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Abstract: As artificial intelligence increasingly automates the recognition and analysis of
visual content, it poses significant risks to privacy, security, and autonomy. Computer vision
systems can surveil and exploit data without consent. With these concerns in mind, we
introduce a novel method to control whether images can be recognized by computer vision
systems using reversible adversarial examples. These examples are generated to evade
unauthorized recognition, allowing only systems with permission to restore the original
image by removing the adversarial perturbation with zero-bit error. A key challenge with
prior methods is their reliance on merely restoring the examples to a state in which they can
be correctly recognized by the model; however, the restored images are not fully consistent
with the original images, and they require excessive auxiliary information to achieve
reversibility. To achieve zero-bit error restoration, we utilize the differential evolution
algorithm to optimize adversarial perturbations while minimizing distortion. Additionally,
we introduce a dual-color space detection mechanism to localize perturbations, eliminating
the need for extra auxiliary information. Ultimately, when combined with reversible data
hiding, adversarial attacks can achieve reversibility. Experimental results demonstrate that
the PSNR and SSIM between the restored images by the method and the original images
are ∞ and 1, respectively. The PSNR and SSIM between the reversible adversarial examples
and the original images are 48.32 dB and 0.9986, respectively. Compared to state-of-the-art
methods, the method maintains high visual fidelity at a comparable attack success rate.

Keywords: data security; reversible data hiding; reversible adversarial example; dual-color
space; black-box attack

1. Introduction
In recent years, deep learning models have been extensively utilized across a diverse

array of industries [1,2]. These models enable the rapid and efficient analysis of substantial
quantities of data, thereby significantly improving convenience in both personal and profes-
sional contexts. Furthermore, advancements in computer technology have rendered social
interactions more accessible, thereby encouraging a growing number of individuals to share
their photographs on social networks. Nevertheless, the development of web scraping tech-
nologies has similarly surged. Traditional scraping techniques, when combined with deep
learning models, can analyze and extract images or other information from social media
with a high degree of accuracy and efficiency [3,4]. Regrettably, certain malevolent actors
exploit these technologies to unlawfully acquire sensitive user information, including pho-
tographs, preferences, geographical locations, and social connections. This unauthorized
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and malevolent data acquisition constitutes a significant threat to user privacy, thereby
complicating the exploration of defense mechanisms against such intrusions [5].

Szegedy et al. were the first to introduce the concept of adversarial examples (AEs),
positing that these examples are generated by adding specific adversarial perturbations to
the original images. These AEs can mislead deep learning models, resulting in incorrect
outcomes [6]. In practical applications, AEs constitute a significant security threat to deep
learning systems. On the other hand, there are advantageous aspects associated with
AEs; for instance, social platforms can implement minor adversarial perturbations during
user photo uploads to deter attackers attempting to exploit deep learning models for
identification. This methodology can also be broadly applied in the domain of privacy
protection [7,8] and in counteracting malicious algorithms [9–11].

Based on different attack conditions, adversarial attacks can typically be categorized
into two types: white-box attacks and black-box attacks. White-box attacks allow complete
access to the information of the deep learning model, including network architecture and
weights. Such attacks are typically rapid and exhibit a high success rate. Conversely,
black-box attacks typically restrict access to the outputs produced by the deep learning
model or the corresponding probability scores. In black-box settings, adversarial attack
algorithms are unable to access the internal details of the deep learning model, leading
to comparatively slower attacks and reduced success rates. However, it is crucial to
acknowledge that black-box attack conditions more accurately reflect real-world scenarios.

The Fast Gradient Sign Method (FGSM), proposed by Goodfellow et al., represents a
classic white-box attack method [12]. This method utilizes the loss function and the sign
function to rapidly generate adversarial perturbations. Following this, several researchers
have performed further optimizations based on FGSM [13,14]. Furthermore, certain re-
searchers have employed this classic white-box attack method to investigate the robustness
of deep learning models [15,16].

In contrast to gradient-based methods employed in white-box attacks, black-box attack
methods resemble a form of simulated optimization of the gradient of the loss function. The
One-Pixel attack, proposed by Su et al., generates adversarial examples (AEs) by modifying
a single pixel under black-box conditions, utilizing a differential evolution algorithm
to optimize the solution [17]. Similarly, the Scratch attack, proposed by Jere et al. [18],
generates distortions resembling scratches using a differential evolution algorithm for
adversarial attack purposes. Ran et al. proposed a black-box attack method based on image
quality assessment [19], aimed at generating adversarial samples with high image quality.

However, although the adversarial perturbations generated by these classic adversarial
attack methods are typically minor, the degradation of image data remains an unavoidable
reality. Even minor perturbations can result in failures in specific computer vision tasks,
particularly in critical areas such as medical imaging, military applications, and digital
forensics [20,21]. Data hiding technologies embed the secrets into a cover [22], while
reversible data hiding (RDH) enables the exact restoration of the original image with
the aid of the embedded auxiliary information. Reversible adversarial example (RAE)
generation integrates AE generation with RDH technologies [23], inheriting the functions
of AE generation while enabling the exact restoration of the original images.

Liu et al. [24] proposed two methods for generating reversible adversarial exam-
ples (RAEs) utilizing RDH technology in conjunction with several classic AE generation
techniques. However, the significant distortions induced by the RDH algorithm when
embedding auxiliary information within AEs can result in a loss of adversarial effectiveness,
ultimately culminating in attack failure. Yin et al. [25] proposed a method for generating
RAE using reversible image transformations, which avoids the failure of AEs due to the



Appl. Sci. 2025, 15, 1142 3 of 19

embedding of auxiliary information in RDH. Nonetheless, this method is not entirely
reversible, and there may still be deviations in image recovery.

Zhang et al. [26] proposed a partially reversible adversarial attack method. This
method integrates adversarial attacks and restoration models into a unified task, utilizing
a dimensionality reduction technique to optimize the distribution of adversarial pertur-
bations, thereby reducing restoration error while maximizing attack capability. Cao et al.
proposed a method for generating RAEs, known as W-RAE [27], which transforms the
task of generating RAEs into an image steganography task. This is accomplished by em-
bedding a specific image watermark to generate RAEs. However, these methods can only
approximately restore, rather than exactly restore, the original images.

This paper proposes a novel approach for RAE generation based on evolutionary
algorithms to generate minimalist adversarial perturbations. The primary contributions
are summarized as follows.

(1) We proposed a RAEs generation method that achieves zero-bit error, which in-
herits the functions of AEs and enables the exact restoration of original images. This
facilitates recognition control in computer vision, and restricts the recognition capabilities
of unauthorized systems.

(2) By introducing dual-color space detection of perturbed pixels (D-CSDPP), the
perturbed pixel location can be automatically detected according to the difference between
each pixel and its adjacent pixels, thereby the auxiliary information of perturbed pixel
location do not need to be embedded, and embedding capacity is saved. Thereby, the image
quality and the attack success rate (ASR) are both improved.

(3) Experimental validation demonstrates that the RAEs generated by the proposed
method exhibit higher image quality compared to the original images and achieve a greater
adversarial preservation rate (APR) relative to state-of-the-art (SOTA) methods.

2. Preliminary
This section provides a brief overview of one-pixel attacks and differential evolution

algorithm, which are employed in our method.

2.1. One-Pixel Attack

Typically, the modifications to AEs involve multiple perturbations that jointly alter the
overall structure of the image, causing deep learning models to make incorrect judgments.
In contrast, a one-pixel attack modifies the image using only a single perturbation.

The AE generation typically involves accumulating multiple perturbations until certain
conditions are satisfied. However, in a one-pixel attack, the problem can be simplified to
find the optimal modification pixel within the constraints of the entire image. By focusing
on a small number of pixels, the AE can achieve the desired adversarial task without
constraining the modification intensity.

2.2. Differential Evolution

Differential evolution solves complex multimodal optimization problems. This algo-
rithm relies on the variation within a population, and is particularly effective in black-box
conditions compared with some gradient-based methods for white-box scenarios. Specif-
ically, in each iteration, offspring individuals are generated from their parents, and then
all of the offspring individuals and their parents are evaluated together; the individuals
with higher likelihoods of survival (higher fitness values) are selected and preserved. This
approach allows both parents and offspring individuals to pursue the goal of improving
fitness, and maintains the diversity within the population.
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Due to the absence of gradient-based iterations, the differential evolution algorithm
does not require the target function to be differentiable. Consequently, it has a wider scope
of optimization than gradient-based approaches. It has two main advantages for generating
AEs, as follows.

(1) Global optimization enhancement.
Unlike gradient descent or greedy algorithms, which are limited by the constraints of

the objective function and may converge to local optima, differential evolution algorithm is
less affected by such limitations, and has higher likelihood of finding the global optimum,
especially in highly challenging problems.

(2) Less information requirements.
Differential evolution algorithm does not rely on prior knowledge or information

for optimization. This aspect is particularly important in the context of generating AEs.
Firstly, some models are not rigidly differentiable, in which gradient-based methods are
inapplicable. Secondly, some certain information is inaccessible during the optimization
process.

In AE generation based on a one-pixel attack, a large number of iterations search
for a single perturbed pixel that impacts the image structure. The differential evolution
algorithm can relieve the limitations of local optima, and efficiently identify perturbed
pixels. Moreover, in many real scenarios, we cannot access to the internal details of models.
Employing the differential evolution algorithm to generate AEs can maintain a high ASR,
even for black-box models. Based on these advantages, the proposed method in this paper
utilizes the differential evolution algorithm.

3. The Proposed Method
The framework, illustrated in Figure 1, consists of two phases: the generation phase

and the restoration phase. The processes represented by blue arrows indicate the RAE
generation, while the processes represented by red arrows indicate the restoration of
original image from its RAE.

Original Image

Adversarial

Perturbation 

Adversarial 

Example

Auxiliary 

information (RGB)

DEHS embed

Reversible 

Adversarial Example

Adversarial 

Example

Perturbed pixel 

location (xy)
D-CSDPP detect

Reversible 

Adversarial Example

DEHS extract

restore

Original Image

Figure 1. Framework for the generation and recovery of reversible adversarial examples.
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In the generation phase, adversarial perturbations are generated using a differential
evolution algorithm and added to the original image to obtain the AE. The original RGB
values of the perturbed pixels are recorded and treated as auxiliary information. This
recorded auxiliary information is then embedded into the AE using differential expanded
histogram shifting (DEHS) to generated an RAE.

In the restoration phase, the embedded auxiliary information is extracted from the
RAE using DEHS, thereby enabling the recovery of the AE. The D-CSDPP is employed
to detect the locations x and y of the perturbed pixels in the AE. By utilizing the detected
location information along with the auxiliary information, the AE can be restored to the
original image with zero-bit error.

3.1. Adversarial Example Generation

The adversarial perturbations are encoded as vectors (candidate solutions) and opti-
mized by differential evolution algorithm. Each candidate solution contains a predefined
number of perturbed pixels. Fore example, in a one-pixel attack, the number of perturbed
pixels is 1. Each perturbed pixel has the modification value (one value in gray image, or
three values of R, G and B in color image) and the coordinates (x, y). The random numbers
obeying normal distribution N(µ = 128, σ = 127) are the initial R, G, and B values of
perturbed pixels; each solution can be represented as a vector (x, y, R, G, B). The initial
population has 400 candidate solutions. In each iteration, an additional 400 offspring
candidate solutions are produced. The differential evolution formula is

xi(t + 1) = xr1(t) + F
(
xr2(t)− xr3(t)

)
,

where r1 ̸= r2 ̸= r3
(1)

where xi represents a candidate solution, i.e., the i-th perturbed pixel. t denotes the
iteration count, and F is a scaling coefficient with a preset value 0.5, which restricts
xr1(t), xr2(t), and xr3(t). r1, r2, and r3 are three random indices of the selected parent
individuals that produce the offspring individuals. Once the offspring individuals are
produced, all of the offspring individuals and their parents are evaluated together, and
the 400 individuals with higher likelihoods of survival (higher fitness values) are selected
and preserved. Small size hinders the objective function from finding the ideal optimal
solution, while large size increases the computation time. A size of 400 is sufficient to find
good optimal solutions in most images, and the computational complexity is acceptable.

The image sizes of some datasets, e.g., ImageNet, are large. This can also be extended
to multi-pixel attacks, where the number of perturbed pixels is larger than 1. This does not
imply that altering just one pixel cannot execute an attack. If the computation is sufficient,
i.e., the epoch number is large, even perturbing a single pixel can lead to a successful
attack. In the case of n-pixel attack, RAE is fast, i.e., the epoch number is small, and each
solution can be represented as a vector (x1, y1, R1, G1, B1, x2, y2, R2, G2, B2, . . ., xn, yn, Rn,
Gn, Bn). Algorithm 1 presents the workflow for generating adversarial perturbation using
differential evolution.
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Algorithm 1 Differential evolution for adversarial perturbation.

1: Input:
• Image I
• Population size N = 400
• Number of pixels to perturb n
• Scaling factor F = 0.5
• Maximum iterations T

2: Initialize:
• Population P of size N

– For 1-pixel attack: Each solution xi = (x, y, R, G, B)
– For n-pixel attack: Each solution xi = (x1, y1, R1, G1, B1, . . . , xn, yn, Rn, Gn, Bn)

• Initialize pixel values from N(µ = 128, σ = 127)
3: for t = 1 to T do
4: # Mutation Phase
5: for each solution xi in P do
6: Randomly select unique r1, r2, r3 from P
7: xi(t + 1)← xr1(t) + F · (xr2(t)− xr3(t))
8: end for
9: # Crossover and Selection

10: Combined_Population← P + O f f spring_Population
11: Evaluate fitness of all solutions
12: Select top 400 solutions with highest fitness
13: Update P
14: end for
15: Return: best solution

3.2. Reversible Adversarial Example Generation

One-pixel AE generation and multi-pixel AE generation share the same steps of RAE
generation and original image restoration. The difference is that the lengths of the vectors,
which represent the individuals, are 1 × 5 for one-pixel attacks and n × 5 for multi-pixel
attacks, respectively. For simplification, one-pixel AE generation is specified, which consists
of two steps: auxiliary information encoding and data embedding.

3.2.1. Auxiliary Information Encoding

Each pixel can be represented as a vector (x, y, R, G, B), (x, y) represents the coordi-
nates. If the image size is 32 × 32, x, y ∈ [0, 31]. R, G, B represent the values in the red,
green, and blue channels, respectively. R, G, B ∈ [0, 255].

As shown in Figure 2, after one-pixel AE generation, the perturbed pixel is represented
as a vector (x′, y′, R′, G′, B′). To restore the original image, we have to record and save the
pixel values at the same position in the original image, i.e., (R0, G0, B0), where (x0, y0) =

(x′, y′). (R0, G0, B0) is converted from decimal to a fixed-length bit string. Three 8-bit codes
are for R0, G0, B0, respectively, and a 24-bit code is for them totally.
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𝑥′, 𝑦′, 𝑅′, 𝐺′, 𝐵′ x0, 𝑦0, 𝑅0, 𝐺0, 𝐵0

Adversarial 

Example

Obtain

𝑅0, 𝐺0, 𝐵0

Perturbed 

pixel

Original 

Image

𝑥′, 𝑦′ = x0, 𝑦0

Original 

pixel

Figure 2. The process involves the obtaining and recording of auxiliary information (the original
RGB values).

3.2.2. Data Embedding

In each channel, the difference in the AE is

Si(m, n) = I′(m, n + 1)− I′(m, n)

0 ≤m ≤ M, 0 ≤ n ≤ N − 1
(2)

where I′ represents the AE image, and I′(m, n) represents the pixel value at coordinates
(m, n) in the image. The image size is M× N. The three difference matrices in the three
channels are Si where i ∈ {R, G, B}, respectively. The differential computation process is
illustrated in Figure 3.

𝐈′(𝑚, 𝑛) 𝐈′(𝑚, 𝑛 + 1)

𝐒(𝑚, 𝑛)

M

N

M

N − 1

Differential computation

Figure 3. Differential computation process.

The histograms of Si are generated. Figure 4 shows a histogram. The highest bar in
the histogram represents the most frequent difference value (usually 0), and is denoted
as emax, as shown in Figure 4a. The bars at the right of the highest bar are shifted to the
right by one unit, as shown in Figure 4b. The binary information can be embedded into the
empty space, as shown in Figure 4c.
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… …

𝑒max

𝑒max+1
𝑒max
𝑒max+1

… …

𝑒max

𝑒max+1

… …

(a) (b) (c)

Figure 4. Histogram at each stage. (a–c) represent the histograms of the original image, the histogram
after shifting, and the histogram after embedding, respectively.

The corresponding operation on Si is to increase the values, which are greater than
emax, and generate S′i as

S′i(m, n) =

S(m, n) if S(m, n) < emax + 1

S(m, n) + 1 others
(3)

The first pixel with the value of emax is found. If the embedded bit is 0, the value of the
current emax-pixel is unchanged; if the embedded bit is 1, the value of the current emax-pixel
is added by 1. The subsequent pixels outside emax-pixel in the same row are also added by
1 to maintain the difference between two adjacent pixels. The next emax-pixel is found and
processed according to the next embedded bit. After data embedding, the matrices at three
channels are S′′i . Because the operations at three channels are the same, the subscript i is
omitted in the following equations. S′′ can be obtained according to Equation (4), while k
represents the value of the bit that is to be currently embedded.

S′′(m, n) =

S′(m, n) + 1 if k = 1

S′(m, n) if k = 0

if S′(m, n) = emax

(4)

The three matrices are added to the AE I′, and we obtain the RAE I′′ as

I′′(m, n + 1) = I′(m, n) + S′′(m, n) (5)

We take an instance to illustrate how the data are embedded into a difference histogram.
In Figure 5, a 4× 4 matrix represents block in a channel of an AE I′. The difference matrix S
is a 4× 3 matrix, which is computed according to Equation (2). emax is 0, and the emax-pixels
are labeled by yellow color.

S′ represents the values after histogram shifting in Figure 4. S′′ is obtained after the
data “1010” are embedded. Finally, the RAE I′′ is obtained according to Equation (5). The
changed pixels after data embedding are labeled by red color.
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Adversarial Example 𝐈′

Reversible Adversarial Example 𝐈′′

Embedding

“1010”

168 168 130 171

168 168 211 182

168 168 193 110

168 168 230 203

0 −38 41

0 43 −29

0 25 −83

0 62 −27

168 169 131 173

168 168 212 183

168 169 195 112

168 168 231 204

0 −38 42

0 44 −29

0 26 −83

0 63 −27

1 −38 42

0 44 −29

1 26 −83

0 63 −27

Difference Matrix 𝐒

Matrix 𝐒′

Matrix 𝐒′′

Figure 5. Generation of reversible adversarial example (a 4 × 4 black as an instance).

3.3. Original Image Restoration

Restoring the RAE back to the original image involves two steps. The first step is
perturbed pixel detection, and the second step is data extraction and image restoration.

3.3.1. Dual-Color Space Detection of Perturbed Pixels

During generating the RAEs, only the original values of the perturbed pixels
(R0, G0, B0) are recorded. Our method can automatically detect the perturbed pixel in
an RAE, so the perturbed pixel location (x0, y0) is discarded and not recorded, which
saves the embedding capacity for the auxiliary information and mends the images short of
embedding capacity.

The differences between the perturbed pixel and its adjacent pixels are remarkable, so
we leverage the remarkable differences to detect perturbed pixel. In Figure 6, the RAE I′′ is
split into six channels, with three channels based on the RGB channels and three channels
based on the HSV channels: I′′i and I′′k , where i ∈ {R, G, B}, k ∈ {H, S, V}. In fact, using
only the RGB channels is sufficient to successfully detect perturbed pixel in the majority
of RAEs. However, by incorporating the HSV channels, the detection success rate can be
increased to 99%. In the following sections, we will also validate the feasibility of this
approach through experiments.
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RAE 𝐈′′

𝑥0 , 𝑦0

RGB Channel

HSV Channel

𝐈𝑖
′′ 𝐈𝑖−𝐻𝑃

′′ 𝐃𝑖

𝐈𝑘
′′ 𝐈𝑘−𝐻𝑃

′′ 𝐃𝑘

High-pass 
filtering

Laplacian 

operator

High-pass 
filtering

Laplacian 

operator

𝐈𝑖
′′ − 𝑰𝑖−𝐻𝑃

′′

𝐈𝑘
′′ − 𝐈𝑘−𝐻𝑃

′′

𝐃𝑅+ 𝐃𝐺 + 𝐃𝐵

𝑎𝐃𝐻+ 𝑏𝐃𝑆 + 𝑐𝐃𝑉

𝐃𝑅𝐺𝐵

𝐃𝐻𝑆𝑉

𝐃𝑅𝐺𝐵 + 𝑑𝐃𝐻𝑆𝑉

𝐃𝐷𝐼𝐹𝐹

𝑥′′, 𝑦′′

Figure 6. Visualization of perturbed pixel detection.

DRGB = DR + DG + DB (6)

DHSV = aDH + bDS + cDV (7)

DDIFF = DRGB + dDHSV (8)

A high-pass filter, a Laplacian operator, is applied on each channel to generate six
response matrices: I′′(i−HP) and I′′(k−HP). In Figure 6, for visualization, the matrices have
been normalized. The actual differences between the perturbed pixel and its adjacent pixels
are larger than the visualization results.

Next, the generated matrices are subtracted from their respective channels, and the
absolute values of the differences are Di = |I′′i −I′′(i−HP)| and Dk = |I′′k − I′′(k−HP)|.

Finally, two kinds of difference matrices, Di and Dk, are summed to obtain DRGB

and DHSV according to Equations (6) and (7), where a = 0, b = 0.95 and c = 0.05 in
our work. The difference matrix DDIFF is obtained according to Equation (8) where, in
our work, d = 1.5. The location of the pixel with the highest value in DDIFF is (x′′, y′′),
which is labeled by the red box, and considered as the location of the detected perturbed
pixel in I′′. (x0, y0) is the location of the perturbed pixel in the original image. Generally,
(x′′, y′′) = (x0, y0). The workflow of the D-CSDPP is shown in Algorithm 2.
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Algorithm 2 Dual-color space detection of perturbed pixels.

1: Input: RAE Image I′′

2: Steps:
3: # Split Image into Channels
4: I′′R, I′′G, I′′B ← RGB Channels
5: I′′H , I′′S , I′′V ← HSV Channels
6: Apply High-Pass Laplacian Filter
7: for each channel do
8: # Generate high-pass response matrices
9: Create I′′i−HP for RGB

10: Create I′′k−HP for HSV
11: end for
12: # Calculate Difference Matrices
13: Di ← |I′′i − I′′i−HP| for RGB
14: Dk ← |I′′k − I′′k−HP| for HSV
15: # Combine Difference Matrices
16: DRGB ← DR + DG + DB
17: DHSV ← a · DH + b · DS + c · DV
18: DDIFF ← DRGB + d · DHSV
19: # Locate Perturbed Pixel
20: Find (x′′, y′′) with max value in DDIFF
21: (x′′, y′′) = (x0, y0)
22: Output: Detected Perturbed Pixel Location (x′′, y′′)

3.3.2. Data Extraction and Image Restoration

Data extraction and data embedding are inverse operations. As shown in Figure 7,
first, the RAE I′′ is used to generate the difference matrix S′′ in the same way as that in
embedding. Next, S′′ is scanned in the same order as that in embedding. If a pixel with the
value of emax is found, the extracted bit is “0”, while if a pixel with the value of emax + 1
is found, the extracted bit is “1”. In this way, all the embedded data “1010” are extracted.
Finally, we restore all of the differences in the matrix S′′ that are equal to emax + 1 back
to emax, and shift the histogram differences larger than emax + 1 to the left by one unit to
restore them. In this way, we obtain the matrix S. The AE I′ is obtained through the matrix
S and RAE I′′,

S′(m, n) =

S′′(m, n)− 1 if S′′(m, n) = emax + 1

S′′(m, n) others

S(m, n) =

S′(m, n)− 1 if S′′(m, n) > emax + 1

S′(m, n) others

(9)

I′(m, 1) = I′′(m, 1)

I′(m, n + 1) = I′(m, n) + S(m, n)
(10)

The location and original values of the perturbed pixel are known. The location (x0, y0)

is detected, the extracted data (R0, G0, B0) are extracted. Finally, the RAE is restored to the
original image without any loss.
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Adversarial Example 𝐈′

Matrix 𝐒′′

168 168 130 171

168 168 211 182

168 168 193 110

168 168 230 203

168 169 131 173

168 168 212 183

168 169 195 112

168 168 231 204

1 −38 42

0 44 −29

1 26 −83

0 63 −27

Extracting 

information

“1010”

Original 

Image

𝑥0, 𝑦0

Pixel 

coordinate

 𝑅0, 𝐺0, 𝐵0

Pixel value

Reversible Adversarial 

Example 𝐈′′

0 −38 41

0 43 −29

0 25 −83

0 62 −27

Difference Matrix 𝐒

Figure 7. Data extraction and image restoration (the pixels filled with green color remain unchanged).

4. Experiments and Discussions
4.1. Experiment Setting

The experiments were conducted on two datasets, CIFAR-10 [28] and ImageNet [29].
The CIFAR-10 dataset comprises 60,000 color images of 10 categories, with 6000 images per
category. On CIFAR-10 dataset, one-pixel attack (with one perturbed pixel) is performed
on some classical classification network models, namely LeNet [30], ResNet [31], and
DenseNet [32]. A set of 1000 images are randomly selected from those correctly classified
by the target models (attacked models).

On ImageNet dataset, multiple-pixel attack (with more than one perturbed pixels) is
performed. The target model is MobileNet [33], Inception v3 [34], and Inception-ResNet
v2 [35]. A set of 1000 images are randomly selected from those correctly classified by the
target model.

All experiments were conducted under black-box conditions, meaning that the internal
parameters of the target model cannot be accessed.

4.2. Comparison of Perturbation Pixel Detection Approaches

As discussed in the previous section, the effectiveness of the perturbation pixel detec-
tion approach directly affects the ability of RAEs to be perfectly restored to the original
image. Consequently, we conducted a comparative analysis of several approaches to
validate and illustrate the effectiveness of the proposed D-CSDPP.

As shown in Table 1, by applying high-pass filtering separately to the RGB channels
and calculating the difference matrix relative to the original channels (using the same
method as described in Figure 6, which will not be elaborated on further), 88.42% of the
RAEs to successfully detect the positions of the perturbed pixels. Utilizing only the HSV
channels results in a detection success rate of 91.16%. Furthermore, if we simply com-
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bine the six channels, the success rate rises to 97.66%. By using the proposed weighted
summation method, the success rate can be increased to 98.85%. Additionally, we con-
ducted experiments utilizing a median filter similar to the Laplacian operator.However,
this method proved ineffective (with a success rate of 0) because the salt-and-pepper noise
present in the image is excessively amplified during this process. Figure 8 shows the
visual results of the difference matrices generated by different approaches. Since the final
difference matrix of each approach is obtained by summing multiple channel difference
matrices, its maximum values exceed 255. Therefore, the value range is stretched to [0, 255]
for visual effects.

Table 1. Comparison of the different perturbation pixel detection approach.

Approaches RGB HSV RGB + HSV Proposed RGB + HSV *

Successful Rate 88.42% 91.16% 97.66% 98.95% 0
* Use a 3 × 3 median filter to replace the Laplacian operator. The best results are shown in bold. The same applies
to the tables that follow.

 

    

(a) (b) (c) (d) 

 

 

 

  

Figure 8. Visual results of the difference matrices generated by different approaches. (a–d) correspond
to RGB, HSV, RGB + HSV, and Proposed, respectively.

4.3. Image Quality

Figure 9 shows the visual results of proposed method. The target models for the visual
experiments are ResNet (based on CIFAR-10) and MobileNet (based on ImageNet). In the
ImageNet experiment, only three pixels were perturbed, resulting in generated AE and
RAE with visually indistinguishable effects. The restored image is identical to the original
image, hence the intermediate process is not shown in the figure. The high image quality
of RAEs can also be observed from the visual results on both the CIFAR-10 and ImageNet.

As shown in Table 2, the Peak Signal-to-Noise Ratio (PSNR) and the Structural Sim-
ilarity Index Measure (SSIM) are calculated between the original images and their cor-
responding RAEs, as well as between the original image and the restored image. The
experimental setup involves attacking the MobileNet on the ImageNet dataset, with the
number of perturbed pixels set to 3, 5, and 10, respectively.

Table 2. Results of the PSNR and SSIM calculations between the original image and the RAE, as well
as between the original image and the restored image.

Pixels Compared with RAE Compared with
Restored

3 PSNR(dB) 48.32 ∞
SSIM 0.9986 1

5 PSNR(dB) 46.65 ∞
SSIM 0.9977 1

10 PSNR(dB) 43.97 ∞
SSIM 0.9959 1
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 (e)  (f) 

 Figure 9. Visual results of proposed method. (a–d) based on CIFAR-10. (a) Original image. (b) AE.
(c) RAE. (d) Restored image; (e,f) based on ImageNet. (e) Original image. (f) RAE.

When only three pixels are allowed to be perturbed, the RAE generated by the pro-
posed method achieves a PSNR of 48.32 dB and an SSIM of 0.9986 when compared to
the original image. This indicates that the generated RAEs possess high image quality.
Moreover, even with 10 perturbed pixels, a PSNR of 43.97 and an SSIM of 0.9959 can still
be obtained. The RAEs generated by the proposed method can be restored perfectly to
the original image, resulting in a PSNR of ∞ and an SSIM of 1 when the restored image is
compared to the original image. This indicates that the proposed method is a reversible
algorithm exhibiting a zero-bit error.

4.4. Attack Performance

Several metrics are used to evaluate the attack performance, including

ASRA =
n(AE)

N
(11)

ASRRA =
n(RAE)

N
(12)

APR =
n(RAE)
n(AE)

(13)

where n(AE) is the number of attack-successful AEs, and n(RAE) is the number of attack-
successful RAEs. N is the total count of samples. In our work, N = 1000. The data
embedding should not compromise the attack performance, thus necessitating a close
proximity between ASRRA and ASRA.



Appl. Sci. 2025, 15, 1142 15 of 19

4.4.1. CIFAR-10 Dataset

Table 3 shows the attack performances on different classification networks.

Table 3. Attack performances on different models; “o” and “w” represent without and with D-CSDPP
on CIFAR-10.

Model Method ASRA ASRRA ↑ APR ↑

LeNet o 66.50% 44.04% 63.60%
w 57.02% 81.89%

ResNet o 41.02% 24.10% 51.29%
w 35.10% 75.32%

DenseNet o 24.02% 12.80% 50.29%
w 19.08% 72.93%

↑ indicates that higher values are better. The same applies to the tables that follow.

In Table 3, the o methods achieve the APRs of 63.60%, 51.29%, and 50.29% on the three
models, respectively. The w methods improve these rates to 81.89%, 75.32%, and 72.93%,
an increase of approximately 20%. The main reason for this improvement is that, due to the
reduction in embedded data, the number of samples with sufficient capacity is significantly
increased, resulting in an increase in the number of successful attacks.

D-CSDPP reduces the amount of the data that need to be embedded. Without D-CSDPP,
(x, y, R, G, B), i.e., the location information and the pixel values of the perturbed pixels, need
to be embedded. With D-CSDPP, location information can be automatically detected and does
not need to be embedded. Thus, D-CSDPP reduces the amount of embedding data, while
allows an increase in the number of attack pixel, and leads to higher APRs.

4.4.2. ImageNet Dataset

More perturbed pixels are needful for attacking large-size images, such as ImageNet.
As shown in Table 4, when the number of modified pixels is 3, 10, and 50, APR is 100%,
99.63%, and 87.72%, respectively. Multi-pixel attacks are more robust when sufficient hiding
capacity is available. More perturbed pixels can help large-size images change their overall
structures, and mislead the models to make classification errors.

Table 4. Attack performances with different numbers of perturbed pixels on ImageNet.

Model Pixels ASRA ASRRA ↑ APR ↑

MobileNet
3 25.30% 25.30% 100.0%

10 32.60% 31.50% 99.63%
50 39.10% 34.40% 87.72%

APR does not necessarily increase with the increment of the number of perturbed
pixels. The differential evolution algorithm optimizes a solution vector composed of
allowable perturbed pixels. Regardless of the number of allowable perturbed pixels, the
ultimate goal is to achieve a certain level of overall perturbation. Meanwhile, an increase
in the number of perturbed pixels also increases the amount of auxiliary information that
needs to be embedded in the AE. Therefore, the number of perturbed pixels should be
appropriate to satisfy the sufficient hiding capacity condition as much as possible, which
can achieve a higher APR.
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4.5. Comparison with State-of-the-Art Methods

The proposed method perturbs 50 pixels and compares with the post and in-the-loop
methods based on the BIM attack proposed in [24], on the ImageNet dataset, as shown in
Table 5.

Table 5. Comparison with state-of-the-art methods.

Method Model ASRA ASRRA ↑ APR ↑

Proposed Inc-V3 27.20% 25.50% 93.75%
IncRes-V2 27.60% 26.10% 94.57%

Post [24] Inc-V3 30.82% 19.92% 64.63%
IncRes-V2 37.23% 24.60% 66.08%

In-the-loop [24] Inc-V3 30.82% 25.76% 83.58%
IncRes-V2 37.23% 30.91% 83.02%

Both the method in [24] and the proposed method are evaluated based on the effective-
ness of their ASRA, which is fundamentally rooted in the adversarial attack method, i.e.,
BIM attack or differential evolution. In the proposed method, allocating additional compu-
tational resources can lead to better ASRA performance. However, this approach may not
significantly impact the performance of reversible adversarial attack methods. Because the
introduction of reversible algorithms in previous method designs may lead to a significant
number of AEs failing, minimizing such occurrences is crucial for enhancing the RAE gen-
eration algorithm. What we should focus on is how many AEs can retain their adversarial
attribute and become RAEs throughout the complete process, i.e., APR performance.

On the Inc-Res V2 model, our proposed method APR achieves 94.57%, which is a
significant improvement compared to 66.08% of the post method and 83.02% of the in-the-
loop method in [24]. This is because, in each step of the algorithm, we strive to ensure
that the image quality is not excessively degraded. Additionally, the performance of the
proposed method on ASR is also commendable, i.e., our method achieves an ASR of 25.50%
and 26.10% on two target models, which is better than 19.92% and 24.60% of the post
method in [24]. Compared to the in-the-loop method in [24], the proposed method exhibits
only a slight disadvantage in ASR on the IncRes-V2 model. However, this discrepancy can
be partly attributed to the higher success rate of generating AEs using the method in [24],
which stands at 37.23% for the IncRes-V2 model compared to our 27.60%. Their method
adopts a more aggressive strategy to achieve a higher success rate which, however, results
in a greater loss of image quality during the conversion from AEs to RAEs.

5. Conclusions and Future Works
A novel reversible adversarial example generation method is proposed under black-

box conditions. A differential evolution algorithm is utilized to generate minimal adversar-
ial perturbations on the original image. RAEs are generated based on D-CSDPP algorithm.
This method not only mislead the deep learning models in image classification tasks, but
also allows the RAEs to be exactly restored to the original image. This feature is lacking in
many existing methods. Furthermore, this method enables recognition control in computer
vision. The proposed reversible method functions as a form of encryption for computer
vision. Thus, only authorized models are allowed to recognize the images.

The D-CSDPP can automatically detect the perturbed pixels, meaning that location
information is not needed for original image restoration, resulting in a decrease in em-
bedded data. As a result, APR is improved by more than 20%. Comparative experiments
with different approaches demonstrate the effectiveness and detection performance of the
proposed D-CSDPP.
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The PSNR and SSIM between the RAEs and the original images can reach up to 48.32
dB and 0.9986, respectively, indicating that the images generated by the proposed method
are of high quality. This is also reflected in the visual results of the RAEs.

The proposed method demonstrates effectiveness across various advanced models
and datasets, highlighting its generalizability. Compared to SOTA methods, the proposed
method achieves superior APR due to the high image quality of the RAEs.

In the future, we will attempt to propose some methods for generating more robust
and efficient adversarial perturbations. We will also try to enhance the efficiency of the
optimization solving. Alternatively, we aim to further compress the required auxiliary
information for image restoration.
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