. The results of this study provide empirical evidence for the effectiveness of
the IMU data fusion algorithm, further validating its superior performance in complex
dynamic environments.

5. Summary
As one of the advanced large-size six-degree-of-freedom measurement technologies,

the laser tracking attitude dynamic measurement system has shown a broad application
prospect in the field of high-end intelligent manufacturing. With the deepening of the
transformation of intelligent manufacturing mode, it is especially important to study and
optimize the real-time dynamic measurement technology.

In this paper, a multi-source information fusion attitude angle dynamic measurement
method based on a backpropagation algorithm is proposed with laser tracking equipment
as the base station. The laser tracking attitude dynamic measurement mathematical model
is established, the network structure and algorithm flow are designed, and the attitude
angle prediction of the target object is realized through model training. The optimal
network structure is 6-11-3. For the problem that the target value is difficult to select
in the process of backpropagation algorithm data fusion, this paper adopts the method
based on the neighborhood search to realize the determination of the optimal training
target value. The MSE of the neighborhood search method has decreased to 0.196, which
is a 34% reduction compared to the IMU determination method; meanwhile, the R has
increased from 0.901 to 0.929. The neighborhood search method can effectively improve
the performance of the model when the true value cannot be determined.

Finally, the experimental platform is set up, with the total station as the base station
and the precision rotary table as the carrier. The effectiveness of the research method of
this paper is verified, and the method adopts the backpropagation algorithm proposed in
this paper for the fusion within the range of 8 m and 0–50◦ of angle measurement, and the
absolute value of the angle measurement error can be less than 0.4◦.

The research method in this paper provides a new idea for the attitude dynamic
measurement method based on multi-source information fusion. However, the attitude
measurement method based on the BP neural network in this study has achieved signifi-
cant results. In order to further improve the performance and adaptability of the system,
future work will explore the introduction of reinforcement learning into the optical tracking
system to achieve more efficient and accurate attitude measurement. In addition, there are
problems of insufficient data volume and unbalanced distribution in the data collection pro-
cess, which affect the generalization ability of the model. In future research, we will focus
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on optimizing the model structure. By introducing reinforcement learning, we expect to
significantly improve the precision and speed of attitude measurement in the optical track-
ing system. Especially when dealing with fast-moving and severely occluded targets, the
reinforcement learning model will be able to more effectively adjust the tracking parameters
and improve the robustness of the measurement. Through these future works, we believe
that we can elevate the attitude measurement method based on the BP neural network to a
new level and provide more powerful technical support for related applications.
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Abbreviations

IMU Inertial Measurement Unit
CCD Charge-Coupled Device
ANN Artificial Neural Network
RTLS Real-Time Location Systems
T-MAC Tracker-Machine Control
STS Smart Tracker Sensor
PSD Position Sensitive Detector
FKF fault-tolerant Kalman filter
2DPSD Two-Dimensional Position Sensitive Detector References
SVD Singular Value Decomposition
WAOI Weighted Accelerated Orthogonal Iteration
OI Orthogonal Iteration
MSE Mean Square Error
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