
Academic Editors: Hyokyung Bahn,

Jože Guna and Raul Parada

Received: 10 November 2024

Revised: 8 January 2025

Accepted: 21 January 2025

Published: 22 January 2025

Citation: Yuan, Q.; Li, Z. Distributed

Inference Models and Algorithms for

Heterogeneous Edge Systems Using

Deep Learning. Appl. Sci. 2025, 15,

1097. https://doi.org/10.3390/

app15031097

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Distributed Inference Models and Algorithms for Heterogeneous
Edge Systems Using Deep Learning
Qingqing Yuan and Zhihua Li *

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; londey@163.com
* Correspondence: zhli@jiangnan.edu.cn

Abstract: Computations performed by using convolutional layers in deep learning require
significant resources; thus, their scope of applicability is limited. When deep neural
network models are employed in an edge-computing system, the limited computational
power and storage resources of edge devices can degrade inference performance, require
a considerable amount of computation time, and result in increased energy consumption.
To address these issues, this study presents a convolutional-layer partitioning model, based
on the fused tile partitioning (FTP) algorithm, for enhancing the distributed inference
capabilities of edge devices. First, a resource-adaptive workload-partitioning optimization
model is designed to promote load balancing across heterogeneous edge systems. Next,
the FTP algorithm is improved, leading to a new layer-fused partitioning method that is
used to solve the optimization model. The results of simulation experiments show that
the proposed convolutional-layer partitioning method effectively improves the inference
performance of edge devices. When five edge devices are used, the speed of the proposed
method becomes 1.65–3.48 times those of existing algorithms.

Keywords: edge computing; distributed inference; edge intelligence; resource allocation

1. Introduction
Deep neural networks (DNNs) are vital in computationally intensive and memory-

intensive applications, such as computer vision, natural language processing, and speech
recognition [1]. However, the computational complexity of DNNs is increasing because of
the increasing demand for higher precision in these applications. This increasing computa-
tional complexity requires significant computational resources, which inevitably limit the
applications of DNNs. This problem is conventionally mitigated by offloading computa-
tionally intensive tasks to cloud data centers, with edge devices receiving the processed
results. However, this approach introduces network latency and network delays. Owing to
the rapid development of artificial intelligence and the Internet of Things, edge computing
has emerged as an important strategy for processing large-scale data. In edge comput-
ing, edge devices process data in real time at the source, thereby reducing latency and
alleviating the burden on cloud data centers. Achieving efficient distributed inference on
resource-constrained edge devices has become an important challenge in current research.

In recent years, numerous studies [2–17] have focused on developing various inference
methods for edge devices. These methods aim to alleviate the conflict between the resource
requirements of DNN model deployment and the limited computational resources of
edge devices. These methods can be categorized into three types: methods based on
DNN model modification, methods of cloud–edge collaboration, and methods based on
distributed inference. Certain studies [2–8] were primarily focused on modifying the

Appl. Sci. 2025, 15, 1097 https://doi.org/10.3390/app15031097

https://doi.org/10.3390/app15031097
https://doi.org/10.3390/app15031097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0001-1381-8608
https://doi.org/10.3390/app15031097
https://www.mdpi.com/article/10.3390/app15031097?type=check_update&version=2


Appl. Sci. 2025, 15, 1097 2 of 22

DNN architecture. Model compression algorithms [3–6] have been employed to eliminate
unnecessary parameters for resource-constrained edge devices. Knowledge distillation
methods have also been used to appropriately reduce model complexity [7,8]. However,
these methods [3–8] are only applicable to homogeneous computing systems. When
multiple types of edge devices are involved, the models must be modified separately
for each type; thus, these approaches are ineffective in heterogeneous edge computing.
Studies [9–11] have investigated cloud-edge collaboration methods to partition DNN
models, offloading computationally intensive components to cloud data centers to alleviate
the workload on edge devices. However, these approaches are constrained by the network
bandwidth, leading to high latency and unreliable performance. Furthermore, they do
not account for network fluctuations and, thus, are unsuitable for real-time inference
in heterogeneous edge-computing systems. The distributed-inference-based approach
is adopted to address these limitations and improve the real-time adaptability of DNN
inference on edge devices [12–17]. Experimental results show that this method leverages
the collaboration between edge devices to enhance the overall inference performance.

However, in [14,15,17], only applications involving homogeneous edge devices were
considered; thus, the scalability of edge device inference was limited. In [12,13,16], com-
plex DNN models for heterogeneous edge computing were not sufficiently explored; this
can lead to high latency and energy consumption on edge devices. By contrast, in this
study, the workload-partitioning problem for heterogeneous edge systems is addressed.
This is achieved by comprehensively considering the computational capabilities and the
processing and transmission powers of these devices. To achieve the optimization objective
of reducing inference latency and energy consumption, the workload-partitioning problem
is formulated by applying a resource-adaptive workload-partitioning optimization model.
The fused tile partitioning (FTP) algorithm [14] exhibits good adaptability when parti-
tioning inference tasks for different DNN models. It also significantly improves inference
performance on edge devices, so an enhanced version of this algorithm is proposed to
better suit heterogeneous edge-computing systems. A new layer-fused partitioning (LFP)
method is designed based on the enhanced FTP algorithm used to solve the optimization
problem. LFP does not require any structural modifications or tuning of the given DNN
model, nor does it compromise model accuracy, as it preserves the input data and model
parameters of the given DNN model.

The main contributions of this study are summarized as follows: (1) a resource-
adaptive workload-partitioning optimization model for deploying DNNs in resource-
constrained heterogeneous edge systems is established to address load imbalances across
devices; (2) a utility function is formulated to optimize latency and energy consumption.
The workload-partitioning problem in heterogeneous edge-computing systems is then
expressed as an integer linear programming (ILP) problem; amd (3) an LFP method is
designed as an enhanced FTP-based method that yields near-optimal solutions to the
workload-partitioning problem and significantly enhances the inference performance on
edge devices. Simulation results show that the LFP method offers advantages over existent
algorithms.

2. Related Work
Numerous techniques and theoretical models have been proposed to address the

problem of accelerating DNN inference on resource-constrained edge devices [2–17]. Based
on the relationship between edge devices and DNN models, these techniques can be
categorized into three types: methods based on DNN model modification, methods of
cloud–edge collaboration, and methods based on distributed inference.



Appl. Sci. 2025, 15, 1097 3 of 22

2.1. DNN Model Modification

Various model compression techniques have been proposed to facilitate DNN infer-
ence directly on edge devices [5–8,18,19]. For example, weight-pruning methods [5,6]
are used to eliminate redundant and insignificant parameters from trained DNN models,
thereby reducing the computational complexity and model size. Knowledge distillation
techniques [7,8] are utilized to extract knowledge from large teacher models and distill
it into smaller student models, thereby reducing the resource requirements for inference.
The study in [18] employs knowledge distillation to deploy DNN models on resource-
constrained UAVs for edge intelligence. By utilizing a full model trained in the cloud, it
generates lightweight models with high accuracy. To enable the deployment of federated
learning on edge devices, ref. [19] adopts a random pruning method to reduce communi-
cation overhead and model size, thereby improving the efficiency of federated learning
on edge devices. However, these methods may lead to a decline in model performance,
incurring losses in accuracy, precision, or other evaluation metrics. Additionally, some
compression techniques introduce irregular sparsity, which can hinder effective hardware
acceleration and reduce processing speed. As the primary focus in the aforementioned
studies was training new lightweight networks to reduce resource demands, only homo-
geneous edge devices, which have limited adaptability, were considered. When different
types of edge devices are introduced, these models must be retrained to fit the new device
configurations; thus, they are unsuitable for heterogeneous edge-computing systems.

2.2. Cloud–Edge Collaboration

To reduce the burden of DNN inference on edge devices, the computationally in-
tensive parts of the inference process are offloaded to cloud servers [9–11,20,21]. In [9],
a full offloading approach, in which multiple variants of the DNN model were created,
was proposed to facilitate the selection of different models based on the device’s resource
constraints; however, with limited resources, the inference performance of the selected
model inevitably declined to some extent. In [10], a partial offloading solution was intro-
duced to identify an intermediate partition point within the DNN structure; the initial
layers were processed locally, whereas the subsequent layers were offloaded to the cloud.
In [11], a method similar to that in [10] was proposed, focusing on mapping different
components of the DNN to various layers in the cloud-edge hierarchy to reduce commu-
nication overhead and optimize resource usage. However, unlike our proposed method,
the aforementioned approach required retraining the DNN model across different levels.
In [20], a context-adaptive and dynamically composable DNN deployment framework was
proposed. In this work, DNN models were pre-divided into DNN atoms, and during sub-
sequent inference, offloading plans were adaptively formulated to reduce latency and save
memory. The study in [21] explored how to achieve rapid DNN inference in UAV swarms
through collaboration among multiple UAVs. The DNN model was first partitioned into
multiple segments, with each UAV performing inference on a specific segment, and the
results were then aggregated. Overall, these studies were focused on leveraging cloud
servers to ease the inference load on edge devices. However, cloud–edge collaborative
approaches exhibit bandwidth limitations in edge networks, leading to high round-trip
latency and data privacy concerns. Therefore, cloud–edge collaborative methods are not
suitable for edge-computing systems that demand strict real-time performance.

2.3. Distributed Inference

To further reduce the latency of inference tasks on edge devices, certain
methods [12–17,22–24] are employed to divide DNN inference tasks into multiple inde-
pendently executable subtasks. These subtasks can be executed in parallel across multiple



Appl. Sci. 2025, 15, 1097 4 of 22

edge devices. In [12], a biased one-dimensional partitioning (BODP) method was proposed
to divide the input of each network layer into strips and distribute more workload to
devices with higher computational capacity. In [13], a greedy two-dimensional partitioning
(GTDP) scheme was developed for layer partitioning; however, this approach significantly
increased the synchronization overhead between devices with adjacent partitions. The
methods in [12,13] executed distributed inference in a layer-by-layer manner, resulting in
significant synchronization overhead between layers. Therefore, the methods in [12,13]
are not well-suited for complex DNN models. In contrast, our approach avoids the layer-
by-layer synchronization overhead, making it capable of handling models with a greater
number of layers. In [14], the FTP method was proposed to vertically divide and fuse
convolutional layers in a grid-like manner to reduce memory usage and communication
overhead; however, this method is only applicable in scenarios with homogeneous devices.
Based on [14], a fusion search strategy with dynamic programming that dynamically selects
the optimal execution strategy based on the availability of computational resources and
network conditions was introduced [17]. Unlike this work, the study in [14] does not
consider scenarios involving heterogeneous edge devices. The study in [22] introduced
DistrEdge, which leverages deep reinforcement learning to enable adaptability to various
scenarios (e.g., different network conditions and diverse device types). DistrEdge identifies
optimal split decisions for CNN models and executes inference tasks in parallel across
edge devices to achieve accelerated inference. The study in [23] proposes SDPMP, which
combines the principles of pipeline parallelism and the partial dependency characteristics
within CNN layers to intelligently perform inter-layer and intra-layer partitioning, meeting
the low latency requirements for single-task inference. While the studies in [17,22,23]
all consider the heterogeneity of edge devices, unlike this work, they do not take energy
consumption into account when reducing inference latency. Overall, the methods proposed
in [12–17,22,23] focus on distributed inference across edge devices to achieve lower infer-
ence latency. Inspired by these works, we propose improvements to the FTP algorithm to
make it suitable for the practical requirements of edge-computing systems. We explore
DNN deployment in edge systems, including relevant models, algorithms, and methods
for distributed DNN inference.

In summary, while prior works have made significant progress in distributed inference
for edge systems, they often fail to consider energy consumption as a critical optimization
objective, limiting their applicability in resource-constrained environments. Furthermore,
most existing approaches lack effective handling of residual blocks in deep neural networks.
To address these limitations, our work introduces a novel approach that incorporates energy
consumption into the optimization framework while explicitly accounting for the unique
challenges posed by residual blocks. Experimental results demonstrate that our method
reduces energy consumption to a certain extent while also improving inference latency.

3. System Model and Problem Description
3.1. System Overview

Consider the edge-computing application illustrated in Figure 1, with N available
edge devices represented as set N = {U1, U2, ..., Ui, ..., UN}. Each edge device runs the
same DNN model, G, consisting of L layers, excluding the fully connected layers, expressed
as G = {L1,L2, ...,Lj, ...,LL}.

When an edge device initiates an inference task, it is designated as the master device
(MD), whereas the others serve as worker devices (WDs). The general process of DNN
inference in this situation proceeds as follows: the MD comprehensively considers the
computational capabilities, as well as the computation and transmission power of hetero-
geneous edge devices. It assigns a greater workload to WDs with higher computational



Appl. Sci. 2025, 15, 1097 5 of 22

capabilities and lower computation and transmission power. After the allocation, sub-tasks
are sent to the WDs for parallel execution. The WDs then send their results back to the MD,
which processes the data to complete the inference task.

The workload-partitioning decision made by the MD is represented as vector
π = {a1, a2, ..., ai, ..., aN}T , where ai ∈ Z+ denotes the portion of the workload allocated to
edge device Ui. Vector π is considered to be an effective workload-partitioning decision if
the conditions defined in Equations (1) and (2) are met:

ai ≥ 0, ai ∈ Z, ∀i ∈ N (1)

∑
i∈N

ai = H (2)

Equation (1) requires that ai must be a non-negative integer, and Equation (2) ensures that
the sum of all elements in the partitioning strategy is equal to the height, H, of the output
feature map produced by layer Lj of model G.

The key symbols used throughout this paper are defined in Table 1.

Data Frame Partitioning Plan

Distributed Execution

Data Merging

Inference 

Finished?

Task Results

Yes

No

MD

WD

WD
WD

Worker DeviceMaster Device

Layer Fused Partitioning 

(LFP)

CNN 

Model

CNN 

Parameters

Pre-trained

Weights

MD WD

Figure 1. System overview.

Table 1. Variable symbols and their meanings.

Variable Symbol Meaning Variable Symbol Meaning

Ui Edge device number Cin
The number of input channels for the

Lj’s input feature map

π workload-partitioning decision Cout
The number of output channels for

the Lj’s output feature map



Appl. Sci. 2025, 15, 1097 6 of 22

Table 1. Cont.

Variable Symbol Meaning Variable Symbol Meaning

Lj The j-th layer of the network in G G DNN model

H The height of the output feature map
of Lj

Pcomm,i The computational power of Ui

W The width of the output feature map
of Lj

Pcomp,i The transmission power of Ui

K The kernel size of the convolutional
layer Lj

B The bandwidth between Ui and Uj

αi
The coefficients of the linear

regression model of Ui
βi

The coefficients of the linear
regression model of Ui

p The partition points of the
network layer µi

The proportion covered by the
workload-partitioning decision of Ui

3.2. Estimation of Inference Latency and Energy Consumption of Edge Devices
3.2.1. Latency

When the MD assigns inference tasks to WDs, the latency primarily consists of two
components: the computation latency on the WD, and the communication latency between
the WD and MD. According to [13], under the given computational hardware and DNN
model configuration, the computation time is approximately proportional to the number of
floating-point operations (FLOPs) required by the layers of the DNN model. Additionally,
as indicated in [25], the FLOPs, Fij, for the convolutional kernel in network layer Lj on
edge device Ui can be calculated by applying Equation (3):

Fij = 2HW(CinK2 + 1)Cout (3)

where H, W, and K represent the height, width, and kernel size of the input feature map for
layer Lj, respectively; and Cin and Cout denote the numbers of input and output channels
in the feature map of Lj, respectively.

(1) Computation Latency of WDs
The computation latency of the inference model on a WD is composed of the latency

generated by two multi-layer fused networks. The computation time of a single DNN layer
is approximated by using a linear regression model for convolutional computation time,
Tpre

comp,ij [16]. Typically, a higher computational capability of the edge device corresponds to

a lower value of Tpre
comp,ij. Thus, the computation latency for layer Lj on edge device Ui is

estimated as per Equation (4):

Tpre
comp,ij = αiFij + βi (4)

where αi and βi are parameters obtained from the linear regression model.
The latency generated by the two segments of the fused multi-layer network can be

further estimated as follows. As the number of layers in the DNN increases, the inference
precision increases; however, an excessively high number of layers leads to increased
redundancy in the fused blocks. To address this, a partition point, p, is selected within the
network layers to divide the multi-layer network into two segments, and the resultant fused
blocks help minimize redundancy. Based on this partitioning strategy, the computation
latency on the WD is estimated by using Equation (5):

Tpre
comp,i = ∑

l1

Tpre
comp,il1

+ ∑
l2

Tpre
comp,il2

(5)

where l1 ∈ [1, p], l2 ∈ [p + 1, L].



Appl. Sci. 2025, 15, 1097 7 of 22

Equation (5) is used to split the DNN model into two fused blocks with reduced
redundancy, accelerating the inference process.

The communication latency, Tpre
comm,ij, depends on the size of the feature maps being

transmitted and the bandwidth, B, of the communication link between the MD and WD.
After the fused block computation in layer Lj is completed, the communication latency,
Tpre

comm,ij, required to transmit an output feature map having the dimensions of Cout×H×W
for layer Lj can be estimated using Equation (6) [16]:

Tpre
comm,ij =

Cout × H ×W × 32
1024× 1024× B

(6)

where Cout represents the number of output channels in the feature map of layer Lj, and H
and W represent the height and width of the output feature map of Lj, respectively.

Because the DNN network is divided into two fused blocks, the WD must synchronize
computation results twice with the MD after completing its tasks. These synchronizations
generate two communication overheads, corresponding to the synchronization of the
results obtained from layers Lp and LL. Therefore, the transmission latency on the WD is
calculated as per Equation (7):

Tpre
comm,i = Tpre

comm,ip + Tpre
comm,iL (7)

3.2.2. Energy Consumption

The computation energy consumption on a WD is estimated using Equation (8):

Epre
comp,i = Pcomp,iT

pre
comp,i (8)

where Pcomp,i represents the computational power of edge device Ui.
The communication energy consumption between the WD and the MD is calculated

using Equation (9):

Epre
comm,i = Pcomm,iT

pre
comm,i (9)

where Pcomm,i represents the transmission power of edge device Ui.
Based on this analysis, the total inference latency, Tpre, and total energy consumption,

Epre, for distributed DNN inference in the edge-computing system are calculated using
Equations (10) and (11), respectively.

Tpre = max
i∈N

(Tpre
comp,i + Tpre

comm,i) (10)

Epre = ∑
i∈N

(Epre
comp,i + Epre

comm,i) (11)

3.3. Problem Description

(1) Problem Definition
In DNN-based distributed inference within an edge-computing system, latency deter-

mines the user experience, whereas energy consumption is a critical factor affecting user
costs. Both latency and energy consumption are simultaneously considered to establish the
following utility function based on the normalized weighted sum of these two factors:

Qπ = λtTpre + λeEpre (12)



Appl. Sci. 2025, 15, 1097 8 of 22

where π = {a1, a2, ..., ai, ..., aN}T represents the partitioning decision, and λt, λe ∈ [0, 1],
with λt + λe = 1, are the weights representing the influence of latency and energy con-
sumption on the workload-partitioning decision.

Typically, the smaller the inference task assigned to edge device Ui, the smaller the
response time of the WD and the corresponding energy consumption of Ui. Accordingly,
the optimal combination of inference latency and energy consumption is modeled as the
minimization utility function, as shown in Equation (13):

arg min
ai

Qπ (13)

s.t.


C1 : ai ≥ 0, ai ∈ Z, ∀i ∈ N
C2 : ∑

i∈N
ai = H

C3 : Tpre ≤ ∆max

(14)

where Qπ represents the minimized utility function, and ai is the workload assigned to
edge device Ui. Constraint C1 specifies that each ai in the partitioning decision must be
a positive integer. Constraint C2 ensures that the sum of all values in the partitioning
decision equals height H. Constraint C3 defines the maximum allowable inference latency
for the task.

Essentially, Equation (13) is an ILP problem with a large decision space, similar to
other complex optimization problems.

3.4. Linear Programming Relaxation Algorithm

A linear programming problem is an optimization problem in which a linear objective
function is subjected to constraints in the form of linear equations or inequalities. An ILP
problem is a special case of linear programming in which all optimization variables are
restricted to integer values [26]. The challenge in solving Equation (13) arises from the
discrete nature of the integer variable (ai). To efficiently generate feasible solutions, inspired
by [15], we introduce a continuous variable, µi, to relax Equation (13). The relationship
between µi and ai is expressed in Equation (15):

ai = µi H, ∀i ∈ N (15)

where H represents the height of the output feature map, and µi denotes the proportion of
the partitioning decision covered by the i-th segment.

By combining Equations (1) and (2), we derive the constraints related to µi.

µi ≥ 0, ∀i ∈ N (16)

∑
i∈N

µi = 1 (17)

Thus, Equation (13) can be transformed into the workload-partitioning optimization
model expressed in Equation (18):

arg min
µi

Qπ (18)

s.t.


C1 : µi ≥ 0, ∀i ∈ N
C2 : ∑

i∈N
µi = 1

C3 : Tpre ≤ ∆max

(19)



Appl. Sci. 2025, 15, 1097 9 of 22

Using the relaxation of integer constraints makes Equation (18) a broader and more
easily solvable version of the original problem in Equation (13). Solutions obtained from
Equation (18) can then be used to indirectly derive the integer values of ai.

3.5. Workload-Partitioning Method Based on Linear Programming Relaxation

To solve the optimization problem described in Equation (18), the problem expressed
in Equation (13) first undergoes relaxation to enable efficient computation. First, the compu-
tation latency is estimated for each individual DNN layer. Subsequently, the computation
latency across multiple layers, including the fused block computation latency, is calculated.
Next, the transmission latency is estimated based on the size of the fused blocks, and the
energy consumption is computed accordingly. Finally, the total latency and energy con-
sumption are used to determine the optimal workload-partitioning strategy (π). Based on
this approach, a workload-partitioning algorithm using the linear programming relaxation
is formulated as described in Algorithm 1.

Algorithm 1 Workload Partition Algorithm (WPA)

Input: Edge Device: N = {U1, U2, ..., Ui, ..., UN}
DNN Model: G = {L1,L2, ...,Lj, ...,LL}
Configuration tuples: C = (K, Cin, Cout, S, P)j, ∀j ∈ L
Resources tuples: (Pcomp, Pcomm)i, ∀i ∈ N
Bandwidths:B
Dividing point:p, p ∈ L

Output: Partitioning decision:π = {µ1, µ2, ..., µi, ..., µN}
1: Procedure PARTITION(N )
2: Initializing the problem variables
3: Get the predict delay Tpre from Equation (10) //* Estimate the total inference latency
4: Get the predict energy consumption Epre from Equation (11) //* Estimate the total

inference energy consumption
5: Solve LP Problem Equation (18) to obtain π
6: if π satisfy Equation (19) then
7: return π
8: else
9: Find the minimum element µm in π

10: N ← N − {m} //* Delete the edge deviceUm
11: return PARTITION(N )
12: end if

The primary computational cost of Algorithm 1 arises from the recursive operation
in line 11. However, the total number of recursive calls does not exceed N (i.e., the total
number of edge devices). Therefore, the time complexity of Algorithm 1 is O(N).

4. Convolution-Layer Partitioning Algorithm
Previous studies [13,14] have shown that convolutional layers account for most of the

computation time and memory usage in DNN inference. In [12], the convolutional layers
were divided into independently executable segments to speed up inference across multiple
edge devices. To minimize inference time and energy consumption and find the optimal
mapping between edge devices and workload partitions, we develop an enhanced version
of the FTP algorithm [14]. First, layers are partitioned along the height of the input feature
map, with each segment assigned to a worker device. A split point (p) divides each network
layer into two parts, forming two fused blocks to reduce redundancy. Additionally, ResNet
residual blocks (BasicBlocks) are converted into convolutional layers to simplify distributed
inference. The resultant algorithm is the one-dimensional partitioning algorithm termed
as OD-FTP.



Appl. Sci. 2025, 15, 1097 10 of 22

4.1. OD-FTP

(1) Height-Dimension Partitioning and Residual Blocks
Convolution-layer partitioning typically involves a two-dimensional grid-partitioning

method for feature maps, as depicted in Figure 2a. In this approach, the feature map is
divided into N ×M partitions, with the workload distributed across N ×M edge devices.
However, this two-dimensional partitioning approach often results in computational re-
dundancy. In this case, the workload of each edge device overlaps with those of three/four
neighboring devices, leading to a decrease in inference performance. To overcome this
limitation, we propose the height-dimension partitioning strategy illustrated in Figure 2b.
In this approach, the feature map is divided into N partitions along the height, with each
partition corresponding to the workload of one of the N edge devices. Because the feature
map is partitioned along its height, the workload of each edge device creates computa-
tional redundancy with only one/two neighboring devices. This results in more efficient
computation of the fused blocks.

CONV-BN-ReLU

CONV-BN-ReLU

CONV-BN-ReLU

… …

CONV-BN-ReLU

M

N

M×N

N

N
(a) Fused Tile Partitioning Strategy (b) Layer Fused Partitioning Strategy

W

H

MD

WD WD

MD

WD WD

MD

WD WD

…
…

…
…

W

H

Figure 2. Different convolutional-layer partitioning strategies.

In the ResNet architecture, the execution order of network layers is structured as
residual blocks instead of a simple sequential chain, as shown in Figure 3a. Residual
blocks are essentially directed acyclic graphs (DAGs), where a layer can receive inputs from
multiple preceding layers and provide outputs to several subsequent layers. Traditional
distributed inference methods [12,14,15] require separately handling these DAG structures,
which can degrade performance. To address this, we consider residual blocks as new
convolutional layers, as displayed in Figure 3b. Converting residual blocks into sub-
fused blocks avoids the complex layer dependencies within them and eliminates the
need to handle each block individually. In this strategy, the ResNet model’s execution
order becomes a simple sequential model of layers. In the experiments conducted, the
convolutional layers in ResNet18 and ResNet34 are transformed into 12- and 20-layer
sequential networks, respectively.



Appl. Sci. 2025, 15, 1097 11 of 22

(a) BasicBlock Struction (b) Sub-fused block Struction

ReLU

+

BN

3 × 3 Conv

ReLU

BN

3 × 3 Conv

1 × 1 Conv

X Input feature map

ReLU

+

X

3 × 3 Conv

3 × 3 Conv

Sub-fused block

1 × 1 Conv

Input feature map

Figure 3. BasicBlock structure transformed into sub-fused blocks.

(2) OD-FTP
Typical partitioning algorithms, such as the FTP algorithm, suffer from the issue of

high computational redundancy within fused blocks. To address this issue, our proposed
algorithm is used to calculate the transformation relationships between the input and
output feature maps within the convolutional layers, and specifically, the padding size for
each layer. After the partitioning strategy (π) is determined, the convolutional layer at
partition point j on an edge device must compute a sub-intermediate feature map having
the Cj × ai ×Wj dimension and send the result to the MD. To validate this sub-intermediate
feature map, the padding size for each convolutional layer within the fused block, denoted
as (pup, pdown), must be calculated based on the shape of the sub-intermediate feature
map. Additionally, the relative position and length of the sub-intermediate feature map
within the original feature map, represented as (posstart, length), must be determined. The
concept underlying Algorithm 2 is calculating posnew

start and posend through the stride of
the convolutional layer and updating (pup, pdown) by validating the posnew

start and posend

indices. The pseudocode of the proposed OD-FTP algorithm is presented in in Algorithm 2.
The inputs for the OD-FTP algorithm include the configuration information related to
the DNN layers and the shape of the original feature map after it passes through the
current convolutional layer. The output consists of the relative position and length of the
sub-intermediate feature map within the next convolutional layer and the padding size for
that layer.

The main computational overhead of Algorithm 2 results from lines 2 and 3, and specif-
ically from the computation of posstart and length. The time complexity of Algorithm 2
is O(H).



Appl. Sci. 2025, 15, 1097 12 of 22

Algorithm 2 OD-FTP

Input: DNN Layer: Lj, j ∈ L
Configuration tuples: C = (K, Cin, Cout, S, P)j, ∀j ∈ L
Feature Map Shape: (H, W)j, Hj, Wj ∈ Cin,j
Start Position: posstart
Length: len

Output: Start Position: posstart
Length: len
Padding: (pup, pdown)

1: Initializing the problem variables
2: Calculate the new location of the feature map posnew

start //* Calculate the starting
position of the partition decision solution

3: Calculates the new length of the feature map lennew //* Calculate the length of
the partition decision solution

4: Calculates the end position of the feature map posend
5: if posnew

start < 0 then //* Detect whether the subscript at the start position of the
partition decision solution is out of bounds

6: lennew ← posnew
start + lennew

7: pup ← −posnew
start //* Calculate the top padding size for the network layer Lj

8: posnew
start ← 0

9: end if
10: posmax ← Pj + Hj − 1 //* Calculate the maximum subscript
11: if posend ≥ posmax then //* Check if the subscript is out of bounds
12: lennew ← lennew − (posend − posmax)
13: pdown ← posend − posmax //* Calculate the bottom padding size for the

network layer Lj
14: end if
15: return (posstart, lennew, pup, pdown)

4.2. Convolutional-Layer Partitioning Method Based on the OD-FTP Algorithm

The OD-FTP algorithm first obtains the optimal workload partitioning strategy, namely
the “worker-device-to-workload” mapping, by invoking Algorithm 1. In this strategy, each
worker device is assigned a portion of the original inference task. Subsequently, the OD-FTP
algorithm computes the parallelizable partitions of the convolutional layers based on the
workload. To enable distributed inference across heterogeneous edge devices, we integrated
Algorithms 1 and 2 to formulate the LFP method. The pseudocode for the LFP method
is presented in Algorithm 3. The objective of this method is to transform the workload-
partitioning decision (π) into fused blocks that can be independently executed by edge
devices. The LFP method first invokes Algorithm 1 to obtain the workload-partitioning
decision (π). It then calls Algorithm 2, which calculates the posnew

start, lennew and padding
(pup, pdown) for the sub-feature maps within the relevant range of DNN layers, including
convolutional and max-pooling layers. Subsequently, the LFP method extracts the sub-
intermediate feature map, Xsub, from the original input feature map, Xorigin. Finally, the
MD sends Xsub and paddings to the WDs, which participate in distributed inference.

The computational overhead of the LFP method can be largely attributed to lines 5–14
of Algorithm 3. These lines correspond to the iterative calculation for the padding sizes
of convolutional layers within fused blocks and the derivation of the position and length
of the sub-intermediate feature map. Therefore, the time complexity of the LFP method
is O(NH).



Appl. Sci. 2025, 15, 1097 13 of 22

Algorithm 3 Layer Fused Partitioning Algorithm (LFP)

Input: Edge Device: N = {U1, U2, ..., Ui, ..., UN}
DNN Model: G = {L1,L2, ...,Lj, ...,LL}
Configuration tuples: C = (K, Cin, Cout, S, P)j, ∀j ∈ L
Resources tuples: (Pcomp, Pcomm)i, ∀i ∈ N
Bandwidths:B
Dividing point:p, p ∈ L
Layer Fused Tile Scope: (s, e), ∀s, e ∈ L
Start Position: posstart
Feature Map: Xorigin

Output: Sub-feature Map:Xsub
Padding Configuration:paddings

1: π ← WPA(N ,G,C, (Pcomp, Pcomm), B, p) //* Algorithm 1 is invoked to calculate the
optimal workload partition decision

2: ai ← π //* Get the workload of the edge device Ui
3: paddings← [] //* Stores the padding of multiple network layers
4: (posstart, lennew, pup, pdown)← (posstart, ai, 0, 0)
5: for k = e −1 to s−1 do
6: if Lk ∈ (Conv2d, Maxpool2d) then
7: (posstart, lennew, pup, pdown) ← OD − FTP(Lk,Ck, posnew

start, lennew) //* Algo-
rithm 2 is called to calculate the relative position, length, and padding size

8: add pup to paddings
9: add pdown to paddings

10: else
11: add 0 to paddings
12: add 0 to paddings
13: end if
14: end for
15: reverse paddings list //*Since the padding size for each layer is calculated from back

to front, the list needs to be reversed after the calculation
16: extract Xsub from Xorgin using posnew

start and lennew

17: return (Xsub, paddings) //* MD sends Xsub and paddings to the edge device for parallel
execution

5. Experimental Results and Analysis
This section presents simulation experiments conducted to verify the effectiveness

and efficiency of the LFP method.

5.1. Evaluation Metrics

To evaluate the performance of the LFP method, three key metrics were used [15]:
multiply–accumulate operations (MACs), latency, and energy consumption.

MACs: This metric is used to measure the computational complexity of neural net-
works. The calculation shown in Equation (20) represents the total number of basic oper-
ations (multiplications and additions) required during the forward propagation process.
A lower MAC value typically indicates less computational load and higher efficiency. In
this experiment, we used the thop library to calculate the MACs during DNN model
inference on edge devices [27].

MACs = HW(CinK2 + 1)Cout (20)

Latency: Latency is the time required to complete a single inference task. In distributed
inference systems, latency is usually determined based on the edge device that takes the
longest time to complete its task. This metric is calculated using Equation (21).

T = max
i∈N

(Tcomp,i + Tcomm,i) (21)



Appl. Sci. 2025, 15, 1097 14 of 22

Energy consumption: This metric represents the total energy consumed by all edge
devices after completing an inference task. Energy consumption is calculated as shown in
Equation (22).

E = ∑
i∈N

(Ecomp,i + Ecomm,i) (22)

5.2. Experimental Setup

Considering that resource-constrained edge devices may not be equipped with GPUs,
we implemented the proposed algorithm based on the PyTorch—CPU version. For the
selection of edge devices, we created five virtual machines without GPUs on the BKYun
cloud supercomputing platform [28] to simulate edge devices. We divided five virtual
machines into three different types of edge devices to create a heterogeneous edge device
environment. The virtual machines run the CentOS operating system, and their detailed
configurations are listed in Table 2. Communication between the virtual machines is
implemented using Python’s socket API. For bandwidth control, we adopted the same
strategy as described in [15], utilizing the traffic control tool TC (Traffic Control) to restrict
the available bandwidth during the experiments.

Table 2. Virtual machine configuration in experiments.

Type CPU Memory Number of
Instances

V1 4 Core Intel Xeon Gold 6149 2.5 GHz (Intel,
Santa Clara, CA, USA)

4 GB 2

V2 8 Core Intel Xeon (Skylake) Platinum 8163
2.5 GHz

8 GB 2

V3 8 Core Intel Xeon Platinum 8369 3.3 GHz 16 GB 1

In this experiment, four mainstream DNN models were implemented by using the
PyTorch framework: VGG-16, VGG-19, ResNet-18, and ResNet-34. The workload consisted
of an image classification task to be performed on the Food-101 dataset [29], with images
sized at (512 × 512) pixels. Table 3. lists the main parameters used in the experiment. To
eliminate random errors and improve the reliability of the experimental results, unnecessary
programs were disabled during inference, and the inference latency was averaged out of
10 repeated experiments.

Table 3. Parameter settings for edge-device simulation experiments.

Parameter Value Definition

B 125 Total channel bandwidth (MB/s)
N 5 Number of edge device

Pcomm,i {10, 10, 12} The computing power (W) of different types Ui
Pcomp,i {2, 2, 3} The transmission power (W) of different types Ui

p {17, 19, 6, 7} The partition points for VGG16, VGG19, ResNet18,
and ResNet34

λt, λe (0.5, 0.5) The weights of latency and energy consumption

5.3. Effectiveness of the LFP Method

The effectiveness of the LFP method was verified on the basis of the three evaluation
metrics described in Section 5.1. To achieve a balanced optimization of both latency and
energy consumption, equal weights were assigned to both metrics: λt = λe = 0.5.



Appl. Sci. 2025, 15, 1097 15 of 22

Figure 4 illustrates the impact of not using distributed inference or the two-stage
fusion block strategy on the performance of the LFP method across four models. Here,
the Loc method represents local inference, while the NLF method indicates the absence
of the two-stage fusion block strategy. In the figure, V1, V2, and V3 correspond to the
edge devices listed in Table 1. For all four models, the proposed LFP method exhibits the
lowest MACs, followed by the NLF method. This is because the LFP method partitions
the convolutional layers of the DNN model into two segments, creating fusion blocks with
lower computational redundancy. In contrast, the Loc method performs inference solely on
a single edge device, which does not reduce the MACs.

V1 V2-1 V2-2 V3
0

10

20

30

40

50

60

70

80

90

M
AC

s 
(G

)

(a) VGG-16

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0

20

40

60

80

100

120

M
AC

s 
(G

)
(b) VGG-19

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0

2

4

6

8

10

M
AC

s 
(G

)

(c) ResNet-18

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0

2

4

6

8

10

12

14

16

18

20

M
AC

s 
(G

)

(d) ResNet-34

 Loc
 NLF
 LFP

Figure 4. MAC metric.

The experimental results for the latency metric are shown in Figure 5. The proposed
LFP method achieved the lowest latency across the four DNN models. This indicates that,
according to the optimization model presented in this paper, the LFP method can derive
the optimal workload partitioning strategy. This effectively utilizes other participating
edge devices in distributed inference to accelerate the overall inference process.

The experimental results for the energy consumption metric are shown in Figure 6. The
proposed LFP method exhibits the lowest energy consumption across the four DNN models.
This is because the LFP method takes into account the computational capabilities and power
characteristics of different edge devices. More powerful edge devices are assigned a greater
workload, which helps reduce latency and indirectly lowers energy expenditure.



Appl. Sci. 2025, 15, 1097 16 of 22

V1 V2-1 V2-2 V3
0.0

0.2

0.4

0.6

0.8

1.0

La
nt

en
cy

 (s
)

(a) VGG-16

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
nt

en
cy

 (s
)

(b) VGG-19

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

La
nt

en
cy

 (s
)

(c) ResNet-18

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

La
nt

en
cy

 (s
)

(d) ResNet-34

 Loc
 NLF
 LFP

Figure 5. Latency metric.

V1 V2-1 V2-2 V3
0

2

4

6

8

10

En
er

gy
 (J

)

(a) VGG-16

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0

2

4

6

8

10

12

En
er

gy
 (J

)

(b) VGG-19

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 (J

)

(c) ResNet-18

 Loc
 NLF
 LFP

V1 V2-1 V2-2 V3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 (J

)

(d) ResNet-34

 Loc
 NLF
 LFP

Figure 6. Energy metric.

5.4. Efficiency of the LFP Method

To evaluate the efficiency of the proposed LFP method, comparisons are made with
BODP [12], FTP [14], CoEdge [15], EdgeFlow [24] and the Loc method in terms of MACs,
latency, and energy consumption. Additionally, to ensure fairness, local inference (Loc) is
set as the baseline, with its master device (MD) fixed as an edge device of type V1.

Figure 7 presents the latency results of different algorithms compared across four
DNN models. As shown in Figure 7a,b, compared to local inference, the LFP method
achieves 3.17× and 3.48× inference speedups on VGG-16 and VGG-19, respectively. The
BODP, CoEdge, and EdgeFlow methods adopt a layer-wise synchronization strategy, which



Appl. Sci. 2025, 15, 1097 17 of 22

results in longer inference times due to frequent synchronization of intermediate results.
The BODP method fails to account for the heterogeneity of different edge devices, leading
to imbalanced workload distribution and higher inference latency. Both the LFP and FTP
methods utilize the fused block strategy to avoid frequent inter-layer synchronization. The
LFP method divides the convolutional layers of the DNN model into two fused blocks with
low computational redundancy, making it more efficient than the FTP method.

Loc FTP BODP CoEdge EdgeFlow LFP
0.0

0.2

0.4

0.6

0.8

1.0
La

nt
en

cy
 (s

)

(a) VGG-16
Loc FTP BODP CoEdge EdgeFlow LFP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

La
nt

en
cy

 (s
)

(b) VGG-19

Loc FTP BODP CoEdge EdgeFlow LFP
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

La
nt

en
cy

 (s
)

(c) ResNet-18
Loc FTP BODP CoEdge EdgeFlow LFP

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
nt

en
cy

 (s
)

(d) ResNet-34

Figure 7. Comparison between the latencies of different methods across four DNN models.

As shown in Figure 7c,d, the LFP method achieved 1.65× and 2.38× inference
speedups on ResNet-18 and ResNet-34, respectively. The BODP and CoEdge methods
exhibit higher inference latency because they do not apply special processing to the residual
blocks in the ResNet architecture, preventing optimal performance during distributed infer-
ence. In contrast, the LFP method converts residual blocks into sub-fused blocks, thereby
eliminating the synchronization overhead within residual blocks. EdgeFlow encapsulates
the layer dependencies of DAG-structured models into carefully partitioned execution
units, which are executed in parallel.

As shown in Figure 7a,b, the speed of the LFP method becomes 3.17 times on VGG-16
and 3.48 times on VGG-19 compared with that of local inference. The LFP method divides
the DNN model’s convolutional layers into two fused blocks with low computational
redundancy; thus, it is more efficient than the FTP method. By contrast, the FTP method
groups all convolutional layers into a single fused block, which becomes overloaded with
too many layers, thereby increasing redundancy and reducing efficiency. Furthermore, the
BODP method suffers from high latency due to imbalanced workload partitioning and
frequent inter-layer synchronization. As shown in Figure 7c,d, the speed of the LFP method
becomes 1.65 times on ResNet-18 and 2.38 times on ResNet-34 compared with that of local
inference. The LFP method converts the residual blocks in the ResNet model into sub-fused
blocks and splits the convolutional layers into two smaller fused blocks, thereby reducing
redundancy and improving efficiency.

Figure 8 presents the energy consumption experimental results for the comparative
methods. As shown in Figure 8a,b, compared to local inference, the LFP method achieves
energy savings of 16% and 20% on the VGG-16 and VGG-19 models, respectively. The FTP,
BODP, and EdgeFlow methods exhibit higher energy consumption as they focus solely



Appl. Sci. 2025, 15, 1097 18 of 22

on latency without considering energy consumption, leading to higher energy costs than
local inference. Both CoEdge and LFP consume less energy than local inference, as they
take into account the differences in computational and transmission power among edge
devices during inference. As shown in Figure 8c,d, the LFP method is less energy-efficient
for ResNet compared to local inference because the model’s lower computational demand
limits the optimization potential of the fused block strategy. The FTP, BODP, and EdgeFlow
methods all consume more energy than local inference. This is because their optimizations
prioritize latency in workload partitioning without considering the power consumption
characteristics of different device types.

Loc FTP BODP CoEdge EdgeFlow LFP
0

2

4

6

8

10

12

En
er

gy
 (J

)

(a) VGG-16
Loc FTP BODP CoEdge EdgeFlow LFP

0

2

4

6

8

10

12

14

16

18

En
er

gy
 (J

)
(b) VGG-19

Loc FTP BODP CoEdge EdgeFlow LFP
0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
er

gy
 (J

)

(c) ResNet-18
Loc FTP BODP CoEdge EdgeFlow LFP

0

1

2

3

4

5

6

En
er

gy
 (J

)

(d) ResNet-34

Figure 8. Comparison between the energy consumptions of different methods across four DNN models.

As shown in Figure 8a,b, the LFP method saves 16% and 20% energy, respectively,
on the VGG-16 and VGG-19 models compared to local inference. This is because the
LFP method accounts for differences in computational and transmission power between
different edge devices. It utilizes the workload partitioning module proposed in Section 3.4
to achieve the optimal partitioning strategy. In contrast, the BODP and FTP methods focus
solely on latency without considering energy consumption, resulting in higher energy
costs than local inference. As depicted in Figure 8c,d, the LFP method is less effective
than local inference for ResNet, as the model’s lower computational demands limit the
optimization potential of the fused block strategy. Both FTP and BODP exhibit higher
energy expenditures than local inference. This is because their optimizations do not account
for the power characteristics of different device types, prioritizing latency in workload
partitioning instead. Overall, the LFP method achieves the lowest energy expenditure
compared to FTP and BODP. This is accomplished by jointly optimizing computation and
balancing the computational capabilities and power characteristics of devices.

In the experiments, we used 512 × 512 resolution images as input data for the DNN
model. After completing the inference of the convolutional layers, the feature map shape
becomes Cout × 16 × 16. According to the proposed partitioning algorithm with high
partitioning, theoretically, up to 16 edge devices can be supported for distributed inference.
However, this would result in significant communication overhead between the master
device and the worker devices, leading to transmission latency far exceeding computation
latency. As the computational capability of the edge devices increases, the computation



Appl. Sci. 2025, 15, 1097 19 of 22

latency during distributed inference decreases. While the overall inference latency reduces,
it is still partially affected by the transmission latency.

Figure 9 presents a comparison between the communication overheads of different
algorithms across four edge devices. Both FTP and LFP use fused-block strategies to avoid
data transmission between individual network layers, resulting in low communication
overheads. However, LFP incurs a slightly higher overhead than FTP owing to the extra
synchronization step that reduces redundancy between fused blocks. The BODP method,
which involves layer-by-layer partitioning, incurs the highest communication overhead,
considerably exceeding those of FTP and LFP. This can be attributed to the fact that the
number of channels in the input feature map doubles every few layers during inference
and the height and width shrink slowly. Consequently, each synchronization step transmits
much larger amounts of data than the original inference task.

V1 V2-1 V2-2 V3

0

5

10

15

20

25

30

35

Co
m

m
un

ic
at

io
n 

ov
er

he
ad

 (M
B)

 FTP
 BODP
 LFP

Edge Device

Figure 9. Comparison between the communication overheads of different algorithms on
four edge devices.

To evaluate the robustness of the LFP method, we added new devices to the edge
device cluster to measure latency and energy consumption. The DNN model selected for
this experiment was VGG-19. Devices were added in the following sequence: V1, V1 and
V2, V2, V3. Figure 10 presents the measurement results of the LFP method, with the devices
added sequentially indicated at the top of the figure. As the number of devices increases,
energy consumption initially decreases but then gradually rises because the computational
energy consumption of the newly added devices exceeds the benefits gained from reduced
latency. Latency gradually decreases as the number of devices grows, but the redundancy
between fused blocks also increases. Eventually, latency stabilizes at a lower range and
ceases to decrease further.

Figure 11 shows the changes in latency and energy consumption of the LFP method
over time. In the experiment, we continuously ran the distributed inference system for one
hour, performing an inference task every 10 min. The inference model was set to VGG19,
with the primary device fixed as V1. The latency for each inference task remained stable
at approximately 0.3 s, which is significantly lower than the local inference latency of V1
(1.3 s). Similarly, the energy consumption generated by the inference tasks followed the



Appl. Sci. 2025, 15, 1097 20 of 22

latency trend, with the total energy consumption also lower than that of local inference
(13 J).

1 2 3 4 5

+V1 +None +V1+V2 +V2 +V3

0.2

0.4

0.6

0.8

1.0

1.2
 Lantency
 Enengy

Devices Number

La
nt

en
cy

 (s
)

8.5

9.0

9.5

10.0

10.5

11.0

11.5

 E
ne

ng
y 

(J
)

Figure 10. The latency and energy consumption of the LFP algorithm vary with the number of
devices. The top text indicates which type of device are newly added to the cluster.

1 2 3 4 5 6

0.22

0.24

0.26

0.28

0.30

0.32

0.34

 Lantency
 Enengy

Round

La
nt

en
cy

 (s
)

7.0

7.5

8.0

8.5

9.0

 E
ne

ng
y 

(J
)

Figure 11. The latency and energy consumption of the LFP algorithm over time.

6. Discussion
The deployment of DNN models on resource-constrained heterogeneous edge devices

is a critical challenge in edge computing, particularly in applications like smart cities,
autonomous vehicles, and IoT systems. Efficient workload partitioning addresses the limi-
tations of diverse edge devices, enabling faster inference and reduced energy consumption,
which are essential for real-time, privacy-preserving applications.

In recent years, the Transformer architecture has been applied to various computer
vision (CV) tasks with remarkable success, gradually replacing the classical CNN architec-
ture. Therefore, our future work will focus on distributed inference for Vision Transformers
models, aiming to provide more model options for inference on edge devices.



Appl. Sci. 2025, 15, 1097 21 of 22

7. Conclusions
In this study, the deployment of DNN models on resource-constrained heterogeneous

edge devices was investigated and a resource-adaptive workload-partitioning optimization
model was proposed. The proposed model was used to address the challenge of deter-
mining workload allocation based on the heterogeneity of edge device resources. This
remains an ongoing issue in current research. To efficiently solve the optimization model,
a workload-partitioning algorithm was designed to determine effective partitioning strate-
gies in real time. Based on this, an LFP algorithm was designed as an improved version of
the FTP algorithm to further enhance inference performance on edge devices and minimize
latency and energy consumption. Experimental results revealed that the proposed method
increases the inference speed and reduces energy consumption compared with existent
approaches across four widely used DNN models.

However, there are a few limitations that need to be further addressed in our future
works. First, the proposed method lacks consideration of the partitioning for the non-
convolutional layers, such as the fully connected layers. Second, the developed methods
do not pay enough attention on the issue of edge device failures. Covering whole layers
and the regarded factors to enhance the inference performance of the presented method
will be the focus of our future works.

Author Contributions: Conceptualization, Q.Y. and Z.L.; methodology, Q.Y.; software, Q.Y.;
writing—original draft preparation, Q.Y. and Z.L.; writing—review and editing, Q.Y. and Z.L.;
supervision, Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: The authors did not receive any financial support for this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of artificial intelligence with edge

computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]
2. Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017,

105, 2295–2329. [CrossRef]
3. Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model compression and hardware acceleration for neural networks: A comprehensive

survey. Proc. IEEE 2020, 108, 485–532. [CrossRef]
4. Yin, M.; Sui, Y.; Liao, S.; Yuan, B. Towards efficient tensor decomposition-based dnn model compression with optimization

framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA,
20–25 June 2021; pp. 10674–10683. [CrossRef]

5. Ruiquan, L.; Lu, Z.; Yuanyuan, L. Deep Neural Network Channel Pruning Compression Method for Filter Elasticity. J. Comput.
Eng. Appl. 2024, 60, 163. [CrossRef]

6. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv 2015, arXiv:1510.00149. [CrossRef]

7. Blakeney, C.; Li, X.; Yan, Y.; Zong, Z. Parallel blockwise knowledge distillation for deep neural network compression. IEEE Trans.
Parallel Distrib. Syst. 2020, 32, 1765–1776. [CrossRef]

8. Hinton, G. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [CrossRef]
9. Han, S.; Shen, H.; Philipose, M.; Agarwal, S.; Wolman, A.; Krishnamurthy, A. Mcdnn: An approximation-based execution

framework for deep stream processing under resource constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, Singapore, 26–30 June 2016; pp. 123–136. [CrossRef]

http://doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.1109/JPROC.2020.2976475
http://dx.doi.org/10.1109/CVPR46437.2021.01053
http://dx.doi.org/10.3778/j.issn.1002-8331.2210-0420
http://dx.doi.org/10.48550/arXiv.1510.00149
http://dx.doi.org/10.1109/TPDS.2020.3047003
http://dx.doi.org/10.48550/arXiv.1503.02531
http://dx.doi.org/10.1145/2906388.2906396


Appl. Sci. 2025, 15, 1097 22 of 22

10. Kang, Y.; Hauswald, J.; Gao, C.; Rovinski, A.; Mudge, T.; Mars, J.; Tang, L. Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM Sigarch Comput. Archit. News 2017, 45, 615–629. [CrossRef]

11. Teerapittayanon, S.; McDanel, B.; Kung, H.T. Distributed deep neural networks over the cloud, the edge and end devices. In
Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8
June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 328–339. [CrossRef]

12. Mao, J.; Chen, X.; Nixon, K.W.; Krieger, C.; Chen, Y. Modnn: Local distributed mobile computing system for deep neural network.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31
March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1396–1401. [CrossRef]

13. Mao, J.; Yang, Z.; Wen, W.; Wu, C.; Song, L.; Nixon, K.W.; Chen, X.; Li, H.; Chen, Y. Mednn: A distributed mobile system with
enhanced partition and deployment for large-scale dnns. In Proceedings of the 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 751–756.
[CrossRef]

14. Zhao, Z.; Barijough, K.M.; Gerstlauer, A. Deepthings: Distributed adaptive deep learning inference on resource-constrained iot
edge clusters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2348–2359. [CrossRef]

15. Zeng, L.; Chen, X.; Zhou, Z.; Yang, L.; Zhang, J. Coedge: Cooperative dnn inference with adaptive workload partitioning over
heterogeneous edge devices. IEEE/ACM Trans. Netw. 2020, 29, 595–608. [CrossRef]

16. Fang, W.; Xu, W.; Yu, C.; Xiong, N.N. Joint architecture design and workload partitioning for dnn inference on industrial iot
clusters. ACM Trans. Internet Technol. 2023, 23, 1–21. [CrossRef]

17. Zhou, L.; Samavatian, M.H.; Bacha, A.; Majumdar, S.; Teodorescu, R. Adaptive parallel execution of deep neural networks on
heterogeneous edge devices. In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, Washington, DC, USA, 7–9
November 2019; pp. 195–208. [CrossRef]

18. Luo, H.; Chen, T.; Li, X.; Li, S.; Zhang, C.; Zhao, G.; Liu, X. KeepEdge: A Knowledge Distillation Empowered Edge Intelligence
Framework for Visual Assisted Positioning in UAV Delivery. IEEE Trans. Mob. Comput. 2023, 22, 4729–4741. [CrossRef]

19. Chen, C.; Jiang, B.; Liu, S.; Li, C.; Wu, C.; Yin, R. Efficient Federated Learning using Random Pruning in Resource-Constrained
Edge Intelligence Networks. In Proceedings of the GLOBECOM 2023—2023 IEEE Global Communications Conference, Kuala
Lumpur, Malaysia, 4–8 December 2023; pp. 5244–5249. [CrossRef]

20. Pang, B.; Liu, S.; Wang, H.; Guo, B.; Wang, Y.; Wang, H.; Sheng, Z.; Wang, Z.; Yu, Z. AdaMEC: Towards a Context-adaptive and
Dynamically Combinable DNN Deployment Framework for Mobile Edge Computing. ACM Trans. Sens. Netw. 2023, 20, 1–28.
[CrossRef]

21. Ren, W.; Qu, Y.; Qin, Z.; Dong, C.; Zhou, F.; Zhang, L.; Wu, Q. Efficient Pipeline Collaborative DNN Inference in Resource-
Constrained UAV Swarm. In Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC),
Dubai, United Arab Emirates, 21–24 April 2024; pp. 1–6. [CrossRef]

22. Hou, X.; Guan, Y.; Han, T.; Zhang, N. DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge
Devices. In Proceedings of the 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 30
May–3 June 2022; pp. 1097–1107. [CrossRef]

23. Han, B.; Dai, P.; Li, K.; Zhao, K.; Lei, X. SDPMP: Inference Acceleration of CNN Models in Heterogeneous Edge Environment. In
Proceedings of the 2024 7th World Conference on Computing and Communication Technologies (WCCCT), Chengdu, China,
12–14 April 2024; pp. 194–198. [CrossRef]

24. Hu, C.; Li, B. Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices. In Proceedings of the IEEE
INFOCOM 2022—IEEE Conference on Computer Communications, Virtual, 2–5 May 2022; pp. 330–339. [CrossRef]

25. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning convolutional neural networks for resource efficient inference.
arXiv 2016, arXiv:1611.06440. [CrossRef]

26. Dantzig, G.B. Linear programming and extensions. In Linear Programming and Extensions; Princeton University Press: Princeton,
NJ, USA, 2016. [CrossRef]

27. Lyken17. Pytorch-OpCounter. 2020. Available online: https://github.com/Lyken17/pytorch-OpCounter (accessed on
11 December 2023) .

28. Shenzhen Beikun Cloud Computing Co., Ltd. Bei Kunyun Supercomputing Platform. 2019. Available online: https://www.
bkunyun.com/ (accessed on 11 September 2023).

29. Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101–mining discriminative components with random forests. In Proceedings of
the Computer vision–ECCV 2014: 13th European conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part VI 13;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 446–461. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3093337.3037698
http://dx.doi.org/10.1109/ICDCS.2017.226
http://dx.doi.org/10.23919/DATE.2017.7927211
http://dx.doi.org/10.1109/ICCAD.2017.8203852
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.1109/TNET.2020.3042320
http://dx.doi.org/10.1145/3551638
http://dx.doi.org/10.1145/3318216.3363312
http://dx.doi.org/10.1109/TMC.2022.3157957
http://dx.doi.org/10.1109/GLOBECOM54140.2023.10437051
http://dx.doi.org/10.1145/3630098
http://dx.doi.org/10.1109/WCNC57260.2024.10570535
http://dx.doi.org/10.1109/ipdps53621.2022.00110
http://dx.doi.org/10.1109/WCCCT60665.2024.10541524
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796896
http://dx.doi.org/10.48550/arXiv.1611.06440
http://dx.doi.org/10.2307/2344013
https://github.com/Lyken17/pytorch-OpCounter
https://www.bkunyun.com/
https://www.bkunyun.com/
http://dx.doi.org/10.1007/978-3-319-10599-4_29

	Introduction
	Related Work
	DNN Model Modification
	Cloud–Edge Collaboration
	Distributed Inference

	System Model and Problem Description
	System Overview
	Estimation of Inference Latency and Energy Consumption of Edge Devices
	Latency
	Energy Consumption

	Problem Description
	Linear Programming Relaxation Algorithm
	Workload-Partitioning Method Based on Linear Programming Relaxation

	Convolution-Layer Partitioning Algorithm
	OD-FTP
	Convolutional-Layer Partitioning Method Based on the OD-FTP Algorithm

	Experimental Results and Analysis
	Evaluation Metrics
	Experimental Setup
	Effectiveness of the LFP Method
	Efficiency of the LFP Method

	Discussion
	Conclusions
	References

