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Abstract: To improve the slip rate control effect for different road conditions during
emergency braking of wheel hub motor vehicles, as well as to address the problems of
uncertainty and nonlinearity of the system when the electro-mechanical braking system is
used as the actuator of the ABS, a hierarchical control strategy of the anti-lock braking sys-
tem (ABS) using active disturbance rejection control (ADRC) is proposed. Firstly, a vehicle
dynamics model and an ABS model based on the EMB system are established; secondly, a
speed observer based on the dilated state observer is used in the upper layer to design a
pavement recognition algorithm, which recognizes the current pavement and outputs the
optimal slip rate; then, an ABS controller based on the ADRC algorithm is designed for the
lower layer to track the optimal slip rate. In order to verify the performance of the pavement
recognition method and control strategy, vehicle simulation software is used to establish
the model and simulation. The results show that the road surface recognition method can
quickly and effectively recognize the road surface, and comparing the emergency braking
control effects of PID and SMC under different road surface conditions, the ADRC strategy
has better robustness and reliability, and improves the braking effect.

Keywords: active disturbance rejection control; slip rate control; road recognition; electro-
mechanical brake; distributed vehicle control

1. Introduction
With the development of automobile electrification and intelligence, the brake-by-wire

(BBW) system has received more and more attention. This system can be divided into two
kinds: electro-hydraulic brake (EHB) and electro-mechanical brake (EMB).The EHB system
adopts electronic control to replace part of the mechanical control, retaining part of the
hydraulic components, and exists as a transitional technology with slow braking response
and complex piping arrangement [1–3]. The EMB system provides a more advanced
braking program compared with the former; the EMB system does not require a hydraulic
system, and is driven directly by the motor to generate braking force, with a faster braking
response, a small system size, a simple structure, ease of installing and maintenance, ease
of integration of the parking brake, and so on. The flexibility and modular design of
distributed drive systems provide ideal conditions for the integration of electro-mechanical
brakes (EMBs), and their combination offers significant advantages [4–6].

The anti-lock braking system (ABS) uses the slip rate of the wheels as the controlled
object, keeps the slip rate near the optimal slip rate, avoids the tire locking phenomenon
when the wheels have a large braking torque, and improves the braking performance of the
vehicle [7–9]. The use of the EMB system in combination with the traditional ABS can more
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accurately control the braking force of the wheels, maintain the optimal slip rate of the
wheels, improve the performance of the ABS, and ensure that the vehicle always maintains
the ability to steer, which is an important safeguard for the safety of driving the vehicle [10].
However, vehicle braking effectiveness is affected by the tire–road friction coefficient
and controller robustness, which provide challenges to improving braking effectiveness.
Numerous scholars have conducted extensive research on the above problems. In terms of
pavement identification, Wang [11] used a combination of strong tracking traceless Kalman
filtering and interactive multi-model traceless Kalman filtering to estimate the road friction
coefficient, which has good identification accuracy. In the literature [12], an identification
method using machine learning and a bi-radial basis function neural network to build a
pavement adhesion coefficient estimator using the Extended Kalman Filter is proposed,
but there are significant fluctuations in the simulated pavement adhesion coefficients. Sun
proposed a fusion algorithm based on improved singular-value decomposition trace-free
Kalman filtering for estimating the tire–road friction coefficient [13].

At the same time, ABS controller robustness and tire slip rate control are also important
factors in braking effectiveness; the current automotive ABS mainly involves PID control
and integral sliding-mode control (SMC) [14]. An optimized fuzzy adaptive PID algorithm
is proposed in the literature [15] to improve the braking stability of the ABS. Salma [16]
proposed a global sliding-mode controller and utilized the Lyapunov method to establish
system stability, aiming to minimize the error between the actual slip rate and the optimal
slip rate. However, both of these have problems, such as poor adaptability and jitter. In
the literature [17], an H∞ gain-scheduling controller is proposed, which can maintain
the slip ratio within the optimal range according to road conditions, thereby achieving
optimal braking performance. Auto-Disturbance Control (ADRC), with the advantages of
fast response, strong decoupling, model-independence, high control accuracy, estimation
of internal and external disturbances, and compensation [18], is widely used in motor
control [19], trajectory tracking [20] and other fields. In the literature [21], ADRC is applied
to a line-controlled braking system to analyze its effect on ABS control, but the effects of
the optimal slip rate and EMB on braking performance are not studied in depth.

Based on the above existing problems, considering the effects of the variability of
different road surface attachments and controller robustness on the ABS braking effect, this
paper proposes a hierarchical control strategy for the ABS using self-impedance control.
Firstly, a road surface identification method based on real-time estimation of longitudinal
speed by an extended state observer (ESO) is proposed to output the optimal slip rate,
and this is used as the control objective to design the ABS control system, based on
the ADRC strategy. Finally, the effectiveness of the control strategy, as well as of the
pavement identification method, is verified through simulation experiments in different
road environments.

The structure of this paper is as follows. In Section 2, the vehicle dynamics model
and tire pavement model are introduced. In Section 3, the longitudinal speed observer
and the road surface identification method are established to obtain the optimal slip rate.
In Section 4, an ADRC-based ABS control strategy is designed to control the wheel slip
rate so that it is stabilized at the optimal slip rate. Section 5 carries out the simulation
verification of the road surface recognition method and ABS control system, and analyzes
and compares the braking effect of the three control methods on single and variable road
surfaces. Finally, conclusions are given in Section 6.
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2. Vehicle Model
2.1. Vehicle Dynamics Model

To simplify the analysis, the effects of rolling resistance and grade resistance are
neglected, and a single-wheel model is used as the basis for studying the problem. Figure 1
shows a schematic diagram of the braking forces; its dynamics equations are as follows [22]:

m
.
v = −Fxb (1)

J
.

ω = FxbR − Tb (2)

Fxb = µ(λ)Fz (3)

The slip rate is defined as follows:

λ =
ν − ωR

ν
(4)

where m is one-quarter of the total mass of the vehicle, v is the longitudinal speed, Fxb

is the ground braking force, J is the wheel moment of inertia, R is the tire radius, Tb is
the brake torque, and ω is the angular velocity of the wheels, and here,

.
ω for the angular

deceleration of the wheels.
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Figure 1. Braking force diagram.

2.2. Tire–Pavement Model

The mathematical tire model established by Burckhardt [23] can accurately represent
the longitudinal adhesion relationship between the tire and the road surface during vehicle
braking. The expression for this model is as follows:

µ(λ) = c1[1 − exp(−c2λ)]− c3λ (5)

where c1, c2, c3 are the fitting parameters for each typical road surface, as well as the optimal
slip rate and adhesion coefficient for six different road surfaces [24], as shown in Table 1.

Table 1. Fitted parameter values for typical road surfaces.

c1 c2 c3 λref µmax

Dry asphalt 1.2801 23.99 0.52 0.17 1.17
Dry cement 1.1973 25.168 0.5373 0.16 1.09
Wet asphalt 0.857 33.822 0.347 0.13 0.8013
Cobblestone 0.4004 33.708 0.1204 0.14 0.34

Snow 0.1946 94.129 0.0646 0.06 0.1907
Ice 0.05 306.39 0.001 0.03 0.05
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3. Design of Road Surface Identification Methods
During the braking process, the influence of brake system factors is assumed to be

consistent; therefore, the tire–road friction coefficient conditions become the primary factor
affecting braking performance. Additionally, the tire–road friction coefficient provides a
crucial basis for the design of road surface recognition methods, due to its variability.

3.1. Velocity Observer

The basic idea of the dilated state observer is as follows: the total perturbation is
dilated into a new state variable of the system, and the inputs and outputs of the system
are utilized to observe the state variable of the system and the perturbation to which it is
subjected [25].

Combining Equations (1) and (2), the following can be obtained:

.
ω = −mR

.
v

J
− Tb

J
(6)

In practical situations, there exist model errors and external disturbances, denoted as
ρ(t). Therefore, we can obtain the following:

.
ω = −mR

.
v

J
+ ρ(t)− Tb

J
(7)

Since precise speed information cannot be obtained [26,27], the term containing speed
information, −mR

.
v

J + ρ(t), is considered as an external unknown total disturbance to the
system, and is expanded into a new state variable, x2. The state equation takes the following
form: 

.
x1 = x2 + bu
.
x2 = h
y = x1

(8)

where x1 = ω, x2 = −mR
.
v

J + ρ(t) is the aggregate disturbance, and h is derivative of the
disturbance; b = − 1

J , u = Tb, the angular velocity ω and the braking torque Tb are used as
inputs to the system.

The extended state observer is designed according to Equation (8), as follows:
.
z1 = z2 − β1 fal(ε, 0.5, δ) + bu
.
z2 = −β2 fal(ε, 0.25, δ)

ε = z1 − y
(9)

where z1 and z2 are observed values of x1 and x2, respectively. ε is the difference between
the observed value z1 and the input value y. β1 and β2 are parameters of the controller;
after testing, it was determined that β1 = 80 and β2 = 14000. The interval length δ is set to
0.1. The function fal is represented as follows [28]:

fal(ε, α, δ) =

{
εδα−1 , |ε|≤ δ

sign(ε)
∣∣∣ε∣∣∣α , |ε|> δ

(10)

The above state observer obtains an observation z2 for x2, where z2 contains the
integral of the longitudinal vehicle velocity

.
v. The expression is obtained as follows:

z2 = −mR
.
v

J
+ ρ(t) (11)
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At the start of braking, the longitudinal vehicle speed and wheel speed are approx-
imately equal. The initial speed of the vehicle is assumed as v0. The longitudinal speed
observation is given by the following:

v̂ =
∫ ( .̂

v + v0

)
dt =

∫
[− z2 J

mR
+ ρ(t) + v0]dt (12)

3.2. Road Surface Identification

The tire, as the medium of contact between the vehicle and the road, transmits the
forces and torques required for vehicle motion. During braking, the tangential force
experienced by the vehicle is limited, due to varying degrees of slip between the tire and
the ground. The maximum longitudinal braking force Fxbmax is given by the following:

Fxbmax = µmaxFz (13)

Based on Equations (2) and (3), the longitudinal adhesion utilization coefficient of the
wheel can be obtained as follows:

µ =
J

.
ω + Tb

FzR
(14)

The braking torque in the equation is obtained from the EMB (electro-mechanical
brake) actuator model, while the wheel angular deceleration

.
ω is acquired through wheel

speed sensors.
The vehicle speed v̂ is obtained from the longitudinal vehicle speed observer. Using

Equation (4), the slip ratio λ is calculated. Based on the Burckhardt tire model, the theo-
retical adhesion coefficients µi (ℶ = 1,2,3,4,5,6) for six typical road conditions are derived
for this slip ratio. These theoretical values are then compared with the actual adhesion
coefficient µr. The following function is designed to perform this comparison:

Min = Min|µr − µi| (15)

The Min function is calculated in real time during braking, and when the closest road
surface is finally found, the initial recognition is completed, and the optimal slip rate of the
current road surface is output, as shown in Figure 2.
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4. ADRC-Based ABS Slip Ratio Tracking Control
The ABS is often used in extreme conditions of vehicle driving, and is susceptible to

external disturbances, so the ABS control algorithm is required to have the advantages of
fast response and strong resistance to external disturbances. Self-immunity control has the
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unique advantages of not relying on the precise model of the controlled object, as well as the
estimation and compensation for internal and external disturbances, which can effectively
inhibit the external interference and fast response, and are suitable for nonlinear control
systems, which can effectively improve control quality and control accuracy. Therefore the
self-immunity control theory is chosen for the design of the ABS controller.

4.1. ABS Model
4.1.1. EMB Selection

In this paper, the floating caliper disk structure type model from Ref. [29] is used,
including the following components, as shown in Figure 3: a drive motor, a planetary gear
mechanism, a ball screw mechanism, and a brake disk. The braking torque equations are
shown in (2) to (3).

Tb =

 0,
∣∣∣Te

∣∣∣< Tf

Kb(Kt Ia − Tf ),
∣∣∣Te

∣∣∣≥ Tf
(16)

Kb =
4πixηxηsµbrb

Ph
(17)

where Te is the electromagnetic torque of the drive motor,Tf is the friction torque of the
drive motor, Kt is the motor torque coefficient of the wheel brake, Kb is the output torque
coefficient of the brake, Ia is the armature current of the motor, ix is the planetary gear ratio,
ηs is the mechanical efficiency of the ball screw, µb is the coefficient of friction of the brake
disk, rb is the effective radius of the brake disk, Ph is the lead of the ball screw, and ηx is the
mechanical efficiency of the planetary gears.
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4.1.2. Slip Rate Dynamic Model

To find the second derivative of the wheel slip ratio described by Equation (4), the
following expression is derived:

..
λ = −

..
ωR
v

+
ω

..
vR

v2 +
2

.
ω

.
vR

v2 − 2ω
.
v2R

v3 (18)

By combining Equations (1)–(4) and Equations (6) and (7), and substituting them into
the above equation, we can obtain the second-order nonlinear system expression for the
slip ratio:

..
λ =

1
mv

(
(λ − 1)F

.
µ(λ) + 2Fzµ(λ)

.
λ − τFzR2 .

µ(λ) + τKbKtR
.
Ia

)
(19)

where τ = m/J; the dynamic model of the ABS slip rate of the EMB system can be described
as a second-order nonlinear system with respect to slip rate.
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To improve vehicle braking performance, an active disturbance rejection control
(ADRC) algorithm was used to design a controller for tracking the optimal slip ratio.
Figure 4 shows the structure diagram of the ADRC-based ABS control strategy.
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4.2. Design of ADRC

The active disturbance rejection control (ADRC) system comprises three main compo-
nents: the tracking differentiator (TD), the extended state observer (ESO), and the nonlinear
state error feedback (NLESF) [30].

4.2.1. Extended State Observer (ESO) Design

The ESO is utilized to estimate both the state variables and the overall disturbance
within the system. Equation (19) is recast into a state equation representation, as follows:

.
θ1 = θ2.
θ2 = θ3 + bu
.
θ3 = h
y1 = θ1 = λ

(20)

where λ is the true slip rate, θ3 = f = 1
mv [(λ − 1)Fzµ(λ) + 2Fzµ(λ)

.
λ − τFzR2 .

µ(λ)] is the
new expansion state variable, is the total perturbation, h is the differential value of the total
perturbation, b = τKbKtR, and

.
Ia is the differential value of the current.

From (14), the extended state observer formula can be obtained, as follows:
ε = z1 − y
.
z1 = z2 − γ1ε
.
z2 = z3 − γ2 fal(ε1, 0.5, δ1) + bu
.
z3 = −γ3 fal(ε1, 0.25, δ1)

(21)

where z1, z2, and z3 are the observations of θ1, θ2 and θ3, respectively; γ1, γ2, and γ3 are the
parameters of the controller; and the function fal is as above.

4.2.2. Tracking Differentiator (TD) Design

The optimal slip ratio obtained from the upper-level road surface recognition method
serves as the target slip ratio for the transitional process. The tracking differentiator (TD)
is capable of smoothing input signals, filtering out high-frequency noise, while rapidly
tracking the trend of signal changes and estimating the differential value of the signal.
This results in obtaining the tracking signal and differential signal of the target slip ratio,



Appl. Sci. 2025, 15, 1294 8 of 15

simultaneously serving to alleviate overshoot and oscillations. The tracking equation for
the target slip ratio B is as follows:

fh = fhan[λTD(k)− λref(k),
.
λTD(k), r0, h0]

λTD(k + 1) = λTD(k) + h
.
λTD(k).

λTD(k + 1) =
.
λTD(k) + h fh

(22)

where λref is the target slip rate output by the upper pavement recognition module; λTD and
.
λTD are the tracking signal and its differential signal of λref, respectively; r0 is the velocity
factor; and h0 is the sampling step. According to [31], the fh function can be expressed
as follows:

fh = fhan(c1, c2, r0, h0) (23)

d = r0h0
2

a0 = h0c2

y = c1 + a0

a1 =
√

d(d + 8|y|)
a2 = a0 + sign(y)(a1 − d)/2
sy = [sign(y + d)− sign(y − d)]/2
a = (a0 + y − a2)sy + a2

sa = [sign(a + d)− sign(a − d)]/2
fhan = −r0[a/d − sign(a)]sa − r0sign(a)

(24)

4.2.3. Nonlinear State Error Feedback (NLESF) Design

NLSEF uses a nonlinear combination designed to compensate for the total perturba-
tions estimated in real time in ESO [32], ensuring that the system states stably converge to
the desired equilibrium point. The nonlinear combination takes the following form:

e1 = λTD − z1

e2 = λTD − z2

u0 = β1 fal(e1, α1, δ2) + β2 fal(e2, α2, δ2)

(25)

where β1 and β2 are controller parameters.
The calculation formula of the control volume formed by the system perturbation

compensation can be obtained, as follows:

u =
u0 − z3

b0
=

.
Ia (26)

where − z3
b0

is the component of the compensation disturbance, u0
b0

is the nonlinear feedback
to control the integrator series-type component, and b0 is the compensation factor, which is
taken as b in the calibration process.

5. Simulation and Discussion
To verify the reliability and effectiveness of the proposed hierarchical ABS control

strategy, an overall control strategy model was built in MATLAB/Simulink. The general
design of the ABS control system is shown in Figure 5. Under emergency braking conditions,
the road surface identification outputs the target slip ratio λref. The ABS controller based
on the ADRC algorithm is used to track the target slip ratio, and the output current controls
the EMB actuator. The vehicle simulation conditions are set to emergency braking scenarios
on different road surfaces with an initial braking speed of 20 m/s, and white noise is
added to simulate real-world disturbances. The performance of the longitudinal vehicle
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speed observer, the accuracy of the road surface identification method, and the braking
effectiveness of the ABS control strategies using the PID, SMC (sliding-mode control),
and ADRC methods are verified, respectively. Tables 2 and 3 provide the vehicle model
parameters and controller parameters.
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Table 2. Model parameters.

Parameters Symbol Value

Vehicle mass m 1800/4 kg
Wheel rolling radius R 0.3 m

Wheel rotational inertia J 0.9 kg · m2

Vehicle wheelbase L 2.8 m
Center of gravity height h 0.45 m
Front braking constant kb f 300 Nm/MPa
Rear braking constant kbr 200 Nm/MPa

Motor torque coefficient KT 0.563 N · m · A−1

Motor friction torque Ts 0.1168 N · m
Planetary gear ratios ix 19

Efficiency of planetary gears ηx 0.95
Ball Screw Efficiency ηs 0.95

Ball Screw Guide Ph 0.005
Effective radius of brake disk rb 0.12
Brake disk friction coefficient µb 0.4

Table 3. Controller parameters.

Controller Parameter Value

PID
Proportional parameter Kp = 1.5

Integral parameter Ki = 50
Differential parameter Kd = 0.01

SMC
Constant Velocity Approach Coefficient ε = 20

Exponential Convergence Coefficient q = 0.001

ADRC

ESO

γ1 = 1000
γ2 = 32,000
γ3 = 680,000

δ1 = 0.01

TD
r0 = 100,000

h0 = 180

NLESF
α1 = 0.1
α2 = 1.75
δ2 = 0.01



Appl. Sci. 2025, 15, 1294 10 of 15

5.1. Pavement Recognition Simulation

In order to verify the effectiveness and accuracy of the road recognition method, two
kinds of road surfaces, dry cement and snow, were selected for recognition verification,
and the simulation condition was that the braking started at a wheel speed of 20 m/s.

Figure 6a shows the speed curve on a dry cement road; it can be seen that from
the beginning of braking, the accuracy error of the observer slowly increases, and finally
stabilizes at about 0.4 m/s. Figure 6b shows the speed curve on a snowy road; here,
the observer’s observation error slowly increases with the observation time, and finally
stabilizes at 0.6 m/s. When the actual speed is lower than 2 m/s, the sensor receives
weakened signal strength and the ambient noise becomes relatively more significant,
resulting in a decrease in the signal-to-noise ratio, making it more difficult to extract
accurate speed information from the signal; at the same time, the speed is too low, which
makes the number of pulses generated by the wheel speed sensor per unit of time decrease,
which can lead to insufficient resolution and affect the observations. In addition, the
increase in error is due to the fact that the observer is always running during the braking
process, resulting in there being some cumulative error. Figure 6c,d show the recognition
results of dry concrete and snow pavement, respectively, where the pavement is recognized
near 0.2 s and the optimal rate and maximum adhesion coefficient of the current pavement
are outputted; meanwhile, at 0.2 s, the speed observation error is so small that it can
be ignored.
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5.2. ABS Control System Simulation
5.2.1. Dry Cement Pavement Braking

Figure 7 shows the braking effect of the three ABS control strategies, ADRC, SMC,
and PID, on dry concrete road. From Figure 7a, it can be seen that the braking distance
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under the ADRC strategy is less than under the SMC and PID control strategies. Figure 7b,c
shows that the ADRC strategy can produce a smooth and fast decrease in speed, which is
better than the SMC and PID control. In terms of slip rate control, as shown in Figure 7d,
neither ADRC nor SMC showed overshooting, and PID showed overshooting; the response
time of ADRC to reach the steady state value was faster than that of SMC and PID, and
there was no wheel holding phenomenon. The results show that the ABS under the control
of the ADRC algorithm has better braking performance and improves the braking effect on
dry cement road.
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5.2.2. Snowy Pavement Braking

Figure 8 shows the braking effect of the three ABS control strategies, ADRC, SMC,
and PID, on a snowy road surface. From Figure 8a, it can be seen that the braking distance
under the ADRC strategy is the smallest, but the differences among the three strategies
are minor, around 0.2 m. Figure 8b,c indicates that the difference in braking time between
ADRC and SMC is negligible, with neither exceeding 11 s, while the braking time for PID
is the longest, surpassing 11 s.
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(c) (d) 

 
Figure 8. Braking performance on snowy pavement. (a) Braking distance. (b) Vehicle speed. (c) Wheel
speed. (d) Slip.

In terms of slip ratio control, as shown in Figure 8d, there is no overshooting phe-
nomenon in ADRC, and the response time of ADRC to reach the steady-state value is faster
than that of SMC and PID. The comparison of the braking effects of the different ABS control
strategies involves multiple factors. On snowy roads, the advantages of the ADRC strategy
in terms of braking distance and braking time are not significant. However, considering
the overall controller’s response time, the results show that the ADRC algorithm offers
superior control performance.

5.2.3. Variable Pavement Braking

To verify the adaptability of the control strategies, a complex variable surface condition
was selected, transitioning from dry asphalt to a snowy road. Braking began on dry asphalt,
and after 1 s of braking, the road surface switched to snow. Figure 9 shows the braking
performance of the three ABS control strategies, ADRC, SMC, and PID, under variable road
conditions. From Figure 9a, it can be observed that the ADRC strategy provides a shorter
braking distance, thereby enhancing safety. Figure 9b,c indicates that on dry asphalt, both
ADRC and SMC achieve similar effects in terms of reducing speed. However, when the
road surface changes, PID control exhibits overshooting, while ADRC adjusts more quickly
than SMC.
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Figure 9d demonstrates that in terms of slip ratio control, during sudden changes
in road conditions, the response times of SMC and PID both lag behind those of ADRC.
Moreover, ADRC reaches a steady state and outputs the optimal slip ratio faster than the
other two methods. This indicates that PID and SMC have poorer adaptability to variable
road conditions, whereas ADRC shows stronger adaptability and better robustness to
changes in road surfaces. Considering factors such as braking time, braking distance, and
control response time, the ADRC strategy performs better compared to PID and SMC. It
significantly improves vehicle stability and safety during braking.

6. Conclusions
The braking performance of a vehicle during emergency braking is influenced by

both road surface conditions and the robustness of the controller. A hierarchical control
strategy for an anti-lock braking system (ABS) employing active disturbance rejection
control (ADRC) has been proposed. The main conclusions are as follows:

• The force acting on a single wheel and the road–tire model were analyzed. For the
EMB system, a road recognition algorithm based on an extended state observer (ESO)
was designed. During emergency braking conditions, this algorithm observes the
current longitudinal vehicle speed to obtain the current slip ratio. By calculating the
utilization adhesion coefficient for typical road surfaces and comparing it with the
actual road surface adhesion coefficient, the algorithm identifies the road type. This
approach meets the requirements for road recognition accuracy and response time
during emergency braking scenarios;

• Through ABS braking simulations, the designed ADRC-based slip ratio tracking
control strategy for ABS was validated. Compared to the PID and SMC algorithms, the
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ADRC strategy demonstrates superior performance across various road conditions,
when considering factors such as overall braking distance, braking time, and control
response. Under single-pavement conditions, compared to PID control, the braking
distance is reduced by approximately 5.1%, and the braking time is shortened by
4.3%; compared to SMC, the braking distance is reduced by 4.2%, and the braking
time is shortened by 1.6%. Under variable pavement conditions, compared to PID
control, the braking distance is reduced by 22.5%, and the braking time is shortened
by 10.3%; compared to SMC, the braking distance is reduced by 6%, and the braking
time is shortened by 3.2%. ADRC exhibits strong robustness and better adaptability to
changes in road surfaces, which is crucial for enhancing vehicle braking performance.
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