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Abstract: Hysteretic nonlinear elasticity is often observed in consolidated granular media,
including concrete, mortar, sandstones, or rocks. Nonlinearity is frequently quantified
using Nonlinear Resonant Ultrasonic Spectroscopy (NRUS), which provides tools to define
nonlinear parameters for both fast and slow dynamic effects, often observed when analyz-
ing the propagation velocity dependence on strain in such materials. The dependence of
these parameters on temperature was studied with the aim of using NRUS to quantify the
induced thermal damage; thus, experiments were performed spanning a wide temperature
range. However, since most of these materials are used in construction (concrete and
sandstone, mostly), it is of interest to understand how sensitive the measured nonlinear
parameters are to small environmental temperature fluctuations. In this paper, the de-
pendence on temperature of elastic parameters is investigated, both linear (wave velocity
and damping) and nonlinear (the slope and hysteresis of the curves describing the strain
dependence of wave velocity and residual conditioning effect on wave velocity), separating
the slow from the fast dynamic properties of nonlinearity. The observations reported here
denote a different behavior for concrete and Berea sandstone.

Keywords: nonlinear resonant ultrasonic spectroscopy; sandstones; nonlinear wave velocity;
temperature dependence

1. Introduction
Consolidated granular media, which are frequently utilized in construction and build-

ing technology (e.g., rocks and sandstones [1–4], concrete [5,6], mortar [7], etc.), exhibit a
strong nonlinear elastic behavior, which is often significantly enhanced when damage is
present. Such behavior is characterized by the presence of hysteresis in the dependence
of the wave velocity and damping on strain, which might be seen as originated by slow
dynamics [8–12]. The latter is indeed the main evidence of hysteresis and memory effects.
This phenomenon is due to the existence of the equilibrium states of the material, char-
acterized by given viscoelastic properties (modulus [13] and damping [14]), which are
dependent on the strain applied (drive strain amplitude). The relaxation to such an equilib-
rium state is a long-term relaxation process, which could be described as a multirelaxation
phenomenon [15–17].
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Nonlinear elastic hysteresis is often evident even at low strain levels (of the order
of 10−7), with variations in the propagation velocity of the order of percent (and much
higher damping variations). Several techniques have been developed to detect such a
small nonlinearity, mostly applicable to small samples: Nonlinear Resonant Ultrasound
Spectroscopy—NRUS [18–20]; the Scaling Subtraction Method—SSM [21,22], Nonlinear
Elastic Wave Spectroscopy [23,24], etc. All these methods show that the nonlinear effects
are significantly stronger when materials are damaged, thus providing an efficient tool for
nondestructive testing.

Studies reported in the literature show the strong sensitivity of nonlinear parameters to
damage evolution: quasi-static loading-induced damage [25,26], thermal damage [27–29],
chemical damage [30–32], etc. However, to make nonlinear ultrasonic methods a tool to
quantify damage, it is necessary to separate the nonlinearity increase due to microstructural
changes from those due to environmental effects (in the environmental range). While some
studies have been reported to study humidity’s effects on the hysteretic elasticity [18,33–35],
fewer studies are devoted to analyze temperature effects.

Most of them include thermal damage to the material [27–29] or aim to analyze how
temperature changes might induce slow dynamic effects [36,37]. Some studies have re-
ported the effects of temperature inducing low levels of damage [29] or have monitored the
evolution of nonlinear rock parameters while the temperature varies, i.e., not at equilib-
rium [38]. On the contrary, results are available showing the dependence of linear elastic
parameters on temperature [39,40].

Here, the work focuses on analyzing the dependence of linear and nonlinear elastic
parameters in the environmental temperature range, avoiding transient regimes. Concrete
and sandstone samples have been studied, with the aim of quantifying the influence of
temperature on the measured nonlinearity and, in particular, its order of magnitude com-
pared to the order of magnitude of damage-induced nonlinearity variations. In Section 2,
details about the experiment and material tested are given, together with a recap on the
NRUS method. The results are reported in Section 3. The temperature dependence of the
linear and nonlinear elastic parameters is discussed in Section 4, while the discussion and
conclusions are reported in Section 5.

2. Material and Methods
2.1. Materials and Set-Up

Berea sandstone sample and a concrete sample were tested. The former was in the
shape of a thin cylinder (10 mm in diameter and 250 mm long). The size of the grains in this
sample was of the order of 150 µm and the sample was homogeneous. The concrete sample
was in the form of a prism (20 mm × 20 mm basis and 120 mm length). The concrete
was more than 5 years old and kept in a lab (room environment). It was composed of
sand aggregates only, with grain sizes smaller than 500 µm. No information was available
regarding density or porosity.

Both samples were suspended horizontally (see Figure 1a) and put in a climate cham-
ber to allow for humidity control (kept fixed within the experiment at 45 %) and our choice
of temperature (varied from 278 K to 303 K, or equivalently from 5 to 30 ◦C). The suspended
configuration enabled almost optimal free-free boundary conditions, which means that a
reflection coefficient of the propagating wave at the ends of the sample close to 1 is obtained.
Also, effects on the resonance frequency of transducers could be considered minimal.

Samples have been equipped with two piezoelectric transducers (Matest C370-02,
Arcore, Italy, with resonance frequency of 55 kHz), glued to the base of the sample by
means of phenyl salicylate. Both transducers (acting as generator and receiver, respectively)
were connected to a TiePie HS5 oscilloscope-generator (Sneek, The Netherlands) controlled
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by Matlab R2022a. The signal generated by the arbitrary waveform generator was amplified
by 20 times (power amplifier F20AD) to increase the excitation amplitude voltage. Sampling
rate was set to 20 MSa/s. A schematic description of the set-up is shown in Figure 1b.

(b)

MATLAB
interface

OSCILLOSCOPE

Amplifier

Channel in - voltage

Channel out - Waveform generator(a)

Set 
temperature

Two days
NRUS 

measurement

Fix source amplitude Adrive

Send a tapered 
chirp

Record the resonance 
curve

Derive output 
amplitude, velocity 
and damping

Switch to new 
amplitude

T = T +5K (c)

Figure 1. Experimental set-up. (a) Image of the suspended samples; (b) schematic description of the
set-up. Input (schematic) and output (real data) signals are shown in insets; (c) representation of the
experimental protocol. In the inset, the drive amplitude protocol is shown: conditioning amplitudes
(Acnd), increasing up to Amax, are alternated with constant baseline amplitudes (Abaseline).

2.2. Measurement Protocol

The experiment was conducted as follows (see Figure 1c). Samples were put in the
climate chamber and the temperature was set to a given value for about 2 days. Elastic
parameters were monitored during thermal relaxation and found to reach an equilibrium
value in about 1.5 days, thus ensuring thermal equilibrium before the NRUS measurements
were performed roughly 5 days after. Afterwards, temperature was changed to a new value.
Initial temperature was 278 K and was increased by 5 K at each step.

Each NRUS acquisition (i.e. for one drive amplitude) consisted of the following steps
(and discussed in detail in the following subsection): choice of drive amplitude and injection
of a chirp signal; measurement of the received signal; derivation of the resonance curve;
and determination of strain amplitude, velocity, and damping. The NRUS measurement
consisted of repeating the procedure and varying the drive amplitude. In this work,
a baseline loading/unloading amplitude protocol was chosen (also shown in Figure 1c),
which consists of alternating high conditioning and low baseline amplitudes, keeping the
latter constant (Abaseline in the order of tenths of volts) and increasing the first (Acnd) in
equal steps up to a maximum value of the order of a few volts (loading phase) and then
decrease it back to Abaseline. A total of 21 steps for Acnd were chosen.

Each NRUS sequence had the same duration and each probing had a fixed temporal
length ∆t = 50 ms, with pauses between successive sweeps at different drive amplitudes to
ensure accurate timing control, fundamental for a correct evaluation of slow dynamic effects.
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The baseline and maximum conditioning amplitude differed for each temperature/sample
and were chosen to guarantee output amplitudes (i.e., strain) in similar ranges.

2.3. Nonlinear Resonant Ultrasonic Spectroscopy Acquisition

Nonlinearity was determined by analyzing the wave propagation velocity depen-
dence on strain. To this purpose, Nonlinear Resonant Ultrasonic Spectroscopy (NRUS)
was used. The method consists of measuring the resonance spectra and varying the ampli-
tude of excitation and measuring the resonance frequency and resonance amplitude for
each excitation.

To determine the resonance spectra, a tapered chirp excitation was used to sweep over
one longitudinal resonance peak:

u(t) = Adrive cos
(

2π

(
fmin +

fmax − fmin

∆t
t
)

t
)

. (1)

The sweep was performed round a resonance mode ( fmin ≤ fres ≤ fmax, where fres

is the resonance frequency). The bandwidth of the chirp spectra ( fmax − fmin) was kept
constant at 2.5 kHz, as was the duration ∆t = 50 ms. This choice allowed for accurate
resolution of the resonance peak. A discrete Fourier transform with 2 Hz spacing was
computed for each response signal, followed by a deconvolution of the chirp spectrum,
resulting in the elimination of spectral ripples and normalization of spectral amplitudes.
This normalization ensured alignment between the spectral amplitude and the amplitude
of the observed signal.

The NRUS sequence consisted of selecting the drive amplitude Adrive (following the
protocol in Figure 1c, i.e., alternating baseline and conditioning amplitudes). For each
amplitude, the experimentally obtained spectrum (see Figure 2a) was fit with the MoDaNE
solution [41]:

B( f ) =
U0√

cosh2[αL]− cos2
[
2π

(
f + ψ

(
f − nv

2L
)2
)

L/v
] , (2)

where f is frequency, n is the mode number, B is the amplitude and L is the sample length.
The fit parameters U0, α, and v correspond to the uncalibrated source amplitude, damping
coefficient, and wave velocity, respectively. The term proportional to ψ is a tilting term,
which allows one to account for the sensitivity curve of transducers; ψ is thus not a material
property. The resonance frequency of the sample is function of one of the fit parameters:
fres = nv/2L.

Repeating the procedure for different drive amplitudes, velocities, and damping was
performed as a function of output amplitude, which is defined as the maximum of B,
i.e., the amplitude at the resonance frequency. Thus, it is derived as follows:

Aout = max(B) =
U0√

cosh2(αL)− 1
. (3)

The output amplitudes, from now on simply called amplitudes, are reported in volts, but,
at least in the linear approximation, they are proportional to the strain amplitude in the
center of the sample. Since our experiment is not calibrated, it was not possible to convert
the voltage to strain, so whenever the term strain is used, it is intended as voltage.

The amplitude Aout was derived for all drive amplitudes, both conditioning and
baseline. Thus, it provided the definition of the conditioning strain and the baseline strain
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in the material. In the following, velocity variations will be plotted as a function of the
output conditioning strain.
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Figure 2. Spectra for concrete at T = 298 K. (a) Superposition of experimental data and fit (using
Equation (2)) for a given drive amplitude. (b) Conditioning spectra for selected drive amplitudes.
(c) Baseline spectra for the same drive amplitudes as in (b). Colors indicate the drive amplitudes,
solid lines refer to loading, and dashed lines refer to unloading. For the description of subplots (b,c),
refer to Section 3.

2.4. Testing and Repeatability

At each temperature, several repeated NRUS measurements were performed on both
samples. A few repeated measurements (between 5 and 10) were performed one after the
other and averaged to increase signal-to-noise ratio. The procedure was then repeated
(from 5 to 10 times) in successive days and/or changing Abaseline and/or Amax, to verify
repeatability of the experiment. Excellent repeatability was obtained, thus ensuring the
robustness of the data analysis performed in the next section (see Appendix A for results).

The second issue faced was testing the eventual deterioration of the transducer bond-
ing. To this purpose, two additional measurements at T = 293 K were performed. One be-
fore beginning the experimental protocol and one after its end (thus reducing T from
303 back to 293 K). The repeatability of the results ensured that no change in the trans-
ducer’s quality occurred (one Czech sandstone sample was also tested, but it failed the
transducer quality testing and, thus, the corresponding results were discarded). Also, it
proved that no damage was generated in the samples.

3. Experimental Results
3.1. Resonance Curves

For each temperature (and each sample), the NRUS protocol allowed the resonance
curves (output amplitudes vs. frequency) to be plotted for different conditioning drive am-
plitudes Acnd. Also, resonance curves at baseline drive amplitude (immediately following
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the conditioning phase) were derived. A few selected curves (for concrete at T = 293 K)
are shown in Figures 2b and 2c, respectively.

As expected, subplot (b) shows a decrease in the resonance frequency and an increase
in the peak width and asymmetry with increasing drive amplitude (solid lines). When the
measurement protocol consists of an upward-trending and downward-trending sequence
of drive amplitudes Adrive = Acnd in Equation (1), a difference between the results for
equivalent amplitudes is present (compare solid with dashed lines), which indicates hystere-
sis.The behavior of the baseline strain (panel (c)) is also consistent with other measurements:
slow dynamics is responsible for the softening and damping increase observed at a constant
(low) excitation amplitude (Adrive = Abaseline) after conditioning at different drives.

3.2. Velocity and Damping Dependence on Strain

Velocity and damping could be derived (using MoDaNE fitting, as discussed in Section 2.3)
and plot vs. output amplitude (strain). In the following, data referring to velocity are dis-
cussed, but the same applies to damping as well. It is possible to introduce the conditioned
and baseline relative velocity variations:

δvC,B =
vC,B − vlin

vlin
, (4)

where vlin is the linear velocity at the given temperature, measured by exciting the sample
at a very low excitation amplitude (smaller than or equal to the baseline drive amplitude).
Note that Equation (4) applies to both the conditioned and baseline states, thus justifying
the notation used for the pedices.

The velocity measured at conditioning strain δvC contains contributions from both
fast and slow dynamics. Separating the two terms is desirable, since they might (or
might not) originate from different physical mechanisms and, depending on the driving
parameter (which, here, is temperature) the relative weight of the two contributions might
change. Furthermore, slow dynamics-related effects strongly depend on the experimental
set-up properties and, thus, it is advisable to remove them to obtain observations that are
only “sample-dependent”.

During conditioning at a given drive amplitude, a contribution to the velocity varia-
tion, larger for larger amplitudes, is slowly built up over time. As soon as the excitation is
switched to the baseline amplitude, this contribution slowly relaxes back to zero. Therefore,
slow dynamics originates a contribution which increases with the duration of the drive [1]
and is due to the evolution of the material properties towards a strain-dependent equilib-
rium state, which is only partially achieved in the ∆t defining the duration of the chirp.
The slow contribution does not disappear instantly; thus, it contributes to the determination
of the velocity measured at baseline (low amplitude) drive. Assuming the relaxation of the
slow dynamic contribution before probing the baseline to be small, the fast contribution to
velocity variation can be defined as

δvfast = δvC − δvB =
vC − vB

vlin
. (5)

In Figure 3, the strain dependence of conditioned, baseline, and fast velocity variations
are reported compared to the strain (output amplitude). The results show some common
features in the behavior of the velocity variation vs. strain for Berea and concrete:

• δvC: hysteresis is present, given by the difference between the loading and unload-
ing branches;

• δvB: besides the hysteresis (which is even more remarkable than in the conditioned
data), it can be observed that the maximum baseline velocity variation does not
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occur when the conditioning strain is maximum; see the further decrease in velocity
observed during the first instances of unloading (blue symbols);

• δvfast: the hysteresis, and hence, slow dynamic effects, is completely removed.
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Figure 3. Velocity variations vs. conditioning strain. δvC and δvB are the conditioned and baseline
velocity variations, respectively. δvfast is the fast dynamic contribution to the velocity variation (see
Equation (5)). Red symbols refer to loading (drive amplitude increases), while blue ones to unloading
(drive amplitude decreases). Data reported refer to measurements performed at T = 283 K. Here,
the x-axes (strain) correspond to the output amplitude (in volts) defined by Equation (3), when
Adrive = Acnd.

However, apparent changes in the functional form of the dependence can be observed.
At first glance, a quadratic dependence seems to be shared by all curves, but with pos-
itive/negative quadratic terms for concrete/Berea. All data (except unloading data for
concrete) also seem to present a strain interval in which the behavior is linear. This wealth
of behaviors is indeed reflective of the complexity of NRUS data, which can be found in
the literature. At least for Berea, depending on the strain testing range, different authors
have observed quadratic, linear or S-shaped behaviors [1,42–45]. It is our assumption here
that the latter might be a better representation of the velocity dependence on strain. This is
definitely true for Berea, but most likely also for concrete, except that the baseline amplitude
used for concrete was perhaps too high, thus not allowing for the detection of bending with
early strain. More details about the fitting procedure are given in Appendix B.

Based on this assumption, curves have been fit with a sigmoidal-like function de-
fined as

δv(A) =
a1 A + a2 A2

1 + a3 A2 , (6)

where a1 and a2 are negative parameters, while a3 is a positive parameter. The fitting
obtained using Equation (6) is shown as solid lines in Figure 3 and it is remarkable how the
same function allows for the optimal fitting of both the loading and unloading branches of
the curves. Note that, for the fast velocity variations, all the data have been fit with a single
“sigmoidal”, with the two branches being superimposed.
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As mentioned, similar conclusions can be derived for damping, as shown in Appendix C.

4. Temperature Dependence
4.1. Temperature Dependence of Linear Elastic Parameters

The procedure proposed allows us to determine, for each temperature, the linear
viscoelastic (velocity and damping) parameters. Indeed, by extrapolating the curves of the
velocity and damping versus strain to zero strain, it is feasible to obtain a prediction of the
material parameters in the unperturbed state. The results are reported in Figure 4.
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Figure 4. Linear viscoelastic parameters vs. temperature: velocity (left) and damping (right). Data
are averaged over repetitions of the experiment and the errorbar is given by the semidispersion.

As expected, the material becomes softer (the velocity diminishes) for both the Berea
and concrete. A significant reduction (a few percent) is observed. In particular, the velocity
decrease is 5.5 percent for Berea and 3.6 percent for concrete. The behavior of damping
is different for the two materials. In the case of Berea, the damping coefficient αlin in-
creases significantly (81 percent), while for concrete, no significant trend as a function of
temperature is appreciable.

4.2. Temperature Dependence of Nonlinear Fast Elastic Parameters

Curves reporting the velocity variation dependence on strain are obtained for each
temperature. The focus in this work is only on the fast contributions to nonlinearity
(δvfast) and results for Berea and concrete are reported in Figure 5. In the case of Berea,
a notable effect is observed, with relative velocity variations that nearly double within the
temperature range considered. On the contrary, no trend is observed for concrete; thus, fast
nonlinearity seems to be temperature-independent.

Curves reported in Figure 5 are all well fit by the sigmoidal-like function proposed
herein (Equation (6)). The fit is shown by a continuous line in the plots. Thus, the fitting
parameters a1, a2 and a3 could be used to quantify the nonlinearity dependence on tempera-
ture. Rather than discussing the dependence of the parameters on temperature, the authors
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prefer to consider some of the properties of the fitting curves in Equation (6), which are
more meaningful:

• The asymptotic value given by a2/a3, which represents the upper limit of velocity
variations for large strains (note that the sigmoidal-like behavior is expected to be
valid only till a maximum strain range, beyond which other mechanisms might take
place and, thus, such asymptotic value does not really exist);

• The inflection point of the curves, obtained by setting to zero the second derivative of
Equation (6);

• The slope of the linear approximation around the inflection point, given by the value
of the derivative of Equation (6) at the inflection point. This value could be considered
as the equivalent of the hysteretic parameter α often used in NRUS measurements,
even though it is uncalibrated here. Recall that the hysteretic parameter α is not related
to the damping coefficient used here (and is called α as well).

0 0.2 0.4 0.6

Amplitude [V]

-6

-5

-4

-3

-2

-1

0

 v
fa

st

10-3

T=278
T=283
T=288
T=293
T=298
T=303

0 0.2 0.4 0.6 0.8

Amplitude [V]

-5

-4

-3

-2

-1

0

 v
fa

st

10-3

T=278
T=283
T=288
T=293
T=298
T=303

ConcreteBerea sandstone

Figure 5. Nonlinear fast velocity variations vs. strain at different temperatures. Here, the x-axes
(strain) correspond to the output amplitude (in volts) defined by Equation (3), when Adrive = Acnd.

The nonlinear properties vs. temperature for Berea are reported in Figure 6. As ex-
pected, the nonlinearity increases with temperature, while the inflection point moves to
lower strain amplitudes. The slope (somehow similar to the hysteretic parameter α) in-
creases (in modulus) with temperature, with an increase of about 50 percent. Of course, no
temperature dependence trend is observed for concrete.

The results for damping are discussed in Appendix C.

4.3. Temperature Dependence of Slow Dynamic Parameters

When considering the strain dependence of the conditioned velocity (see Figure 3),
two properties of the curves are related to slow dynamic effects: the area of the loop
and the residual velocity variation when the amplitude returns to zero in the unloading
phase (intersection with the y-axes). The two parameters are shown against temperature in
Figure 7. Stronger effects due to slow dynamics in the concrete sample compared to Berea
can be appreciated (see the scales on the axes).

The situation for what dictates the slow dynamic parameters’ dependence on tem-
perature is different.A clear trend with temperature is observed for Berea, exhibiting a
reduction in slow dynamic effects, which, despite the large error bars, seems to be reliable.
For concrete, no clear trend could be identified, since, especially for residuals data, slow
dynamics seem to be unaffected by temperature variations.
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Figure 6. Nonlinear fast elastic parameters vs. temperature. Data are averaged over repetitions of the
experiment and the errorbar is given by the semidispersion. Data refer to the Berea sandstone sample.

The strongest conditioning observed in the concrete, corresponding to the fact that it is
temperature-independent, may be due to several causes. In our opinion, it is possible that
the observation is due to the different roles of water in the two materials. A higher water
mobility might indeed result in a stronger dependence of the strength of slow dynamics’
contribution to external parameters like the temperature. While, in a more chemically active
system, like concrete, the presence of water might produce stronger non-equilibrium effects.
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Figure 7. Slow dynamic parameters vs. temperature. Data are averaged over repetitions of the
experiment and the errorbar is given by the semidispersion. Note that the area of the loops has the
dimension of volts.
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5. Conclusions and Discussion
In this paper, the temperature dependence in the ambient range of both the linear

and nonlinear elastic parameters of Berea sandstone and concrete was studied. A novel
procedure was introduced to extract velocity and damping variations as a function of the
strain amplitude, which allows one to distinguish fast nonlinearity effects (Figure 6) from
slow ones (Figure 7). Parameters have been defined to quantify the observed effects: the
inflection point and slope of the velocity’s dependence on amplitude (fast) and the residual
effects of conditioning and the area of the hysteretic loop (slow). The authors did not find a
universal behavior for these two consolidated granular media, except for the decrease with
temperature of the linear propagation velocity (Figure 4).

In Berea, linear damping and fast dynamics increase with temperature, while effects
due to slow dynamics diminish. This might be due to the fact that, with increasing
temperature, the processes responsible for memory, conditioning, and relaxation might
occur on a faster time scale. Thus, in a multirelaxation model, more physical features will
react faster (compared to period and/or chirp duration) and thus contribute to the fast
effect and less so to the slow reaction, thus diminishing long-term effects like memory.

The fact that nonlinear features are temperature-independent in concrete is in parallel
with the fact that linear damping is also temperature-independent. The parallelism in the
behavior of damping and nonlinear velocity variations could be an indication of some
deeper physical aspects responsible of our observations, which, however, needs more
data to be investigated. As a hint for future work, it can be speculated that the different
behaviors of concrete and Berea, which share a similar microstructure, could be due to the
different roles of water (humidity-related) in the two materials.
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Appendix A. Repeatability
As mentioned in the text, experiments have been repeated for each temperature,

either in successive days or slightly changing the range of drive amplitudes. Results of
repeated experiments on Berea are shown in Figure A1. Results for concrete are similar.
Excellent repeatability is obtained, the scattering among data at the same temperature
(different colors) being negligible when compared to the difference in behavior due to a
temperature change.
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Figure A1. Repeatability of the experiments. Results are reported for Berea sandstone at two different
temperatures. Different colors refer to different repetitions. Regarding δvC, circles and squares refer
to loading/unloading branches of the curve.

Appendix B. Fitting
The dependence of velocity variation vs. amplitude is shown for Berea and concrete in

Figure A2. As mentioned in the main text, the behavior for the two materials appears differ-
ent. A quadratic dependence seems to be shared by all curves, but with a positive/negative
quadratic term for concrete/Berea, which is hard to explain. As a possible alternative, a
sigmoidal-like fit (see Equation (6)) fits all the curves well, with signs of the parameters
consistent for the two materials.
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Figure A2. Fitting the velocity variation vs. strain curves for Berea (upper row) and concrete
(lower row). Both loading (red) and unloading (blue) experimental data are fit independently using
Equation (6) (solid line—left column) or using a quadratic polynomial (dot-dashed line—central
column). The residuals are reported for loading and unloading branches in the right column.
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Here, the two fitting procedures are compared. Fitting data with a sigmoidal-like
function (left column in Figure A2) seems slightly more accurate than fitting with a second-
order polynomial fit (central column), particularly for the unloading branch of the curves
(blue). The advantages of the sigmoidal-like fitting are even more pronounced when
considering the baseline velocity variation (not reported here but shown in Figure 3).

The better quality of the fit using Equation (6) could be better appreciated when
calculating the residuals (absolute values of the difference between experimental and fit
data). They are shown for Berea and concrete in the right column of Figure A2. Thus, the
advantages of the proposed sigmoidal-like function, used to fit the data, are two-fold: the
fit is slightly more accurate and the function is more universal, in the sense that it fits (with
parameters with the same sign) all data well (loading/unloading, conditioned/baseline,
velocity/damping).

Appendix C. Damping
In the main text, the dependence of velocity on strain and the dependence on tempera-

ture of nonlinear parameters have been analyzed (see Figures 3 and 5, respectively). This
approach also allows us to estimate damping. The data for concrete are unreliable due to a
high degree of noise (and will not be discussed here). For Berea sandstone, for damping, a
similar behavior is observed as for velocity, as shown in Figure A3.
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Figure A3. Damping behavior for Berea data. Damping dependence on strain at a fixed temperature
(left). Note the difference in the loading/unloading branches. Dependence of fast contribution to
damping for increasing temperatures (right). In both subplots, symbols are experimental data and
solid lines are fits using Equation (6).

In particular, as shown in the left subplot, damping depends on strain following a
sigmoidal-like curve, as does velocity, which fits well using Equation (6).Furthermore,
for both materials, fast contributions to nonlinearity seem independent on temperature
(right subplot). Recall that nonlinear velocity variations were found to increase with
increasing temperature.
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