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Abstract: A person’s voice serves as an indicator of age, as it changes with anatomical and 
physiological influences throughout their life. Although age prediction is a subject of 
interest across various disciplines, age-prediction studies using Korean voices are limited. 
The few studies that have been conducted have limitations, such as the absence of specific 
age groups or detailed age categories. Therefore, this study proposes an optimal 
combination of speech features and deep-learning models to recognize detailed age 
groups using a large Korean-speech dataset. From the speech dataset, recorded by 
individuals ranging from their teens to their 50s, four speech features were extracted: the 
Mel spectrogram, log-Mel spectrogram, Mel-frequency cepstral coefficients (MFCCs), and 
ΔMFCCs. Using these speech features, four deep-learning models were trained: ResNet-
50, 1D-CNN, 2D-CNN, and a vision transformer. A performance comparison of speech 
feature-extraction methods and models indicated that MFCCs + ΔMFCCs was the best for 
both sexes when trained on the 1D-CNN model; it achieved an accuracy of 88.16% for 
males and 81.95% for females. The results of this study are expected to contribute to the 
future development of Korean speaker-recognition systems. 

Keywords: age prediction; speaker recognition; voice feature extraction; convolutional 
neural network; vision transformer 
 

1. Introduction 
A person’s voice is a behavioral characteristic used for identification and 

authentication. It is often termed a “voiceprint,” owing to its variability in response to the 
speaker’s pronunciation, intonation, and speech patterns. These vocal characteristics 
change throughout a person’s life, owing to anatomical and physiological factors, making 
the human voice a reliable indicator of age [1]. Age, a significant personal attribute and 
valuable signal, has garnered attention in various fields, including biometrics and 
computer vision [2]. 

Recognizing a speaker’s age from their voice has applications across multiple 
domains, including commercial services, forensic investigations, and healthcare. For 
instance, in commercial services, call-center systems can be designed to identify a caller’s 
age and match them with the most suitable agent. Additionally, by recognizing a 
customer’s age and sex, services can be enhanced through more targeted advertising and 
marketing strategies [3]. In forensic investigations for crimes such as kidnapping and 
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blackmail, estimating the age of a speaker from voice recordings can assist in identifying 
the perpetrator [4]. In healthcare, voice analysis can be used to estimate a person’s vocal 
age compared to their physical age. However, estimating a speaker’s age from short-term 
utterances remains challenging and interest in addressing this issue has recently 
increased. 

Early research on speaker age estimation set the foundation for modern approaches. 
Bahari, McLaren [5] applied an i-vector-based method, demonstrating the feasibility of 
automated solutions. Subsequently, OSMAN, Büyük [6] examined the effects of utterance 
length and the number of frames on least-squares support-vector regression models, 
highlighting how speech duration and feature granularity affect predictive accuracy. At 
around the same time, A Badr and K Abdul-Hassan [7] introduced a bidirectional gated 
recurrent neural network (G-RNN) approach that leveraged various features—such as 
Mel-frequency cepstral coefficients (MFCCs), spectral subband centroids (SSCs), linear-
predictive coefficients (LPCs), and formants—to capture the frequency-sensitive elements 
of speech. Li, Han [8] further advanced these techniques by demonstrating how acoustic 
and prosodic feature fusion can bolster model performance. 

As deep-learning techniques gained momentum, Avikal, Sharma [9] used linear-
prediction cepstral coefficients (LPCCs) and Gaussian mixture models (GMMs) to group 
ages in five-year increments between 5 and 50. Focusing specifically on Korean speech, 
So, You [10] proposed a deep artificial neural network trained on MFCCs, achieving 
notable accuracy gains for men in their 20s, 30s, and 50s, as well as for women in their 20s, 
40s, and 50s. Further refinements emerged through transformer-based architectures and 
self-supervised methods, as seen in the work of Gupta, Truong [11] and Burkhardt, 
Wagner [12], both of which reported enhanced predictive accuracy via bi-encoder 
transformer models and robust speech representations. 

The most recent wave of research has explored specialized convolutional neural 
networks (CNNs) and attention mechanisms. Tursunov, Mustaqeem [3] introduced a 
CNN with a multi-attention module (MAM) on speech spectrograms generated via short-
time Fourier transform (STFT), showing that accurate age classification is possible, even 
across multiple languages and varying age brackets. Truong, Anh [13] compared seven 
self-supervised learning (SSL) models for joint age estimation and gender classification on 
the TIMIT corpus and demonstrated that an attention-based prediction model 
outperformed wav2vec 2.0 in both clean and 5dB signal-to-noisy conditions, achieving 
more robust and accurate speech representations. However, several studies, including 
those of Grzybowska and Kacprzak [1] and Kalluri, Vijayasenan [14], emphasize that 
domain-specific adaptations—particularly the integration of diverse feature sets—are 
crucial for capturing the full breadth of language- and culture-specific vocal nuances. 

However, these studies have several limitations that create significant practical 
challenges. First, studies using non-Korean datasets cannot be directly applied to Korean 
speakers because of language-specific vocal characteristics. The unique features of Korean 
speech, such as pitch patterns and consonant tensing, significantly affect age-related voice 
characteristics, leading to poor performance when models trained on other languages are 
used. Second, the few existing studies on Korean speech either lack comprehensive age 
coverage or use broad and imprecise age categories that limit practical applications. This 
makes it difficult to provide accurate age-specific services, such as precise content 
recommendations or customer-service matching. 

Finally, most studies have relied on single-feature extraction methods or limited 
model architectures, potentially missing important vocal characteristics specific to Korean 
speakers. This approach fails to capture the complex interactions between various acoustic 
features unique to Korean age-related speech patterns, resulting in suboptimal real-world 
performance. 
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To address these limitations, this study proposes a comprehensive framework that is 
specifically designed to overcome each challenge. For a robust analysis of Korean speech 
characteristics, we utilized a large-scale dataset, comprising approximately 2200 speech 
samples per age, collected from various regions of Korea to ensure a balanced 
representation across different dialects and speaking styles. To enable precise age-specific 
services, we implemented fine-grained classification in five-year increments across the 
ages of 11–59, resulting in 10 distinct age groups. 

To capture various age-related voice characteristics, we employed complementary 
feature-extraction methods (Mel spectrogram and log-Mel spectrogram for frequency-
domain analysis, MFCCs and ΔMFCCs for temporal dynamics) and analyzed the 
characteristics using various deep-learning architectures (ResNet-50, 1D-CNN, 2D-CNN, 
and a vision transformer). Notably, we trained all models from scratch rather than using 
pre-trained models because existing pre-trained models optimized for general speech or 
other languages may not effectively capture unique Korean phonological characteristics 
[15,16]. 

This study makes three major contributions to existing literature. First, we 
established an effective framework for Korean speech-based age prediction by 
systematically evaluating various combinations of voice features and deep-learning 
models. Our experiments showed that the combination of MFCCs + ΔMFCCs features 
with a 1D-CNN architecture achieves the best performance for both sexes. Second, we 
demonstrated superior classification accuracy (88.16% for males and 81.95% for females), 
while using more detailed age groups than in previous studies, enabling more precise age-
sensitive applications, such as personalized customer-service matching. Finally, through 
a detailed performance analysis, we identified specific challenges in age prediction, 
particularly in distinguishing voices in the 30–39 age range, providing crucial insights for 
future research in Korean speech processing. 

The remainder of this paper is organized as follows: Section 2 describes the dataset, 
data preprocessing, and feature-extraction methods used in this study. Section 3 provides 
an overview of the neural network architectures employed in the experiments. Section 4 
presents the evaluation metrics, detailed results, and comparative analyses for age 
prediction using voice features and neural networks. Section 5 concludes the paper with 
a summary and suggestions for future research. 

2. Data and Feature Extraction 
2.1. Data Preparation 

In this study, a conversational speech dataset provided by the AI-Hub 
(https://www.aihub.or.kr, accessed on 1 December 2024) of the National Information 
Society Agency (NIA) of Korea was used. The dataset comprised recordings from 2547 
speakers, both male and female, aged 11–59. Data were collected from various regions of 
Korea to capture regional accents. The recordings were collected through both online 
voice chat systems and offline studio environments, following a standardized collection 
protocol. The audio data were stored in PCM WAV format at a 16 kHz sampling rate. For 
recordings originally made at 44 kHz, downsampling to 16 kHz was performed to 
maintain consistency across the dataset. Quality assurance was maintained through a 
three-stage verification process including worker review, manager inspection, and final 
validation checks to ensure data integrity. 

To prevent age-biased training, datasets for males and females were constructed by 
randomly selecting approximately 2200 speech samples for each age. As a result, 
approximately 11,000 speech samples were obtained for each sex in each 5-year age group 
(e.g., 20–24, 25–29), forming 10 distinct groups spanning ages 11–59. The data were 
trimmed to remove silent segments that fell below the typical background noise levels to 
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prevent silence in the audio data from affecting the audio quality and model performance. 
Sounds under 60 dB—such as whispers or quiet conversations—were considered 
background noise and excluded to ensure that only meaningful audio was retained in 
each clip [17]. 

Only the first three seconds of the trimmed audio data were used for the experiments. 
Audio samples that were shorter than three seconds after trimming were excluded to 
ensure that all speech data samples utilized in this study were exactly three seconds long. 
The speech data preprocessing is illustrated in Figure 1, and the detailed compositions of 
the datasets used in this study are listed in Table 1. 

 

Figure 1. Speech data preprocessing procedures. 

Table 1. Composition of the training, validation, and testing datasets by sex and age group. 

Age Group 
Training Validation Testing 

Male Female Male Female Male Female 
11–14 6756 7637 764 860 799 797 
15–19 9308 8535 1013 922 987 1000 
20–24 8822 8833 1000 1034 982 991 
25–29 8993 9004 979 980 999 999 
30–34 8859 8908 1012 1041 984 997 
35–39 8867 8942 1025 977 982 990 
40–44 8897 8800 1015 998 990 983 
45–49 8884 8370 1011 926 991 993 
50–54 8907 8987 950 975 989 998 
55–59 8987 9012 929 957 991 996 
Total 87,280 87,028 9698 9670 9694 9744 
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2.2. Feature Extraction 

Feature extraction is the process of converting a raw speech signal into acoustic 
feature vectors that capture the specific characteristics of the speaker [18]. The 
performance and prediction accuracy can vary, depending on the method used for 
extracting the features from the speech signal [19]. All audio in this study was sampled at 
a rate of 16 kHz and consists of 3 s segments. Features frequently used in speech and 
emotion recognition, such as the Mel spectrogram, log-Mel spectrogram, MFCCs, and 
delta MFCCs, were extracted and used for model training. 

The spectrogram represents the amplitude or intensity of an audio signal at various 
frequencies over time. It is extracted by dividing the audio signal into short time segments 
and then performing a Fourier transform on each segment to detect the frequency 
components within that segment. In the plot, the x-axis represents time and the y-axis 
represents frequency, with the amplitude of each frequency shown as a heatmap. Lighter 
colors in the plot indicate higher energy at that frequency, whereas darker colors represent 
empty or dead sounds. 

However, because the human auditory system can perceive only a limited range of 
frequencies and amplitudes, spectrograms do not capture all the information necessary 
for human-level sound. To mimic the response of the human ear to sound, a Mel filter 
bank was applied. This represents the amplitude and frequency based on the Mel scale, 
which corresponds to the frequencies perceived by humans. It is converted from a 
frequency using Equation (1). 𝑀𝑒𝑙(𝑓) = 2595 𝑙𝑜𝑔ଵ଴ ൬1 + 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦700 ൰  (1)

A Mel spectrogram combines the Mel scale with a spectrogram to provide a visual 
representation in the frequency and time domains. In the plot, the x-axis represents time, 
and the y-axis represents the Mel-scaled frequency. Instead of showing the amplitude or 
intensity of the signal, the colors are displayed using a decibel scale. 

The log-Mel spectrogram is a Mel spectrogram in which a logarithmic transformation 
has been applied to the Mel-scale frequency, which is the y-axis of the Mel spectrogram 
[20]. These spectrogram-based features have been used in fields such as speech emotion 
recognition [21] and environmental sound classification [22]. Figure 2 presents the 
spectrogram, Mel spectrogram, and log-Mel spectrogram images generated from the 
audio. 
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Figure 2. Visualization of a spectrogram, Mel spectrogram, and log-Mel spectrogram in audio. 

MFCCs are a set of characteristic coefficients that represent audio signals based on a 
Mel filter bank and reflect the properties of the human auditory frequency range. The 
MFCCs apply a discrete cosine transform (DCT) to the log-Mel spectrum and transform it 
into the time domain, as shown in Equation (2). Here, X_m denotes the log energy of the 
mth Mel spectrogram, and c denotes the index of the cepstral coefficient. MFCCs have 
been applied in various fields, including speech emotion recognition [23] and music genre 
classification [24]. 

𝑀𝐹𝐶𝐶𝑠 = ඨ2𝑀෍ 𝑋௠(𝑖)ெ
௠ୀଵ cosቌ𝑐𝜋 ቀ𝑚 − 12ቁ𝑀௠ ቍ (2)

Additionally, the delta coefficients of MFCCs are often used in speech recognition 
systems to capture the rate of change or trajectories of MFCCs [25]. These coefficients were 
extracted by computing the n-order difference cepstral coefficients by applying Equation 
(3) to the MFCCs. 𝑑௜(𝑛) = ∑ ௡(௖೔శ೙ି௖೔ష೙)೙ಿసభଶ∑ ௡మ೙ಿసభ , (3)

where 𝑑௜(𝑛)  denotes the delta coefficient, calculated from static coefficients 𝑐௜ା௡  and 𝑐௜ି௡ at frame i. When n = 1, the velocity coefficient (delta) is obtained, indicating a first-
order difference. When n = 2, the acceleration coefficient (delta-delta) is derived, 
representing the second-order difference [26]. Delta MFCCs are commonly used alongside 
MFCCs and have been applied to tasks such as disguised voice classification [27] and 
speaker recognition [28]. In this study, MFCCs + ∆MFCCs, the stacked combination of 
MFCCs and ∆MFCCs, were used for model training. Figure 3 provides a visualization of 
the MFCCs and delta MFCCs converted from the audio. 
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Figure 3. Representation of MFCCs and delta MFCCs in audio. 

3. Neural Network Architectures 
Two main frameworks are typically employed for audio data classification. The first 

involves extracting voice quality features and applying them to deep neural networks 
(DNNs). Although this approach allows for an intuitive interpretation of the results, it 
may not fully capture the complex characteristics inherent in speech signals. The second 
framework converts audio data into spectrogram-based images using feature extraction 
techniques and applies them directly to DNNs. This method preserves both temporal and 
frequency information, enabling the model to learn intricate patterns within the speech 
signals. However, this method requires significant computational resources and can 
complicate the interpretation of results. 

Convolutional neural networks (CNNs) were developed primarily to solve image-
related problems and have demonstrated strong performance in various speech-related 
tasks, such as automatic speech recognition, speech emotion recognition, and speaker 
recognition [29,30]. Recent developments in computer vision have led to the introduction 
of various techniques, among which the vision transformer (ViT) has gained attention for 
its exceptional image classification performance. Unlike traditional CNNs, ViTs can 
capture global information and context by processing the entire input holistically, which 
has resulted in attempts to use ViTs for classifying speech images [15,31]. 

The image-based approach effectively preserves the time frequency information in 
speech and captures subtle variations in speech patterns across age groups. In this study, 
three types of CNN-based models and transformer-based ViTs were trained, and their 
performances were compared. Detailed descriptions of the models are provided below. 

3.1. ResNet-50 

ResNet is an architecture composed of residual layers, with its main components 
being residual blocks and skip connections between layers that allow information to 
bypass one or more layers [32]. This architecture effectively addresses the issue of 
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vanishing gradients as the depth of the neural network increases, unlike other models, 
where the performance tends to degrade with deeper networks. In addition, it reduces the 
computational complexity and enhances the network’s training capacity. ResNet-50, 
which is a variant of ResNet, comprises 50 layers and more than 25.6 million parameters. 

In this study, the ResNet-50 architecture was trained on a high-quality Korean-
speech dataset instead of a pre-trained model, in order to build a model specialized for 
age classification. The structure of the model is illustrated in Figure 4. The architecture 
begins with a 7 × 7 convolutional layer with stride 2, followed by five sequential sets of 
residual blocks: three blocks with 64 filters (×3), four blocks with 128 filters (×4), six blocks 
with 256 filters (×6), and three blocks with 512 filters (×3). Each residual block incorporates 
1 × 1 and 3 × 3 convolutions, complemented by skip connections that preserve feature 
information and improve gradient flow. These skip connections are particularly crucial 
for capturing subtle differences in age-related voice characteristics. The network 
concludes with an average pooling layer, followed by a fully connected layer with softmax 
activation, which performs the final classification into ten age groups. 

 

Figure 4. ResNet-50 architecture. 

3.2. 1D-CNN 

1D-CNNs have been effective in various fields, such as speech emotion recognition 
[33], music genre classification [34], and biomedical signal classification [35]. In this study, 
transposed speech data were used as input for the 1D-CNN model to capture the temporal 
patterns of frequency changes over timestamps. 

The structure of the model is illustrated in Figure 5. The architecture consists of five 
sequential convolutional blocks, each employing a kernel size of 3, with progressively 
increasing filter sizes: 32, 64, 128, 256, and 512. Each block comprises a Conv1D layer 
followed by batch normalization and ReLU activation. To prevent overfitting while 
maintaining the model’s ability to learn time-dependent variations effectively, dropout 
layers (rate = 0.2) are strategically placed after selected convolutional blocks. The network 
culminates in a global max pooling layer followed by fully connected layers, with a final 
softmax activation layer for age group classification. 

 

Figure 5. 1D-CNN architecture. 
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3.3. Multi-Kernel 2D-CNN 

A 2D-CNN with three parallel convolutional layers, each employing different kernel 
sizes, was used to extract the time- and frequency-domain features from the audio feature 
map. Typically, the receptive field of a CNN expands with additional layers. However, 
increasing the number of layers increases the number of parameters, which can lead to 
overfitting. Previous studies have demonstrated that the model performance can be 
improved by expanding the receptive field using different kernel sizes without increasing 
the number of layers [36,37]. 

The overall architecture, shown in Figure 6, employs three parallel branches at its 
input stage. Each branch consists of a Conv2D layer with distinct kernel sizes (11 × 1, 1 × 
9, and 3 × 3, as illustrated in Figure 7), followed by batch normalization, ReLU activation, 
and dropout layers. This parallel structure enables the simultaneous extraction of various 
temporal and frequency features at different scales. The features from these parallel 
branches are concatenated and processed through four additional convolutional blocks, 
each comprising Conv2D, batch normalization, ReLU activation, and dropout layers. This 
design allows the network to capture a comprehensive range of acoustic cues, from local 
patterns to extended temporal dependencies, which is particularly effective for 
distinguishing subtle age-related variations in Korean speech. The architecture concludes 
with a global max pooling layer and fully connected layers for final classification. 

 

 

Figure 6. Multi-kernel 2D-CNN architecture. 

 

Figure 7. Receptive field (dotted rectangle) from parallel convolution layers (blue, green, and yellow 
rectangles). 
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3.4. Vision Transformer 

The transformer is an end-to-end natural language processing (NLP) model 
proposed in 2017 that employs a self-attention mechanism to capture global dependencies 
and facilitate parallel processing [38]. Traditionally, CNNs have been regarded as the 
fundamental architecture in vision applications; however, transformers have recently 
emerged as a promising alternative [39]. The vision transformer (ViT) was the first 
transformer architecture applied to computer vision tasks and has been used for image 
classification, object detection, and video processing [40]. 

In speech research, ViT has been applied to tasks such as speech emotion recognition 
[41] and biomedical signal classification [42] because it can capture both local and global 
features from speech represented as images. The architecture of our implemented model, 
shown in Figure 8, begins with the division of input spectrograms into smaller patches. 
These patches undergo linear embedding and are augmented with learned positional 
encodings before being processed by the transformer encoder. The encoder consists of 
multiple transformer blocks, each containing layer normalization followed by multi-head 
self-attention mechanisms and MLP layers with skip connections. This structure enables 
the model to learn relationships between patches at multiple scales, capturing both fine-
grained details and global patterns in the speech signal. The final classification is 
performed through an MLP head with softmax activation, which produces age group 
predictions based on the encoded features. 

 

Figure 8. Vision transformer architecture. 

4. Results and Analyses 
Figure 9 illustrates the process overview of this study. As shown in the figure, the 

Korean speech dataset preprocessing included sampling and trimming. After 
preprocessing, speech features such as the Mel spectrogram, log-Mel spectrogram, 
MFCCs, and MFCCs + ∆MFCCs were extracted, and the ResNet-50, 1D-CNN, 2D-CNN, 
and ViT models were trained using the extracted features. Finally, the performances were 
compared to identify the most suitable combination of speech features and deep learning 
models for Korean speech. The age was predicted separately for male and female speech 
data, and the combination of voice features and deep learning models that achieved the 
highest accuracy for each sex was examined. The computational environment used in the 
experiment is listed in Table 2. 
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Table 2. Experimental environment. 

Hardware Software 

CPU AMD 𝑅𝑦𝑧𝑒𝑛்ெ 9 7950 @ 4.5 GHz 
(AMD, Santa Clara, CA, USA) OS Linux Ubuntu 

20.04 

GPU NVIDIA GeForce RTX 4090 (NVIDIA 
Corporation, Santa Clara, CA, USA) Programming Language Python 3.8.16 

RAM 64 GB 

 

Figure 9. Process overview. 

4.1. Evaluation Metrics 

Multiple evaluation metrics were used to assess the performance of the age 
prediction model. These metrics are described by Equations (4)–(7). When the model 
correctly predicts positive data, it is referred to as a true positive (TP). When the model 
incorrectly predicts data as positive that are actually negative, this is called a false positive 
(FP). A false negative (FN) occurs when the model predicts a negative for data that are 
actually positive, whereas a true negative (TN) occurs when the model correctly predicts 
data that are actually negative. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ்௉ା்ே்௉ା்ேାி௉ାிே  (4)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  ்௉்௉ାி௉  (5)

𝑅𝑒𝑐𝑎𝑙𝑙 =  ்௉்௉ାிே  (6)
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𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  ଶ×்௉ଶ×்௉ାଶ×ிே  (7)

The accuracy, calculated using Equation (4), represents the proportion of correctly 
predicted samples out of the total samples. The precision, calculated using Equation (5), 
is the proportion of samples predicted to be positive that are actually positive. The recall, 
calculated using Equation (6), represents the proportion of actual positives that are 
correctly predicted. Finally, the F1-score, calculated using Equation (7), is the harmonic 
mean of the precision and recall. 

4.2. Results 

Tables 3 and 4 present the prediction accuracies for the 10 age groups using the male 
and female speech datasets, respectively. The hyperparameters for each combination are 
presented in Appendix A. For males, the ViT model exhibits the best average performance 
across all four speech features. The top performing input feature, on average, across the 
four models was MFCCs + ∆MFCCs. The best combination of speech features and deep-
learning models for predicting male ages was MFCCs + ∆MFCCs and the 1D-CNN model, 
achieving an accuracy of 88.16%. 

Table 3. Age prediction accuracy (%) for males. 

Input Feature
Model 

Mel 
Spectrogram 

log-Mel Spectrogram MFCCs MFCCs + ∆MFCCs Average 

ResNet-50 66.05 85.73 87.00 87.23 81.50 
1D-CNN 65.83 82.02 87.05 88.16 80.77 
2D-CNN 61.11 85.44 86.80 85.89 79.81 

ViT 78.84 86.36 85.15 85.55 83.98 
Average 67.96 84.89 86.50 86.71 81.52 

For females, the ViT model also showed the best average performance across all four 
speech features. The top performing input feature, on average, across the four models was 
MFCCs. In conclusion, the combination of MFCCs + ∆MFCCs and the 1D-CNN model 
achieved the highest accuracy for predicting female ages, with a result of 81.95%. In 
summary, ViT demonstrated the best average performance for age prediction in both 
males and females, and the combination of MFCCs + ∆MFCCs and 1D-CNN provided the 
best results for both sexes. 

Table 4. Age prediction accuracy (%) for females. 

Input Feature
Model Mel Spectrogram 

log-Mel 
Spectrogram MFCCs MFCCs + ∆MFCCs Average 

ResNet-50 55.31 78.45 79.64 78.19 72.90 
1D-CNN 48.47 70.89 80.78 81.95 70.52 
2D-CNN 32.15 77.91 81.07 79.33 67.62 

ViT 66.20 74.74 78.43 77.75 74.28 
Average 50.53 75.50 79.98 79.31 71.33 

Table 5 provides detailed results for the 1D-CNN and MFCCs + ∆MFCCs 
combination, which achieved an accuracy of 88.16% for male age prediction. It includes 
specific details on the precision, recall, and F1-score for each age group. Class �11–14’ 
achieved 97% precision, 97% recall, and 97% F1-score. Class �55–59’ surpassed the other 
age groups with 96% precision, 97% recall, and 96% F1-score. Figure 10 illustrates the 
confusion matrix for the male age prediction results. 
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Table 5. Detailed performance for male age prediction using 1D-CNN with MFCCs + ∆MFCCs. 

Age Group Precision Recall F1-Score Support 
11–14 0.97 0.97 0.97 799 
15–19 0.91 0.90 0.91 987 
20–24 0.86 0.93 0.89 982 
25–29 0.81 0.91 0.86 999 
30–34 0.84 0.68 0.75 984 
35–39 0.83 0.78 0.80 982 
40–44 0.83 0.86 0.85 990 
45–49 0.91 0.90 0.90 991 
50–54 0.92 0.94 0.93 989 
55–59 0.96 0.97 0.96 991 

Weighted avg 0.88 0.88 0.88 9694 
Accuracy 0.8816 

 

Figure 10. Confusion matrix for male age prediction using 1D-CNN with MFCCs + ∆MFCCs. 

Table 6 provides detailed results for the 1D-CNN and MFCCs + ∆MFCCs 
combination, which achieved the highest accuracy of 81.95% in the female age prediction. 
Class �55–59’ recorded 95% precision, 94% recall, and 95% F1-score, surpassing other age 
groups. However, Class �35–39’ showed a relatively low prediction performance, with 74% 
precision, 60% recall, and 66% F1-score. Figure 11 illustrates the confusion matrix for the 
female age-prediction results, indicating that Class �35–39’ was often misclassified as Class 
�40–44’. 
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Table 6. Detailed performance for female age prediction using 1D-CNN with MFCCs + ∆MFCCs. 

Age Group Precision Recall F1-Score Support 
11–14 0.79 0.94 0.86 797 
15–19 0.87 0.78 0.82 1000 
20–24 0.88 0.85 0.87 991 
25–29 0.76 0.83 0.79 999 
30–34 0.77 0.80 0.78 997 
35–39 0.74 0.60 0.66 990 
40–44 0.74 0.74 0.74 983 
45–49 0.80 0.81 0.80 993 
50–54 0.89 0.92 0.91 998 
55–59 0.95 0.94 0.95 996 

Weighted avg 0.82 0.82 0.82 9744 
Accuracy 0.8195 

 

Figure 11. Confusion matrix for female age prediction using 1D-CNN with MFCCs + ∆MFCCs. 

4.3. Comparative Analyses 

4.3.1. Performance Benchmarking Against Previous Studies 

Recent studies have demonstrated various approaches to speech-based age 
prediction, with promising results. So and You [10] focused on three broad age groups, 
achieving accuracies of 78.6% for men and 71.9% for women using traditional speech 
processing techniques. Tursunov and Mustaqeem [3] explored different datasets and 
classification granularities, reporting 72% accuracy on the Common Voice dataset for six 
age groups (teens through sixties) and notably higher accuracy (96%) on a Korean speech 
recognition dataset when classifying just three broad categories (children, adults, elderly). 
Al-Maashani, Mendonça [43] achieved a remarkable performance, with 97% accuracy, by 
combining CNN-based Mel-Spectrogram analysis with comprehensive acoustic feature 
extraction (including MFCCs, spectral contrast, roll-off, and bandwidth) for six age 
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groups. Derdour, Henni [44] demonstrated robust performance across different 
demographic categories, reporting accuracy exceeding 85% across various accent groups 
and approximately 88% for gender-based classifications. 

While our achieved accuracies of 88.16% for males and 81.95% for females might 
appear lower than some previous studies, our research makes significant contributions by 
addressing more challenging and practical aspects of age prediction. Specifically, our 
approach successfully distinguishes between ten distinct five-year intervals, representing 
a considerably more complex task than the broader categorizations of three to six groups 
used in previous studies. This fine-grained classification capability using MFCCs + 
ΔMFCCs with 1D-CNN demonstrates the robustness of our approach in handling the 
nuanced characteristics of Korean speech, while maintaining reasonable accuracy levels. 
Our results establish an important foundation for applications requiring detailed age 
prediction, such as personalized service delivery and age-sensitive content adaptation, 
particularly within Korean language contexts. This work not only extends the boundaries 
of previous research but also addresses the growing demand for more precise age 
classification in real-world applications. 

4.3.2. Gender-Based Performance Analysis 

The results indicated a noticeable performance difference between male and female 
voices. This section presents a comparative analysis of the results. For the 16 
combinations, the average prediction performance for males was 81.52%, whereas that for 
females was 71.33%. In all combinations, male performance surpassed female 
performance. This suggests that Korean male voices exhibit more distinct characteristics 
across five-year age intervals than female voices. 

This performance disparity between male and female voices can be attributed to 
several physiological and acoustic factors [45]. Males typically exhibit more pronounced 
anatomical changes in their vocal apparatus with age, particularly in laryngeal structure 
and vocal fold characteristics. These changes result in more distinct and progressive 
alterations in fundamental frequency, harmonic structure, and overall voice quality across 
age groups [46]. Furthermore, male voices generally show more consistent patterns of age-
related changes in terms of pitch lowering and resonance modifications, making it easier 
for the models to learn and classify age-specific characteristics. The relatively stable 
progression of these changes in males contributes to the higher prediction accuracy. 

In contrast, female voices present more complex patterns of age-related changes, 
influenced by both physiological and sociocultural factors. The effects of hormonal 
changes throughout life stages, particularly during and after menopause, create more 
variable patterns in voice characteristics [47]. Additionally, female speakers often 
demonstrate greater variability in speaking styles, intonation patterns, and voice 
modulation, which can obscure age-specific features [48]. This variability is further 
complicated by social and professional factors, as women may consciously or 
unconsciously modify their speaking patterns to conform to various social contexts. These 
combined factors result in more overlapping voice characteristics between different age 
groups in females, especially in the middle-age ranges (30–39 years), making accurate age 
classification more challenging for the models. The lower prediction accuracy for females 
thus reflects the inherent complexity and greater variability in female voice aging patterns. 

Analyzing performance variations across age groups revealed that, for both sexes, 
the accuracy tended to be higher in younger groups (e.g., 11–14 and 15–19) and older 
groups (e.g., 55–59), while middle-aged groups, such as 30–39, showed slightly lower 
accuracy. This may suggest that vocal changes in middle-aged speakers are less distinct, 
potentially due to overlapping pitch and tone characteristics during this period of life. 
Additionally, the difference in performance between male and female speakers was 
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particularly pronounced in these middle-aged groups, possibly indicating more gradual 
or subtle vocal changes in females than in males as they aged. 

4.3.3. Feature Extraction and Model Performance 

Another observation is that, across all input features, MFCCs and MFCCs + ΔMFCCs 
consistently provided the highest accuracy for both sexes, particularly when used with 
the 1D-CNN model. This consistent result across features and sex groups emphasizes the 
robustness of MFCC-based features in capturing age-related information in Korean 
speech, regardless of sex. However, the Mel spectrograms, especially for female speakers, 
yielded lower accuracies. This suggests that the Mel spectrogram may lack the detail 
necessary for accurately capturing age-related differences in vocal characteristics, 
especially when compared with more nuanced features, such as MFCCs or the log-Mel 
spectrogram. 

The findings underscore not only the sex-specific patterns in age prediction accuracy 
but also the essential importance of selecting feature extraction methods attuned to the 
linguistic and demographic nuances of the dataset. Notably, the consistent accuracy of 
MFCC-based features across the sexes indicates their efficacy in capturing the age-related 
characteristics of Korean speech. This result suggests that tailoring feature extraction 
approaches to a dataset’s linguistic characteristics and demographic distinctions can 
enhance predictive performance, especially in capturing nuanced age progression within 
specific sex groups. 

Figure 12 shows the prediction accuracy of each model based on the input features. 
In the male age prediction results, when comparing the performance across input features, 
the Mel spectrogram showed a significantly lower average performance than the other 
input features. The log-Mel spectrogram, which applies a logarithmic scale to the Mel 
spectrogram, demonstrated higher performance, suggesting that the Mel spectrogram is 
less effective at distinguishing the characteristics of male and female voices. The log-Mel 
spectrogram achieved the highest performance with ViT for male age prediction and 
ResNet-50 for female age prediction. The MFCCs performed best with a 1D-CNN for 
males and a 2D-CNN for females. For both sexes, the best performance was obtained 
when training a 1D-CNN with MFCCs + ΔMFCCs. 

 

Figure 12. Comparison of age prediction accuracy across different models by input feature for (a) 
male and (b) female data. 

Figure 13 shows the prediction accuracy of each input feature by model. ResNet-50 
and 2D-CNN achieved the best performance for both males and females when trained 
with MFCCs, while 1D-CNN performed best when using MFCCs + ΔMFCCs. For ViT, the 
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best performance was achieved using the log-Mel spectrogram for males and MFCCs for 
females. The models trained with Mel spectrograms—ResNet-50, 1D-CNN, and 2D-
CNN—achieved an accuracy of up to 66.05% for male age prediction and up to 55.31% for 
female age prediction. In contrast, ViT achieved higher accuracies: 78.84% for males and 
66.20% for females. This demonstrates that ViT is a robust model that is capable of 
capturing key features, even in data where feature identification is challenging. 

Although transformers, including ViTs, have demonstrated remarkable performance 
across various computer vision tasks, they inherently lack certain inductive biases found 
in CNNs. CNNs are designed with the assumption that images or speech signals contain 
rich and localized information, which allows them to effectively capture regional details 
through spatial hierarchies. This attribute is advantageous for tasks such as age 
prediction, in which local patterns in voice data can reveal subtle age-related features. In 
contrast, ViT divides images into small patches and uses self-attention mechanisms to 
capture the context among patches, thereby facilitating comprehensive feature interaction 
across the input. However, this approach may not emphasize local structures as 
effectively as a CNN. 

 

Figure 13. Comparison of age-prediction accuracy across different input features by model for (a) 
male and (b) female data. 

Although ViT incorporates positional embeddings and self-attention to learn the 
global context, it may overlook the fine-grained details that are essential for tasks that rely 
on localized patterns. Consequently, while ViT exhibited robust overall accuracy, the 
highest accuracy was achieved by the 1D-CNN model with MFCCs + ΔMFCCs, which 
excelled in capturing intricate age-related features specific to Korean speech data. This 
finding suggests that, while transformers are beneficial for tasks requiring broad 
contextual analysis, CNNs are particularly effective when nuanced, localized feature 
extraction is crucial for accuracy. 

In summary, the MFCCs + ΔMFCCs and 1D-CNN combination proved to be the most 
effective for predicting the age of Korean speakers. In addition, the ViT model 
demonstrated high performance, even in cases where feature identification was more 
difficult, demonstrating its potential for application in speech recognition tasks. 

5. Conclusions 
In this study, four different speech feature extraction methods and four neural 

network architectures were employed to predict the ages of Korean male and female 
speakers aged between their teens and 50s, with the goal of identifying the optimal age-
prediction combination specific to Korean speech. While many studies have explored 
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predicting age from speech, few have focused on Korean speech, and most either lack 
specific age ranges or do not segment the data into distinct age groups. To address these 
limitations, this study used a large Korean dataset to predict ten segmented age groups. 

The speech features used were the Mel spectrogram, log-Mel spectrogram, MFCCs, 
and MFCCs + ΔMFCCs, while the deep learning models comprised ResNet-50, 1D-CNN, 
2D-CNN, and ViT. Among the four speech features, the model that achieved the highest 
average accuracy was ViT. For all combinations, the age prediction performance for males 
surpassed that for females. For both males and females, the highest accuracy was obtained 
when MFCCs + ΔMFCCs was trained on 1D-CNN, with accuracies of 88.16% and 81.95%, 
respectively. This combination represented the optimal pairing of speech features and 
models specialized for the Korean speech dataset presented in this study. 

While this study employed established deep learning architectures, there remains 
significant potential for developing novel architectures that are specifically optimized for 
speech age prediction. Future research could focus on specialized attention mechanisms 
that more effectively capture age-specific vocal characteristics. Furthermore, exploring 
hybrid architectures that integrate the strengths of CNNs and transformers may enhance 
model performance, whereas investigating self-supervised learning approaches could 
leverage unlabeled speech data more efficiently. For female speakers, further analysis is 
recommended to identify the underlying factors that make distinguishing voices of those 
in their late 30s from those in their early 40s more challenging. The model could also be 
extended to perform multitask learning, allowing simultaneous recognition of age, 
emotions, place of origin, and other characteristics. 

Nevertheless, our current framework achieves state-of-the-art performance for fine-
grained Korean speech age prediction while maintaining practical applicability, 
demonstrating significant improvements over existing approaches. The achievement of 
88.16% accuracy across ten distinct age groups represents a substantial advance in the 
field, particularly given the challenging nature of distinguishing between narrowly 
separated age ranges. The results of this study can be applied to personalized services 
designed for Korean speech or services sensitive to narrow age ranges. The model trained 
on the optimal combination demonstrated strong performance in predicting 10 segmented 
age groups by using short speech samples. This suggests the feasibility of automated age 
prediction for large, unspecified populations with potential applications in various fields. 
Although applying speech data from different languages or cultural backgrounds may 
not guarantee the same level of performance, the preprocessing techniques and 
framework presented in this study offer a valuable reference for the development of more 
advanced models and applications in speech recognition and age prediction. Looking 
ahead, this approach presents promising potential to further improve automated speech 
systems across diverse linguistic and cultural contexts. Nonetheless, several open issues 
remain, such as further investigating age-related changes beyond the 50s, addressing the 
scarcity of high-quality labeled data in other dialects and languages, and exploring 
advanced techniques (e.g., self-supervised or domain-adaptive methods) to enhance 
model robustness. These directions could pave the way for more inclusive and accurate 
age prediction systems, extending the applicability of this research to a broader 
demographic scope and a wider range of linguistic and cultural environments. 
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Appendix A 

Table A1. Hyperparameters of experiments using the male dataset. 

Male 
Features

Parameter Mel Spectrogram log-Mel Spectrogram MFCCs MFCCs + ΔMFCCs 

Model 1: ResNet-50 
Learning rate 0.0001 0.0001 0.0007 0.0005 
Batch size 128 64 128 128 
Epochs 100 100 70 100 
Optimizer Adam Adam Adam Adam 
Model 2: 1D-CNN 
Learning rate 0.001 0.0001 0.0005 0.0005 
Batch size 128 128 128 64 
Epochs 100 70 50 50 
Optimizer Adam Adam Adam Adam 
Model 3: 2D-CNN 
Learning rate 0.0001 0.0001 0.0005 0.001 
Batch size 128 64 64 128 
Epochs 100 100 70 100 
Optimizer Adam Adam Adam Adam 
Model 4: ViT 
Learning rate 0.001 0.0007 0.0005 0.0005 
Batch size 128 128 128 128 
Epochs 100 100 150 150 
Optimizer Adam Adam Adam Adam 
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Table A2. Hyperparameters of experiments using the female dataset. 

Female 
Features

Parameter Mel spectrogram log-Mel Spectrogram MFCCs MFCCs + ΔMFCCs 

Model 1: ResNet-50 
Learning rate 0.0001 0.0005 0.0007 0.002 
Batch size 64 128 64 128 
Epochs 100 70 100 50 
Optimizer Adam Adam Adam Adam 
Model 2: 1D-CNN 
Learning rate 0.001 0.0001 0.0007 0.0005 
Batch size 64 128 64 128 
Epochs 100 100 50 50 
Optimizer Adam Adam Adam Adam 
Model 3: 2D-CNN 
Learning rate 0.001 0.0001 0.0005 0.001 
Batch size 128 128 64 128 
Epochs 100 100 70 70 
Optimizer Adam Adam Adam Adam 
Model 4: ViT 
Learning rate 0.0007 0.001 0.001 0.0007 
Batch size 128 128 128 128 
Epochs 100 100 100 70 
Optimizer Adam Adam Adam Adam 

Appendix B 

Table A3. Age prediction performance of different models by input feature in the male dataset. 

Male 
Input Feature Deep Learning Model Precision Recall F1-Score Accuracy 

Mel spectrogram 

ResNet-50 69.79 66.51 66.67 66.05 
1D-CNN 66.03 66.37 65.94 65.83 
2D-CNN 66.64 61.77 61.71 61.11 

ViT 79.12 79.15 78.87 78.84 

log-Mel spectrogram 

ResNet-50 85.98 85.98 85.78 85.73 
1D-CNN 82.23 82.32 81.92 82.02 
2D-CNN 85.90 85.65 85.46 85.44 

ViT 86.50 86.56 86.32 86.36 

MFCCs 

ResNet-50 87.09 87.19 87.11 87.00 
1D-CNN 87.18 87.25 87.12 87.05 
2D-CNN 87.01 87.00 86.76 86.80 

ViT 85.40 85.36 85.15 85.15 

MFCCs + ΔMFCCs 

ResNet-50 87.31 87.43 87.19 87.23 
1D-CNN 88.32 88.32 88.30 88.16 
2D-CNN 86.26 86.10 85.87 85.89 

ViT 85.78 85.77 85.51 85.55 
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Table A4. Age prediction performance of different models by input feature in the female dataset. 

Female 
Input Feature Deep Learning Model Precision Recall F1-Score Accuracy 

Mel spectrogram 

ResNet-50 56.28 55.57 55.24 55.31 
1D-CNN 48.18 49.19 47.66 48.47 
2D-CNN 39.51 32.68 30.18 32.15 

ViT 66.22 66.56 66.09 66.20 

log-Mel spectrogram 

ResNet-50 79.64 78.63 78.68 78.45 
1D-CNN 71.30 71.20 70.86 70.89 
2D-CNN 78.50 78.11 78.08 77.91 

ViT 74.97 75.16 74.74 74.81 

MFCCs 

ResNet-50 80.34 79.90 79.87 79.64 
1D-CNN 80.84 81.02 80.84 80.78 
2D-CNN 81.35 81.26 81.18 81.07 

ViT 78.53 78.67 78.41 78.43 

MFCCs + ΔMFCCs 

ResNet-50 78.70 78.42 78.39 78.19 
1D-CNN 81.92 82.17 81.85 81.95 
2D-CNN 79.92 79.60 79.35 79.33 

ViT 77.74 78.05 77.74 77.75 

Table A5. Age prediction performance of different input features by model in the male dataset. 

Male 
Deep Learning Model Input Feature Precision Recall F1-Score Accuracy 

ResNet-50 

Mel spectrogram 69.79 66.51 66.67 66.05 
log-Mel spectrogram 85.98 85.98 85.78 85.73 

MFCCs 87.09 87.19 87.11 87.00 
MFCCs + ΔMFCCs 87.31 87.43 87.19 87.23 

1D-CNN 

Mel spectrogram 66.03 66.37 65.94 65.83 
log-Mel spectrogram 82.23 82.32 81.92 82.02 

MFCCs 87.18 87.25 87.12 87.05 
MFCCs + ΔMFCCs 88.32 88.30 88.18 88.16 

2D-CNN 

Mel spectrogram 66.64 61.77 61.71 61.11 
log-Mel spectrogram 85.90 85.65 85.46 85.44 

MFCCs 87.01 87.00 86.76 86.80 
MFCCs + ΔMFCCs 86.26 86.10 85.87 85.89 

ViT 

Mel spectrogram 79.12 79.15 78.87 78.84 
log-Mel spectrogram 86.50 86.56 86.32 86.36 

MFCCs 85.40 85.36 85.15 85.15 
MFCCs + ΔMFCCs 85.78 85.77 85.51 85.55 

Table A6. Age prediction performance of different input features by model in the female dataset. 

Female 
Deep Learning Model Input Feature Precision Recall F1-Score Accuracy 

ResNet-50 

Mel spectrogram 56.28 55.57 55.24 55.31 
log-Mel spectrogram 79.64 78.63 78.68 78.45 

MFCCs 80.34 79.90 79.87 79.64 
MFCCs + ΔMFCCs 78.70 78.42 78.39 78.19 

1D-CNN 
Mel spectrogram 48.18 49.19 47.66 48.47 

log-Mel spectrogram 71.30 71.20 70.86 70.89 
MFCCs 80.84 81.02 80.84 80.78 
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MFCCs + ΔMFCCs 81.92 82.17 81.85 81.95 

2D-CNN 

Mel spectrogram 39.51 32.68 30.18 32.15 
log-Mel spectrogram 78.50 78.11 78.08 77.91 

MFCCs 81.35 81.26 81.18 81.07 
MFCCs + ΔMFCCs 79.92 79.60 79.35 79.33 

ViT 

Mel spectrogram 66.22 66.56 66.09 66.20 
log-Mel spectrogram 74.97 75.16 74.74 74.81 

MFCCs 78.53 78.67 78.41 78.43 
MFCCs + ΔMFCCs 77.74 78.05 77.74 77.75 
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