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Featured Application: Based on big data and public opinion analysis technology, control
strategies for potential public crisis events have been explored. Based on the application
of data technology, the transmission mechanism of public events has been predicted.

Abstract: The spread of panic can swiftly trigger group behaviors, leading to public security
incidents and significant social hazards. Increasing attention is being paid to the impact of
human psychology and behavior on the evolution and management of emergencies. Draw-
ing on the Weber–Fechner Law, we proposed an emotional contagion model to explore the
dynamics of crowd panic during metro emergencies, focusing on the interplay of emotional
levels and stimuli. Key influencing factors such as crowd density, personality traits, official
interventions, and evacuation rates are analyzed. Additionally, a case study is conducted to
validate the model’s effectiveness in quantifying emotions and characterizing the emotional
contagion of crowd panic. Numerical results reveal that the initial intensity of panic stimuli
significantly impacts peak panic levels, while contagion duration plays a minor role. Panic
intensifies with increased crowd density, with sensitive individuals being more susceptible
to extreme emotions, escalating negative contagion. Official intervention proves crucial in
mitigating panic, though its effect is transient in enclosed environments. Evacuation rate
minimally affects emotional contagion during the train’s motion but becomes pivotal post-
arrival. Highly panicked passengers evacuate quickly, necessitating timely interventions
to prevent secondary panic on platforms. This highlights the importance of immediate,
effective control measures to manage panic dynamics and ensure public safety.

Keywords: emergency event; group panic; emotional contagion; Weber–Fechner law;
computational prediction applied science

1. Introduction
As urbanization accelerates, the frequent occurrence of public emergencies has intro-

duced significant instability to the normal functioning of society, prompting deep reflections
on the emergency management strategies from various sectors. Among these emergencies,
metro incidents hold a critical position due to the importance of metro systems as a primary
means of transportation in modern cities. The narrow, enclosed, and highly trafficked na-
ture of metro platforms and carriages easily suggests to the public that metro environments
are prone to accidents and difficult to escape in cases of emergencies. Once an emergency
occurs, panic is likely to ensue, potentially leading to behavioral disorders and even severe
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incidents such as stampedes and other harmful accidents [1,2]. Panic is a typical psycho-
logical response to crises. High-intensity individual panic and the spontaneous, polarized
behaviors driven by it tend to spread rapidly at both the group and societal levels, evolving
from individual to collective panic [3]. Group panic and irrational behavior complicate
emergency management efforts, potentially exacerbating the risk associated with the initial
emergency and triggering a series of secondary events with consequences more severe than
the emergency itself. For instance, in 2017, a passenger on Shenzhen Metro Line 7 fainted
due to discomfort, causing panic among nearby passengers. This panic led to a stampede
as passengers rushed to escape, ultimately resulting in injuries to 15 people.

Managing passenger emotions is crucial in the emergency management of metro
incidents. As early as 1884, William James [4] and Carl Lange proposed the periphery-
feedback theory of emotion, describing a “bottom-up” mechanism of emotion generation,
where physiological changes lead to emotional arousal. The intensity of emotional arousal
is influenced by several factors. Firstly, the greater the discrepancy between changes in
the surrounding environment and an individual’s cognition, the higher the intensity of
emotional arousal. Secondly, an individual’s sense of control over the event significantly
impacts emotional intensity; when perceived control is weak and the event is seen as beyond
one’s control, this leads to heightened negative emotional arousal [5]. Furthermore, the
intensity of emotional arousal is also affected by the degree to which an individual’s needs
are satisfied. When these needs are inadequately met, the resulting negative emotional
arousal becomes more intense [6]. Behavioral experimental data suggest that emotional
responses elicited by negative information have shorter latency, are faster, and involve a
higher degree of arousal. This explains why an individual’s panic is highly susceptible to
arousal when confronted with unexpected events [7]. In addition to high arousal, panic
has group and social characteristics. It is highly contagious and can easily spread from
individual to group emotion through relatively spontaneous communication behaviors in
disordered situations [8].

Research on group panic in emergencies has predominantly been conducted from the
perspective of social psychology. Various scholars have employed psychological experi-
ments, empirical studies, and other qualitative methods to analyze the root causes of group
panic, identifying emotional contagion [9,10], herd mentality [11], and extreme behavioral
psychology [12] as the primary factors leading to panic behaviors. In emergencies, emo-
tional contagion serves as a catalyst in the formation and evolution of group panic [13] and
is considered the most critical factor. Emotional contagion, a phenomenon that is typically
natural and unconscious [14], has garnered significant attention in the fields of psychol-
ogy, sociology, and organizational behavior. Lundqvist and Dimberg [15] experimentally
demonstrated the critical role of facial mimicry in emotional contagion. Barsade [16]
conducted an experimental study on work groups, revealing that the spread of positive
emotions significantly enhances group cooperation, reduces conflict, and improves task
performance. Totterdell et al. [17] observed teams of nurses and accountants, confirming
the interconnection of group emotions in shared tasks. Beyond laboratory research, studies
conducted in real-world settings have provided evidence with greater external validity.
Bartel and Saavedra [18] investigated emotional consistency within work groups, finding
that emotional convergence among team members is closely associated with cooperative
norms and social interdependence. Fowler and Christakis [19], through social network
analysis, discovered that emotions could spread across three degrees of connection: friends,
friends of friends, and friends of friends of friends. Kramer et al. [20] validated the existence
of online emotional contagion through experimental studies conducted on social media
platforms. This phenomenon manifests widely in both physical crowd evacuations [21,22]
and virtual opinion dissemination [23]. Current research on the dynamics of emotional
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contagion emphasizes models that combine emotional valence within groups. For example,
Faroqi and Mesgari [24] delineated emotional levels during emergencies, ranging from
calm to hysteria, passing through stages such as anxiety, fear, horror, and panic. An increas-
ing body of research integrates psychological findings on individual factors influencing
emotional contagion and varying levels of emotional valence [25,26], with epidemiological
models to simulate the spread of emotions in crowds. Incorporating personality traits into
these models, Cao [27] developed the P-SIS (Personalized-Susceptible–Infected–Susceptible)
model of emotional contagion by combining the OCEAN (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism) model with the traditional SIS (Susceptible–
Infected–Susceptible) model. Similarly, Lv [28] utilized the SIR (Susceptible–Infected–
Recovered) model to calculate a receiver’s susceptibility based on the OCEAN model’s
five factors. Nizamani [29] expanded on the basic SIR framework, categorizing the crowd
into five types of agents—“Upset”, “Violent”, “Sensitive”, “Immune”, and “Relaxed”—to
address hatred issue-awareness. Further advancements include Wang’s [30] introduction
of a latent state group, resulting in the Susceptible–Latent–Infected–Recovered–Susceptible
(SLIRS) model. This model formulates emotional contagion control as an optimal control
problem, aiming to minimize the total costs of inhibiting emotional contagion. Liu [31],
recognizing the importance of stabilization and control, incorporated an emotional control
administrator into the contagion model. Meanwhile, Ni [32] introduced an emotionally
stable node, representing a group that remains calm during emergencies and is less suscep-
tible to event-related emotions, thereby stabilizing and regulating group emotions. Ni’s
model, known as the U-SOSPa-SPSO (Unsusceptible–Susceptible–Optimistic–Susceptible
and Susceptible–Pessimistic–Susceptible) model, further refines the understanding of emo-
tional contagion. Comparatively, Bosse [33] viewed the process of emotional contagion as
analogous to heat dissipation in thermodynamics. He proposed the ASCRIBE model, where
emotional changes in a receiver due to contagion are determined by two components: the
ease with which emotion flows between agents and the emotional influence exerted by the
sender. This model has inspired numerous variants [34]. Additionally, Rincon [35], drawing
inspiration from Newtonian physics, proposed a dynamic emotional model for groups,
expressing agents’ emotions in three dimensions using the PAD (Pleasure–Displeasure,
Arousal–Nonarousal, Dominance–Submissiveness) model. In this approach, emotional
changes are conceptualized as kinetic processes similar to those in mechanics, providing
deeper insights into the intricate dynamics of emotional contagion within groups.

Epidemiological models and thermodynamics-based models provide distinct ap-
proaches to modeling and analyzing emotional contagion. Epidemiological models, draw-
ing analogies to the spread of diseases among individuals, offer a framework for describing
how emotions propagate within a group, making them particularly useful for simulating
both the speed and scope of emotional transmission. In contrast, thermodynamics-based
models focus on the microscopic mechanisms of emotional flow from the perspective of
energy transfer, making them well-suited for exploring the nuanced dynamics of emotional
contagion. However, the representation of emotional computation within these studies
remains somewhat ambiguous. According to the peripheral-feedback theory of emotion
proposed by William James and Carl Lange, stimuli trigger activity in the autonomic
nervous system, producing physiological changes that subsequently lead to emotional
experiences. In perceptual psychology, the Weber–Fechner Law can be applied to explain
visual, auditory, tactile, and other perceptual phenomena. This law describes a quantita-
tive relationship between the intensity of physical stimuli and human sensation, stating
that the human perception of physical stimuli is proportional to the logarithm of the
intensity of those stimuli [36,37]. Emotion, in this context, can be considered a form of
human perception of these physical stimuli [38]. Furthermore, the Weber–Fechner Law has
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also been validated in contexts such as negotiation interactions [39] and public opinion
communication [40]. Thus, this study incorporated the Weber–Fechner Law into the inves-
tigation of emotional contagion to more accurately measure its intensity. By applying the
Weber–Fechner Law, the intensity of emotional contagion is conceptualized as a logarithmic
function of the emotional stimulus intensity. This allows for an improved quantification
and comparison of emotional contagion across different contexts. As a result, this approach
offers a robust quantitative tool for emotional contagion research, facilitating a more precise
analysis of the dynamics of emotional contagion.

The Weber–Fechner Law is expressed as S = Klg(R), where S represents the sensa-
tion intensity, R is the stimulus intensity, and K is a constant. Additionally, McKay [41]
suggested that the degree to which individuals are affected by emotional contagion varies
due to individual differences, which can be characterized as emotional sensitivity. This
study, therefore, accounted for these individual differences by introducing the concept of
emotional sensitivity. An emotional contagion model based on the Weber–Fechner Law was
proposed to describe the relationship between emotional levels and emotional stimuli. The
study simulated and analyzed the process of emotional contagion during metro emergen-
cies to explore the transmission patterns of group panic. Through numerical simulations,
the research further examined the impact of factors such as crowd density, personality traits,
official interventions, and evacuation rates on the mechanisms of emotional contagion.
Extensive multi-agent simulations were conducted to model the propagation patterns of
group emotions, with results closely aligning with observed phenomena. Furthermore,
a specific case analysis validated the model’s rationality and effectiveness in quantifying
individual emotions and characterizing crowd emotional contagion. The primary aims
of this study are not only to explore the propagation patterns of panic emotions during
metro emergencies and to examine the roles of various factors influencing the emotional
contagion process, thereby providing insights for effectively mitigating group panic and
managing crises in such scenarios, but also, more importantly, to validate the rationality
and accuracy of the proposed emotional contagion model, which quantifies emotional
levels and describes the relationship between emotional stimuli and emotional states. This
addresses the limitations of existing research in emotional computation and contributes to
advancing the field.

The remainder of this paper is organized as follows. Section 2 provides a detailed
explanation of the methods and processes used in this study’s multi-agent emotion mod-
eling, including the criteria for emotion classification, the emotion computation model,
and the movement guidelines for the agents. Section 3 elaborates on the construction of
the simulation environment and the design of the simulation steps. Section 4 presents
the specific simulation results and analysis under various parameter scenarios. Finally,
Section 5 offers a summary of the entire paper.

2. Methods
2.1. Emotional Classification

First, the emotional level ei of passenger i is defined within the [0, 1] range, where a
value of zero indicates that the passenger is in a calm state, unaffected by panic stimuli.
Once panic stimuli appear in the scene, the emotional level ei of passenger i within the
affected range changes, triggering emotional contagion. These altered emotional levels also
remain within the [0, 1] range. Additionally, due to varying levels of emotionality among
individuals, the emotional levels of passengers are categorized into four stages: calm, slight
panic, moderate panic, and intense panic, each corresponding to a different emotional state.
The categories of these emotional levels are shown in Table 1.
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Table 1. Emotional states corresponding to emotional levels.

Emotional Levels Emotional States

0 Calm
(0, 0.4] Slight panic

(0.4, 0.8] Moderate panic
(0.8, 1.0] Intense panic

2.2. Emotional Computation

We define an individual’s emotional level as a combination of two components: (1) the
initial cognitive appraisal of the environment and (2) the subsequent instinctive, uncon-
scious emotional contagion [42]. Before delving into the details of cognitive appraisal and
emotional contagion, let us first clarify how emotions are generally updated. At the initial
moment (t = 0), passengers’ panic is entirely derived from their own cognitive appraisal.
However, over time, their panic is influenced not only by their own cognitive appraisal but
also by emotional contagion. Building on Durupinar’s research [42], weight coefficients
ρ and 1 − ρ are introduced to measure respective impacts of emotional contagion and
cognitive appraisal. Based on Equation (1), we calculate the emotional level of passenger i
at time t and normalize it to a value between 0 and 1:

ei(t) =

{
fi, t = 0

(1 − ρ) fi + ρλi(t), t = 1, 2, 3 . . .
(1)

where fi is the appraisal contribution function and λi(t) is the contagion contribution
function. Here, ρ is related to the passengers’ personality traits, represented by pc = {1,2,3},
where 1 indicates a sensitive type, 2 a neutral type, and 3 a conservative type [43]. The
probability distribution of ρ can be expressed by ρpc. Let ρpc = 1 be randomly distributed
over [0.6, 1], ρpc = 2 randomly distributed over [0.4, 0.6], and ρpc = 3 randomly distributed
over [0, 0.4]. As the passenger’s personality trait shifts from sensitive (pc = 1) to neutral
(pc = 2) and, finally, to conservative (pc = 3), the influence of emotional contagion on the
passenger gradually diminishes, while the impact of cognitive appraisal grows stronger.

When metro emergencies occur, they are often accompanied by visual or auditory
sensory stimuli. As passengers assess their surroundings, these external stimuli can trigger
feelings of panic. According to the Weber–Fechner Law, which is expressed as S = Klg(R), a
formula for calculating the individual’s cognitive appraisal of the environment is proposed
as follows:

fi = αilg(1 + Ni(0)) (2)

where αi is defined as the emotional sensitivity [44] of passenger i. The parameter αi is
associated with the passenger’s personality traits, represented by pc = {1,2,3}, where
1 indicates a sensitive type, 2 a neutral type, and 3 a conservative type [43]. And it is
assumed that the αi for a sensitive passenger is equal to 1.2, for a neutral passenger is equal
to 1, and for a conservative passenger is equal to 0.8. Ni(0) denotes the initial intensity of
environmental stimuli perceived by passenger i at the onset of an emergency. Given the
mathematical properties of Equation (2), Ni(0) is assumed to follow a uniform distribution
between 0 and 9.

In an enclosed space, people instinctively mimic others’ facial expressions, gestures,
vocalizations, postures, and movements, synchronizing with them and ultimately achieving
emotional alignment—a phenomenon known as emotional contagion. During the process
of panic emotional contagion, sensory information conveyed through the expressions,
speech, and actions of nearby passengers generates new sources of stimulation, leading to
changes in passengers’ emotions. Consequently, according to the Weber–Fechner Law, the
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changes in the emotion of passenger i during emotional contagion process can be expressed
by Equation (3):

λi(t) =

{
0, t = 0

αilg(1 + Ni(t)), t = 1, 2, 3 . . .
(3)

where λi(0) = 0 indicates that, at the moment that the emergency event occurs, passenger i
has not yet engaged in any emotional contagion with the surrounding passengers. When
t = 1, 2, 3 . . ., passenger i begins to interact emotionally with others, resulting in changes
to their emotional level, λi(t) represents the magnitude of this change. The definition of αi

is the same as above. Ni(t) represents the intensity of stimuli received by passenger i at time
t. The panic emotions of nearby passengers continuously generate new stimuli through
their expressions, speech, and behaviors as sensory information. Given the cumulative
effect of emotional stimuli [45], the intensity of stimuli perceived by passenger i at time t is
defined as the aggregate of the emotions expressed by the nearby passengers, as shown in
Equation (4):

Ni(t) = ∑j∈patchi
ej(t − 1), t = 1, 2, 3 . . . (4)

where patchi refers to the set of all other passengers located in the same area as passenger i.
Emotional contagion occurs only among passengers within the same area. ej(t − 1) de-
notes the emotional level at time t − 1 of passenger j, who is located in the same area as
passenger i.

After some time, the official metro authorities stepped in, issuing various communi-
cations to guide and soothe the emotions of panicked passengers. As a result, passengers
gradually regained emotional stability. As such, the rule for updating individual emotion
level following the intervention of the metro authorities is as follows:

ei(t) = (1 − R)ei(t − 1) (5)

Here, R ∈ [0, 1] represents the effectiveness of the official authorities’ communications
in regulating passenger emotions. The higher the authorities’ credibility, the greater the
value of R, and the more effectively they can suppress passengers’ panic.

2.3. Movement Guidelines

Considering the influence of emotions on behavior, individuals with lower levels of
panic are able to make swift decisions, while those experiencing higher levels of panic
are more likely to engage in continuous searching behavior. The magnitude of changes in
speed and direction intensifies progressively as individuals transition from states of calm
to slight panic, moderate panic, and intense panic [46,47].

It is assumed that each passenger i has an intended direction, which is the position
of the train door closest to passenger i, represented by the unit vector Di of that direction
and a feasible velocity sampling space Si. When a passenger needs to take action, they
will randomly sample a vi within the space Si. The sampling involves two components: a
change in speed and a change in direction. The velocity sampling space of passenger i can
be defined using a four-tuple as follows:

Si = (νmin, νmax, θmin, θmax) (6)

where νmin and νmax represent the lower and upper bounds of speed, while θmin and θmax

define the minimum and maximum angles of deviation from the intended direction. Then,
∀vi ∈ Si, the following conditions hold true:

νmin ≤ ∥vi∥ ≤ νmax (7)
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θmin ≤ angle(vi, Di) ≤ θmax (8)

Equation (8) calculates the angle between vi and Di, where a positive value indicates
the counterclockwise direction of Di and a negative value indicates the clockwise direction
of Di. Together with Di, these four parameters define a velocity sampling space, which
forms an arc-shaped region extending from the point where the velocity is zero. The gray
area in Figure 1 illustrates an example of such a velocity sampling space.
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The velocity sampling space of an individual varies under different emotional states.
First, let us define the changes in speed. According to research data, the comfortable
walking speed for a crowd follows a uniform distribution between 0.9 m/s and 1.5 m/s.
In the event of an emergency, individuals experience heightened tension, leading to a
doubling of their walking speed, with a maximum speed reaching 3 m/s [48]. Based
on this, the maximum speed for individuals in different panic states is set as follows:
1 m/s for the slight panic state, 2 m/s for the moderate panic state, and 3 m/s for the
intense panic state. Additionally, while the train is in motion, passengers in a calm state
do not move around freely, with their speed set to 0 m/s. Once the train comes to a stop,
these passengers leave the carriage at a comfortable speed, with the maximum speed
set to 1 m/s. Considering factors such as pushing, crowding, or encountering obstacles,
the minimum speed for individuals in all emotional states is set to 0 m/s. Next, the
changes in direction are defined. Referring to the approach in [47], a mirroring strategy is
adopted for direction selection. Specifically, Di serves as the central axis, and directions
are symmetrically diffused outward on both sides. It is specified that θmax = −θmin, and
the value of angle(vi, Di) ranges between −π/2 ∼ π/2. The directional change space
for passengers in a slight panic state is defined as −π/6 ∼ π/6, for those in a moderate
panic state as −π/3 ∼ π/3, and for those in an intense panic state as −π/2 ∼ π/2.
Additionally, while the train is in motion, passengers in a calm state have a velocity vector
of 0, meaning that no directional dimension is defined. However, once the train has stopped,
passengers in a calm state have a clear objective and move toward the nearest train door,
resulting in zero directional change.

Based on the above information, the velocity sampling space for passengers during
the two phases—when the train is in motion and when it is at a stop—are outlined in
Tables 2 and 3.

Table 2. The velocity sampling space of passengers during the train’s motion.

Emotional Levels [νmin, νmax] (m/s) [θmin, θmax]

0 [0, 0] —
(0, 0.4] [0, 1] [ − π/6, π/6 ]

(0.4, 0.8] [0, 2] [ − π/3, π/3 ]
(0.8, 1.0] [0, 3] [ − π/2, π/2 ]
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Table 3. The velocity sampling space of passengers after the train has stopped.

Emotional Levels [νmin, νmax] (m/s) [θmin, θmax]

0 [0, 1] [0, 0]
(0, 0.4] [0, 1] [−π/6, π/6]

(0.4, 0.8] [0, 2] [−π/3, π/3]
(0.8, 1.0] [0, 3] [−π/2, π/2]

3. Simulation Design
NetLogo [49] is a programmable modeling tool designed for simulating natural and

social phenomena. It is particularly well-suited for multi-agent simulations, allowing the
simultaneous control of thousands of agents. This makes it an excellent tool for modeling
the behavior of individual agents at a micro-level and exploring the connections between
micro-level behaviors and macro-level emergent phenomena. In NetLogo, there are static
agents called “patches” and mobile agents referred to as “turtles”. Relationships can be
established not only among agents of the same type but also between different types of
agents. For example, it is possible to determine which “turtle” is located on a specific
“patche”. The simulation interface represents a virtual world, where the entire interface
is covered with “patches”. Both the size of the patches and the dimensions of the world
can be manually adjusted. NetLogo uses its own time unit called “ticks”, where one tick
represents the completion of a single update. In this simulation, ticks are used as the time
unit and are not converted into real-world minutes. Given the excellent rapid prototyping
facilities of Netlogo, arriving at a simulation environment for metro emergencies such as
the one depicted in Figure 2 is an easy task.
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Figure 2 illustrates the simulation environment of a metro carriage during an emer-
gency scenario. The environment features miniature figures in various colors, represent-
ing passengers in different emotional states: white indicates a calm state, green represents 
slight panic, yellow signifies moderate panic, and red denotes intense panic. The doors 
are positioned above the carriage, and the grid layout depicts the distinct areas into which 
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Figure 2 illustrates the simulation environment of a metro carriage during an emer-
gency scenario. The environment features miniature figures in various colors, representing
passengers in different emotional states: white indicates a calm state, green represents
slight panic, yellow signifies moderate panic, and red denotes intense panic. The doors are
positioned above the carriage, and the grid layout depicts the distinct areas into which the
carriage is divided. Since passengers can only move on a flat surface, the height dimension
of the carriage is temporarily excluded from consideration. The carriage environment
is modeled as a two-dimensional plane G with dimensions L × W, where N passengers
are randomly distributed. Referring to the A-type trains on Shanghai Metro Line 1, each
carriage is 23 m long and 3 m wide, with a rated capacity of 310 passengers. And there
are 10 doors—5 on each side. As metro train doors only open on one side, five doors
are evenly spaced on one side with equal intervals. At any given time, passengers can
only engage in emotional contagion with those within their emotional perception domain.
For the emotional perception domain, we refer to the setup in [50]: “In a train carriage
with a length of 114 m and a width of 2.8 m, during peak hours with 1500 passengers,
the emotional perception domain for each individual is 4.5 m2”. In the scenario of this
study, the simulation world is defined with dimensions L = 23 and W = 3, and the rated
capacity is 310 passengers. Using proportional scaling, the emotional perception domain
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for each individual in this study is approximately 1 m2. Coincidentally, in NetLogo, the
world is divided into small square grids, each referred to as a patch. The default size of
each patch is 1 × 1, meaning that the width and height of each patch are 1 unit. Therefore,
we directly define the patch occupied by passenger i as their emotional perception domain.
The two-dimensional plane G (23 × 3) is divided into M (M = 69) regions, with each region
represented as a patch in the simulation software NetLogo (6.4.0). Let pm denote the m-th
region; passengers within region pm can only interact with others in the same region. When
the train arrives at a station and the doors open, crowding and waiting occur at the doors
due to their limited size. To model this, a probability P (P ∈ [0, 1]) is introduced, where, at
each moment t, passengers arriving at the door have a certain chance of leaving the carriage.
If a passenger successfully exits at moment t, they disappear from the environment; if not,
they continue to have a chance to exit at moment t + 1, until all passengers have left the
carriage. Until they exit, passengers continue to interact emotionally with others according
to the established rules. The value of P reflects the evacuation rate; a higher P indicates a
greater likelihood of passengers leaving the carriage at each moment t, signifying a higher
evacuation rate. Conversely, a lower P indicates a slower evacuation rate. As shown in
Figure 3, the steps of the simulation experiment are as follows:
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Step 1: Initialize the simulation environment by setting L = 23, W = 3 and M = 69 to
construct the metro carriage model. Configure the values for N, P, R, and arrival-tick. Define
distribution schemes for three types of passengers: sensitive, neutral, and conservative.
Assign emotional sensitivity values, denoted as αi, to each passenger type and set the value
of Ni(0). Then, calculate fi according to Equation (2); thus, ei(0) is obtained according to
Equation (1).
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Step 2: Before the train stops, all passengers inside the carriage engage in emotional
contagion with other passengers in the same area. Calculate the emotional level based on
Equations (1)–(4).

Step 3: All passengers move following the velocity sampling space specified in Table 2.
Step 4: Determine whether the authorities have implemented control measures. If they

have, passenger emotions will decrease according to Equation (5); otherwise, proceed to
Step 5.

Step 5: The simulation time advances by one tick. Repeat Steps 2~5 until the train
comes to a complete stop.

Step 6: After the train stops, a random function generates a positive integer Qi between
1 and 100 for each passenger i who has reached the door. If Qi ≤ P × 100, passenger i
exits the carriage and is removed from the simulation environment; otherwise, passenger i
remains in the carriage and proceed to Step 7.

Step 7: Determine whether the authorities have implemented control measures. If they
have, passenger emotions will decrease according to Equation (5); otherwise, proceed to
Step 8.

Step 8: Passengers inside the carriage will continue to interact emotionally with other
passengers in the same area. Calculate the emotional level based on Equations (1)–(4).

Step 9: All passengers move following the velocity sampling space specified in Table 3.
Step 10: The simulation time advances by one tick. Repeat Steps 6~10 until all

passengers have exited the carriage, marking the end of the simulation.

4. Simulation Results and Analysis
Given that crowd density, personality traits, official interventions, and evacuation rates

can influence the evolution of group emotions during metro emergencies, we conducted
a series of simulation experiments to explore emotional contagion patterns from these
four perspectives. To minimize the impact of anomalies from individual simulations, each
parameter setting was simulated 30 times using NetLogo. The following conclusions were
drawn based on the average results of these 30 experiments.

4.1. Crowd Density

Crowd density inside the carriage varies at different times of the day. During peak
hours, the crowd density significantly increases, while it decreases during off-peak hours.
Considering that the A-type train has a rated capacity of 310 passengers, we set the
number of passengers to N = 60, N = 180, and N = 300, while keeping other parameters
constant: P = 0.5, arrival-tick = 100, and an even distribution of the three personality traits,
each making up 1/3 of the total. It was assumed that no intervention was made by the
authorities, with R = 0. We observed the proportions of passengers in four emotional states
(the number of passengers in a specific emotional state/N) within the group, as shown in
Figure 4.

When tick ≤ 100 (i.e., while the train is in motion), in different crowd density scenarios,
the proportions of passengers in the four emotional states undergo rapid and significant
changes within a short period after departure, quickly stabilizing into a clear distribution
pattern. This illustrates the explosive nature of emotional contagion. Following this
initial shift, the proportions of these emotional states fluctuate within a certain range. As
crowd density increases, these fluctuations lessen, indicating that higher crowd densities
positively contribute to the emotional stabilization of the group. The denser the crowd,
the more stable the emotional states within the group tend to be. Previous studies have
also confirmed the positive influence of crowd density in facilitating the convergence of
passengers’ viewpoints on rumors [51]. Further analysis shows that the proportion of
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passengers in a calm state exhibits an almost linear decrease from tick = 0 to tick = 1, rapidly
falling from approximately 0.1 to 0. This is attributed to the presence of a few uninformed
passengers at the onset of an emergency. However, under the effects of emotional contagion,
panic quickly spreads throughout the carriage, prompting these passengers to swiftly shift
from a calm to a panicked state. Concurrently, the percentage of passengers in slight panic
decreases, while those in moderate and intense panic states rise, particularly in the intense
panic state.
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In Figure 4a, the moderate panic state dominates the crowd’s emotions, with approx-
imately 65% of passengers in this state. The proportion of passengers in intense panic
initially decreases sharply over a short period, then begins to rise and shows oscillations.
This pattern emerges because, in settings with lower crowd densities, passengers are more
spread out within the carriage and are unable to promptly communicate with nearby
passengers after being stimulated by a sudden event. As the initial emotional stimulus
weakens, passengers’ emotions gradually shift from intense to moderate and slight panic.
Nonetheless, as the passengers’ frantic search behavior persists, panic emotions build
up, leading to a gradual increase in the proportion of passengers in intense panic. In
Figure 4b, the moderate panic state remains predominant, although the proportion of
passengers in this state has declined compared to the N = 60 scenario, now accounting
for approximately 50%. Throughout the emotional contagion process, the proportions of
passengers in both moderate and intense panic states have increased overall. Notably, the
proportion of passengers in intense panic has risen significantly, indicating that the panic
among passengers in the carriage is severe. In Figure 4c, the proportion of passengers
experiencing intense panic rises sharply in a short period, soon matching the proportion of
passengers in moderate panic. Together, passengers in these two emotional states make up
approximately 90% of the total. Subsequently, intense and moderate panic levels display a
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trend of alternating fluctuations. In the N = 300 scenario, the panic among passengers in
the carriage is extremely severe.

Comparing scenarios with varying crowd densities reveals that, as crowd density
increases, the proportion of passengers experiencing intense panic also rises. Dense crowds
exacerbate the panic among passengers because high crowd density contributes to greater
chaos, more likely triggering emotional stimuli. This leads to a more intense and rapid
escalation of panic, reaching an extreme state during the explosive phase of collective
emotional release [52]. This phenomenon explains the frequent occurrences of mass panic
events during peak metro periods.

After tick > 100, the doors open, and an increasing number of passengers exit the
carriage until everyone is fully evacuated. During this phase, the proportions of passengers
in each emotional state gradually decrease until they reach zero. The emotional states of
passengers who leave the simulation environment are not within the scope of this study.

4.2. Personality Traits

To explore the influence of personality traits on the evolution of group emotions, the
proportions of sensitive, neutral, and conservative passengers in the carriage are defined
as follows: Personality Configuration I (proportion of sensitive passengers: 1/6; propor-
tion of neutral passengers: 1/3; proportion of conservative passengers: 1/2), Personality
Configuration II (proportion of sensitive passengers: 1/3; proportion of neutral passengers:
1/3; proportion of conservative passengers: 1/3), and Personality Configuration III (pro-
portion of sensitive passengers: 1/2; proportion of neutral passengers: 1/3; proportion of
conservative passengers: 1/6), while keeping other parameters constant (N = 300, P = 0.5,
arrival-tick = 100). It was assumed that no intervention was made by the authorities, with
R = 0. We observed the proportions of passengers in four emotional states (the number of
passengers in a specific emotional state/N) within the group, as shown in Figure 5.
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Following the emergency, the proportion of passengers in calm state quickly drops
to zero, with panic spreading throughout the carriage. The proportion of passengers in
slight panic state decreases overall. Although the proportion of those in moderate panic
state initially rises sharply, it soon declines back to the level observed at the onset of
the emergency. Meanwhile, the proportion of passengers in intense panic state increases
significantly. In Figure 5a, the moderate panic state dominates the crowd’s emotions, with
approximately 50% of passengers in this state. In Figure 5b, the proportion of passengers
in intense panic is almost equal to those in moderate panic, with passengers in these two
emotional states together accounting for 90% of the total. Meanwhile, in Figure 5c, the
proportion of passengers in intense panic has overtaken those in moderate panic, with
intense panic now dominating the crowd’s emotions.

By comparing the initial proportions of passengers in four emotional states across the
three scenarios, it becomes evident that, when a group contains more sensitive passengers,
the initial proportions of passengers in intense panic and calm tend to rise, while the
proportions of those in moderate and slight panic decrease. This suggests that sensitive
passengers are more prone to experiencing extreme emotions during emergencies, which
can be either positive or negative. However, as emotional contagion progresses, an increase
in the number of sensitive passengers makes the evolution of group emotions more likely
to escalate into intense panic. It is easy to see that sensitive passengers have a heightened
capacity for emotional reception during the process of emotional contagion, which can
amplify the spread of panic. Therefore, it is crucial to focus on sensitive passengers
and implement preventive measures, such as enhancing safety education, to guide them
positively. Providing targeted emergency management education to this sensitive group
can help curb the spread of panic from the outset and be highly effective in controlling
panic during metro emergencies.

4.3. Official Interventions

After an emergency, official departments should promptly intervene by releasing
various information to calm passengers’ panic. The role of official departments in regulating
passengers’ emotions is crucial for curbing panic, and the effectiveness of this regulation
is reflected in their ability to manage passengers’ emotions. To assess how the regulatory
capacity of official departments influences the evolution of group emotions, the regulatory
capacity is set at R = 0.1, R = 0.5, and R = 0.9, while keeping other parameters constant:
N = 300, P = 0.5, arrival-tick = 100, and an even distribution of the three personality traits,
each making up 1/3 of the total. Set the official interventions to begin at tick = 50. We
observed the proportions of passengers in four emotional states (the number of passengers
in a specific emotional state/N) within the group, as shown in Figure 6.

When R = 0.1, the regulatory capacity of the official departments is relatively low.
As shown in Figure 6a, during the period from tick = 50 to tick = 100—when the official
departments begin to take measures until the train arrives at the station—there is no
significant change in the proportions of passengers in different emotional states within the
group. This is due to passengers’ lack of trust in the official departments, leading them to
focus more on their own perceptions and emotional interactions with those around them.
As a result, even though the official departments continuously release information, this fails
to effectively control the situation’s evolution. As shown in Figure 6b,c, around tick = 50,
the proportions of passengers in intense panic, moderate panic, and slight panic exhibit
significant fluctuations. The proportion of passengers in intense panic drops notably, while
those in moderate and slight panic increase. Subsequently, the overall trend enters a phase
of minor fluctuations. When R = 0.9, the decline in the proportion of passengers in intense
panic is even more pronounced, and the increase in the proportion of passengers in slight
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panic is greater than that in moderate panic. This indicates that more passengers transition
from intense panic to slight panic, significantly reducing the overall panic level among
passengers in the carriage. This suggests that greater official regulatory capacity more
effectively suppresses group panic. However, while this regulatory effect is immediate, it
does not maintain sustained efficiency. Figure 6b,c shows that, after tick = 50, following
a brief period of emotional regulation, there are no further significant changes in the
distribution of passengers across the three emotional states of intense panic, moderate
panic, and slight panic. This indicates that the official regulatory capacity does not have
a lasting and efficient impact on reducing group panic. One possible explanation is that
the enclosed environment of the carriage prevents passengers from accurately interpreting
official information. As a result, the regulatory effect of official information on passengers’
emotions diminishes over time, and instinctive emotional contagion gradually becomes the
dominant influence.
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By comparing Figures 4c and 6a–c, it becomes evident that, after the train arrives at
the station (i.e., tick > 100), during the evacuation process, the proportions of passengers
in intense and moderate panic decrease more rapidly as the official regulatory capacity
increases, assuming the same evacuation rate. This acceleration is due to a greater number
of passengers transitioning to slight panic, which supports the notion that the enclosed
environment can inhibit the effectiveness of official information. Therefore, it is crucial for
official departments to actively release information after the train arrives at the station to
calm passengers’ emotions.

4.4. Evacuation Rates

In metro emergencies, it is common for passengers to rush toward the doors but be
unable to exit the train carriage promptly due to overcrowding or door malfunctions. A
slower evacuation process can lead to the congregation of a large number of passengers
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in a confined space, thus exacerbating the spread of panic. To investigate the impact
of evacuation rates on the evolution of group emotions, we consider the following three
scenarios: P = 0, where passengers cannot exit the train carriage due to door malfunctions or
other reasons; P = 0.5, where passengers need some time to break free from the overcrowded
space in order to exit the train carriage; and P = 0.9, where the passage is relatively smooth
and passengers can exit the train carriage swiftly. We tested while keeping other parameters
constant: N = 300, arrival-tick = 100, and an even distribution of the three personality traits,
each making up 1/3 of the total. It was assumed that no intervention was made by the
authorities, with R = 0. We observed the proportions of passengers in four emotional states
(the number of passengers in a specific emotional state/N) within the group, as shown in
Figure 7.
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In the scenario where P = 0, passengers in intense panic and moderate panic states
remain at consistently high levels throughout the observation period. In the scenarios
with P = 0.5 and P = 0.9, when t ≤ arrival-tick, the intense panic and moderate panic states
also remain at high levels. However, when t > arrival-tick, the panic begins to subside,
with intense panic subsiding first, followed by moderate panic, and finally slight panic.
Passengers experiencing higher levels of panic tend to evacuate the train carriage more
quickly. This underscores the critical importance of timely intervention and control after
the train arrives at the station. Without prompt measures, these highly panicked passengers
could potentially trigger another wave of panic on the platform upon disembarking. As
the passenger density near the train doors gradually increases, metro authorities can
station staff near the doors to provide orderly guidance and effectively direct passengers,
thereby alleviating panic. Alternatively, installing train announcement systems directly
above the train doors could ensure that passengers crowding near the doors receive timely
and effective reassurance through official broadcasts. In the scenario where P = 0.5, all
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passengers exit the carriage by t = 119, while, in the scenario where P = 0.9, all passengers
evacuate by t = 111. These results suggest that rapid evacuation can effectively eliminate
panic within the train carriage.

When t ≤ arrival-tick, the passenger distribution across emotional states in Figure 7a–c
is generally consistent across scenarios. This indicates that evacuation rate has minimal
impact on emotional contagion during the train’s motion. Sudden incidents are often char-
acterized by their explosive nature, with panic emotions spreading rapidly and stabilizing
within a short period. The initial intensity of the panic stimulus largely determines the
peak level of group panic, while the duration of emotional contagion has limited influence.
Unless official intervention is implemented, the level of group panic within the carriage
remains relatively stable over time.

However, this does not imply that timely evacuation is unnecessary. Prolonged
exposure to high levels of panic, coupled with passengers crowding densely near the train
doors in confined spaces, significantly increases the risk of collisions, falls, and other safety
hazards. This study does not account for the physical interactions between passengers
and, therefore, does not incorporate the effects of such behaviors on panic emotions into
the model. Future research could consider integrating a social force model to further
explore panic dynamics at bottlenecks near train doors and provide a more comprehensive
understanding of these scenarios.

4.5. Validating the Model via Comparative Case Analysis

To effectively demonstrate the authenticity of this model in simulating the spread
of panic among metro passengers, the panic incident that occurred on Shenzhen Metro
Line 7 at around 6:30 PM on 17 May 2019 is introduced as a comparative case study.
Screenshots from the carriage surveillance video during the train’s operation phase are
shown in Figure 8, while screenshots from the platform surveillance video during the
train’s stop phase are presented in Figure 9.
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During the train’s operation, mass panic was triggered by a few passengers intention-
ally shouting and falsely claiming the presence of a weapon (as shown in Figure 8a, where
the red circle marks the source of the panic). Passengers near the panic source were the first
to perceive the visual or auditory sensory stimuli, leading them to believe that a potential
terror attack might occur. This caused panic and prompted them to flee in the direction of
the nearest train door (as illustrated in Figure 8b,c, with red arrows indicating the move-
ment direction of the passengers). Since the train was still moving and the doors remained
closed, these passengers gathered and crowded near the doors (as shown in Figure 8d,
where the red dashed lines mark the areas near the doors). Meanwhile, other passengers
who were farther away from the source, and thus did not perceive any visual or auditory
sensory stimuli, remained unaware of the situation and did not take any action. However,
the aforementioned passengers carrying panic emotions acted as secondary panic sources
(as shown in Figure 8e, where the red circles highlight the secondary sources). While run-
ning in panic, they further spread and transmitted their panic to nearby passengers. These
nearby passengers, upon perceiving visual or auditory sensory stimuli from the secondary
sources, also experienced panic, sought the nearest train door, and fled in that direction (as
depicted in Figure 8f, with red arrows representing the movement direction). Eventually,
through emotional contagion, the panic rapidly spread. Each passenger carrying panic
emotions had the potential to become a secondary panic source, transmitting visual or
auditory sensory stimuli to others and escalating the mass panic. As a result, passengers
flocked to the nearest train doors, waiting for them to open. When the train finally arrived
at the station and the doors opened, passengers rushed to escape the train carriage (as
shown in Figure 9).

The descriptive analysis of the surveillance video content above has validated the
authenticity and effectiveness of the model’s emotional contagion rules and passenger
movement rules. Next, we further verify the model’s validity by comparing the simulation
results with real-world scenarios. In this case, Shenzhen Metro Line 7 operates A-type
trains, which align with the simulation scenario described in Section 3. The parameters
were set as follows: L = 23, W = 3, and M = 69. The incident occurred at 6:30 PM, during
the evening rush hour, so the passenger count was set at N = 300, with the personality
distribution of passengers assumed to follow an even split among the three traits, each
accounting for one-third of the total. Based on the surveillance video, passengers had a
high likelihood of leaving the train carriage once the doors opened, so the probability was
set to P = 0.9. The recorded duration of the panic incident from the surveillance footage
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was approximately 2 min, leading to an arrival-tick value of 120. The initial panic source
was identified as five passengers intentionally spreading terror-inducing information.
Therefore, the model initialized with five adjacent passengers in a state of intense panic,
with their initial emotional levels randomly distributed in the range of (0.8,1.0]. The
remaining passengers were assumed to be in a calm state, with an initial emotional level of
0. During this incident, metro operators intervened only after all passengers had exited
the train carriage. Consequently, it was assumed that no authority intervention occurred,
setting R = 0. The simulation scenarios at different moments during the Shenzhen Metro
5.17 incident are depicted in Figure 10.
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At the initial moment (t = 0), passengers were evenly distributed within the train
carriage, with five passengers identified as the sources of panic for this incident (as shown
in Figure 10a). By t = 10, passengers near the panic sources were the first to be affected, and
panic began spreading within a small area. This process was manifested by calm passengers
(represented by white figures) near the panic sources gradually transitioning to slight panic
(represented by green figures), moderate panic (represented by yellow figures), and intense
panic (represented by red figures). Three major crowd clusters formed around the panic
sources, and these clusters began moving toward the nearest train doors (as shown in
Figure 10b). As time progressed, these small crowd clusters continued to expand. On the
one hand, they infected new calm passengers, and, on the other, the emotional interactions
within the clusters intensified the panic. The density of these clusters increased gradually,
with the number of green figures (slight panic state passengers), yellow figures (moderate
panic state passengers), and red figures (intense panic state passengers) rising steadily.
Meanwhile, the number of white figures (calm state passengers) steadily decreased (as
shown in Figure 10c–e). Eventually, the distribution of passengers in the carriage showed a
pattern of crowd clusters primarily gathering around the train doors. At the same time, a
few calm passengers were scattered in the corners farthest from the panic sources (as shown
in Figure 10f). When the train arrived at the station and the doors opened, passengers in
the carriage quickly evacuated (as shown in Figure 10g).

Figure 11 illustrates the simulation of passenger emotional changes during the Shen-
zhen Metro 5.17 incident. The distribution of passengers across different emotional states
is as follows: passengers in a slight panic state, moderate panic state, intense panic state,
and calm state are in the ratio of 10:6:3:1. Overall, the level of panic remains relatively low.
This aligns with the official report on the incident, which stated that it was caused by the
spread of false information, posed no substantial harm, involved no injuries, and lasted for
a short duration.
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In summary, the simulation results of this model not only correspond with the footage
from surveillance videos but also align with the official incident report. This demonstrates
the model’s accuracy and effectiveness in depicting and predicting panic emotion contagion
in real-world scenarios.

5. Conclusions
The Weber–Fechner Law describes the quantitative relationship between psychological

response and stimulus intensity. In the context of metro emergencies, this study addresses
the limitations of existing research in emotional computation by proposing a group emotion
contagion model that accounts for individual differences, based on the Weber–Fechner Law.
Extensive multi-agent simulation experiments were conducted to model the evolution of
group emotions, with the resulting trends closely aligning with observed phenomena. This
confirms the model’s effectiveness in explaining the contagion process of group emotions
during metro emergencies. Additionally, this study provides a numerical analysis to
explore the mechanisms by which crowd density, personality traits, official interventions,
and evacuation rates influence emotional contagion, leading to the following conclusions.

Dense crowds exacerbate the level of group panic but also contribute positively to the
stabilization of group emotions. Specifically, when crowd density is high, group emotions
tend to stabilize at a heightened level of panic. It is therefore recommended that metro
authorities remain vigilant during peak hours and promptly provide reassurance and
guidance in the event of an emergency.

Sensitive passengers are more prone to extreme emotions during metro emergencies.
These extreme emotions can be either positive or negative, but, without proper guidance,
they may evolve into negative emotions under the influence of emotional contagion,
amplifying the spread of panic. Therefore, it is advisable to strengthen metro safety
education to help passengers make more rational assessments of emergencies, thereby
curbing the spread of panic at its source. Additionally, after an emergency occurs, metro
authorities should pay particular attention to this sensitive group when managing the
situation’s evolution.

Official interventions play a crucial role in curbing the spread of panic. When regula-
tory measures are implemented, group emotions quickly shift from a heightened state of
panic to a lower one, with the effectiveness of this transition increasing with the strength
of the official regulation. Thus, it is recommended that authorities focus on enhancing
their credibility and improving the regulatory impact of official communications on pas-
sengers’ emotions. However, this regulatory effect may not be sustained over time and is
constrained by the enclosed environment. Consequently, it is particularly important for
authorities to actively disseminate information once the train arrives at the station to calm
passengers’ emotions.

Although an efficient evacuation rate cannot reduce the peak level of group panic
within the carriage, it can shorten the duration of panic by quickly dispersing the crowd,
thereby preventing more severe safety incidents caused by crowding. Moreover, passengers
with higher levels of panic tend to leave the carriage more quickly. If metro authorities
fail to intervene and manage these highly panicked passengers promptly after the train
arrives at the station, these individuals may trigger another wave of panic on the platform.
During the train’s motion, metro authorities must promptly investigate and release official
information to reassure passengers and calm their emotions. Once the train arrives at the
station, operational staff must be deployed to guide passengers for an orderly evacuation.
The findings of this study provide a basis for optimizing evacuation strategies in metro
operations, thereby improving the efficiency of emergency response.
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Based on the simulation of the emotional contagion process during metro emergen-
cies, this study reveals the propagation patterns of group panic and examines the impact
mechanisms of factors such as crowd density, personality traits, official interventions, and
evacuation rates on emotional contagion. Through numerical simulations, metro operators
can adopt more targeted and efficient measures to curb the spread of crowd panic and
effectively manage emergency crises. Moreover, this study introduces the Weber–Fechner
Law from psychology to model individual emotions. According to the Weber–Fechner law,
psychological quantities are logarithmic functions of stimulus intensity, with most percep-
tual stimuli following this law. Based on this, the study considers individual differences,
introduces the concept of emotional sensitivity, and proposes an emotional contagion model
that describes the relationship between emotional levels and emotional stimuli. This model
innovatively quantifies emotional levels and has been validated through case analysis for its
effectiveness in quantifying individual emotions and characterizing crowd panic emotional
contagion. Therefore, the method of calculating emotions based on sensory stimuli such
as vision and hearing in this model has broad application potential. In the future, it can
be combined with machine learning models, integrating data from multiple sensors for
multi-modal emotion recognition, and applied to the intelligent management of metro
emergency crises, thereby enhancing the efficiency and accuracy of emergency response.
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