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Abstract: The challenge in reusing high-impact recorders lies in developing an efficient and
accurate failure prediction model under small-sample conditions. To address this issue, this
study proposes an IPSO-SVM model. First, the particle swarms in the IPSO algorithm were
grouped based on their exploration and exploitation functions, and dynamic inertia weight
mechanisms were designed accordingly. The grouping ratio was dynamically adjusted
during iterations to enhance optimization performance. Tests using benchmark functions
verified that this approach improves convergence accuracy and stability compared to con-
ventional PSO algorithms. Subsequently, the 5-fold cross-validation accuracy of the SVM
model was used as the fitness value, and the IPSO algorithm was employed to optimize the
penalty and kernel parameters of the SVM model. Trained on high-impact experimental
data, the IPSO-SVM model achieved a prediction accuracy of 90.5%, outperforming the
PSO-SVM model’s 85%. These results demonstrate the potential of the IPSO-SVM model in
addressing failure prediction challenges under small-sample conditions.

Keywords: fault prediction; high-impact recorder; particle swarm optimization algorithm (PSO);
support vector machine (SVM)

1. Introduction
High-impact recorders are crucial equipment in the development of new weapon

systems. They capture critical data during weapon flight, such as acceleration, angular
velocity, and pressure, enabling weapon developers to verify the operational status of
the equipment and perform fault analysis [1,2]. In the past, after enduring a single high-
impact test, it was difficult to determine whether the recorder could be reliably reused, so it
was typically discarded. To reduce weapon development costs, there has been increasing
interest in developing reusable high-impact recorders, making fault prediction a pressing
challenge.

Currently, fault models for instruments and equipment are generally divided into
physical models and data-driven models. Data-driven models have significant advantages
over traditional physical models, particularly for complex and nonlinear systems, as they
can reveal fault patterns and system behaviors through learning and analyzing historical
operational data. Common data-driven models include neural networks, support vector
machines (SVMs), and other methods [3,4]. In recent years, neural networks have been
widely applied in fault prediction and health management. For instance, one study [5]
proposed using spiking neural networks for fault prediction in syntactical time series.
Another study [6] introduced a method combining particle swarm optimization (PSO) and
backpropagation neural networks (BPNN-PSO) for fault diagnosis in photovoltaic array
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systems. These studies illustrate that neural networks show good performance and wide
applicability in fault prediction. However, training most neural networks requires large
amounts of high-quality data, which is often limited during the development of many
instruments. Under small-sample conditions, the performance of neural networks may
not be as effective as desired. In such cases, SVM models may be a better option. One
study [7] demonstrated the application of SVM for fault diagnosis in rotating machinery,
highlighting its strong performance under small-sample conditions. Additionally, another
study [8] noted that, with appropriate preprocessing methods, SVM could achieve excellent
classification results in certain cases. Research [9] tested various methods, including
PSO-SVM, HHO-SVM, and MFO-SVM, and confirmed their effectiveness in optimizing
SVM models, achieving promising results across different aspects.

These findings suggest that SVM models perform well for small-sample fault pre-
diction. However, their performance is influenced by the selection of penalty and kernel
parameters. In traditional SVM models, these parameters are often determined based on
empirical values, leading to unstable performance. To improve fault prediction accuracy,
it is necessary to explore suitable optimization algorithms for determining SVM param-
eters. The particle swarm optimization (PSO) algorithm is a commonly used function
optimizer that can improve SVM fault recognition accuracy to some extent. However, it is
prone to premature convergence and getting trapped in local optima, indicating room for
enhancement [10].

In recent years, many advanced optimization algorithms have been proposed and
applied to solve complex problems. For instance, [11] reviews the development of the Whale
Optimization Algorithm (WOA), analyzing 59 improved variants and 57 hybrid versions,
and suggests effective strategies to enhance exploration capabilities and optimization
performance. Reference [12] introduces a novel exploration strategy for the YUKI algorithm,
which dynamically adjusts exploration and exploitation strategies and integrates gradient
descent to improve performance in topology optimization, significantly enhancing its
exploration ability. These studies provide valuable insights and references for improving
SVM parameter optimization.

In this paper, we propose an improved PSO-SVM model (hereinafter referred to as
IPSO-SVM) to address the challenge of fault prediction for high-impact recorders under
small-sample conditions. First, we enhanced the standard PSO algorithm by grouping par-
ticles based on their exploration and exploitation functions and applying dynamic inertia
weight mechanisms, with the grouping ratio adjusted in real-time during iterations. The per-
formance of the IPSO algorithm was validated using the CEC2022 benchmark functions,
demonstrating improved convergence accuracy and stability compared to conventional
PSO algorithms. Next, ten high-impact recorders were used in impact experiments, and the
experimental data were split and expanded to create training and test datasets. During the
training process, the IPSO algorithm was used to optimize the SVM penalty and kernel
parameters. Finally, the model’s accuracy was validated using the test dataset.

2. Materials
2.1. SVM Classifier

The support vector machine (SVM) is a supervised learning model whose fundamen-
tal principle is to identify a decision boundary that maximizes the classification margin.
This ensures that data points from different classes are correctly classified while positioning
the boundary as far as possible from the nearest data points, known as support vectors.
Maximizing the classification margin improves the model’s generalization ability, resulting
in better performance on unseen data [13].
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For nonlinear problems, the SVM model introduces a kernel function that maps the
original input into a higher-dimensional space. In this space, the decision boundary is
determined and used to classify nonlinear data [14]. The SVM model function is expressed
as shown in Equation (1).

f (x) = sign(
n

∑
i=1

αiyiK(xi, x) + b) (1)

where:

• f (x): The output of the model, representing the predicted class label for the input x.
• αi: The Lagrange multipliers, which represent the weights of the support vectors in

the model.
• yi: The class label of the i−th support vector, indicating its corresponding category.
• K(xi, x): The kernel function, which calculates the similarity between the support

vector xi and the input x in the transformed high-dimensional space.
• b: The bias term, which helps to adjust the decision boundary away from the origin in

the high-dimensional space.

In the SVM model, the objective is to identify the optimal decision boundary that
maximizes the classification margin while appropriately penalizing misclassified samples.
To achieve this, the SVM adopts a dual problem formulation, converting the optimization
problem using the Lagrange multiplier method [15]. The objective function of the dual
problem, along with its constraints, is expressed as shown in Equation (2).

max
α

n
∑

i=1
αi −

1
2

n
∑

i=1

n
∑

j=1
αiαjyiyjK(xi, xj)

s.t.

{
∑n

i=1 αiyi = 0
0 ≤ αi ≤ C

(2)

The SVM model typically requires the determination of the following functions:

1. Penalty Parameter: A larger value of this parameter forces the model to fit the training
data more strictly, which can lead to overfitting. While this may result in better
performance on the training data, it can potentially degrade performance on the test
data. Conversely, if the penalty parameter is too small, it becomes more lenient toward
misclassifications, resulting in a larger margin that may lead to underfitting of the
SVM model.

2. Kernel Function and Kernel Parameters: The kernel function utilized in this paper is the
RBF (Radial Basis Function) kernel. The parameter associated with this kernel governs the
influence range of data points; a smaller value enhances the generalization performance of
the SVM model, while a larger value may degrade its generalization capability [16].

2.2. IPSO Algorithm

To enhance the recognition accuracy of the SVM fault prediction model, it is essential
to optimize its penalty parameter and kernel function parameters. This paper introduces
an enhancement to the PSO algorithm.

The standard PSO algorithm initializes multiple particles within a D-dimensional
search space to find the optimal solution. Each particle begins at a random position
with a random velocity and iteratively updates its velocity and position according
to Equations (3) and (4) [17].

vid(t + 1) = wvid(t) + c1r1(Pbestid(t)− xid(t)) + c2r2(Gbestd(t)− xid(t)) (3)
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xid(t + 1) = xid(t) + vid(t + 1) (4)

To tackle the issues of premature convergence and being trapped in local optima,
which are common in the early stages of the standard PSO algorithm, this paper introduces
the Improved Particle Swarm Optimization (IPSO) algorithm, which incorporates the
following modifications to the particle swarm optimization process:

1. The particle swarm is divided into an exploration group and an exploitation group.
The role of the exploration group is to enhance the algorithm’s global search capability.
Particles in this group are less influenced by the global best position and can accept
inferior solutions with a certain probability, allowing them to escape local optima. In
contrast, the exploitation group aims to converge quickly. Particles in this group are
more strongly influenced by the global best position and remain within the vicinity of
the local optimum.
A dynamic grouping method is designed for the particle grouping ratio. In the early
stages of the search, a larger number of particles are allocated to global exploration.
As the search progresses, more particles gradually transition to the exploitation group.
As shown in Equation (5), where k ∈ (0, 1), its function is to control the timing of
when all particles in the exploration group transition to the exploitation group. When
si = −1, the particle belongs to the exploration group; when si = 1, it belongs to the
exploitation group. If t > kT, all particles transition to the exploitation group.

si =

{
−1 ni − nmax(L1 + L2 × ( t

kT )
j
) > 0

1 ni − nmax(L1 + L2 × ( t
kT )

j
) ≤ 0

(5)

In this equation, L1 and L2 control the initial ratio of the two groups of particles, and
their sum equals 1. In this paper, the values of L1 and L2 are 0.2 and 0.8, respectively.
The parameter j is a positive number that regulates the speed at which the exploration
group transitions to the exploitation group, with a value of 1 in this study.

2. For the exploration group of particles, the introduction of dynamic inertia weights
aims to minimize their influence from the global best position in the early stages.
As iterations progress, these weights gradually lead to convergence at the global
optimum. The inertia weight is expressed in Equation (6).

w(t) = (wmax − wmin)(
T − t

T
)

0.5
+ wmin (6)

For the exploitation group of particles, a larger inertia weight facilitates rapid conver-
gence, and the dynamic inertia weight increases quickly. The inertia weight formula
for the exploitation group is defined in Equation (7).

w(t) = (wmax − wmin)(1 − 1/(1 + e−(t−T×0.2))) + wmin (7)

3. One of the drawbacks of PSO is its tendency to become trapped in local optima.
To address this issue, inspired by the simulated annealing algorithm, the algorithm
accepts a new position generated during iterations with a poor fitness value with a
certain probability. This approach allows the algorithm to escape local optima. The
acceptance probability is defined in Equation (8).

p =

{
1

e−
f (xnew)− f (xcurrent)

T

i f : f (xnew) < f (xcurrent)

i f : f (xnew) ≥ f (xcurrent)
(8)
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2.3. Behavior of IPSO

To verify whether the grouped particles in the IPSO algorithm perform as intended—
i.e., the exploration group conducts a global search while the exploitation group focuses
near the minimum value—the variance of inter-particle distances was used as the evaluation
metric. A higher variance indicates a broader search range, while a lower variance suggests
a more focused and localized search.

f =
n

∑
i=1

x2
i + (

n

∑
i=1

0.5ixi)
2

+(
n

∑
i=1

0.5ixi)
4

(9)

The first three experiments utilized the standard PSO algorithm with inertia weights set
to a constant value of 0.5, as well as Formulas (6) and (7). The fourth experiment examined
the variance values of particles under the combined behavior of the IPSO algorithm. The
Zakharov function, shown in Formula (9), was selected as the benchmark function to find
its minimum value under the initial conditions of 3 dimensions, 30 particles, and 100
iterations. The corresponding data is summarized in Table 1.

Table 1. Average Variance of Inter-Particle Distances Across Different Iterations.

Iteration Standard PSO Exploration
Group

Exploitation
Group IPSO

1–25 1417.24 4043.52 1455.71 3467.72
26–50 1052.74 4418.87 896.49 1859.96
50–75 658.23 3921.64 508.65 895.33
76–100 372.30 2912.25 264.68 366.09

Analyzing these data, the following conclusions can be drawn:

• The exploration group achieved the highest variance throughout the iterations, demon-
strating its capability to perform broad global searches.

• The exploitation group maintained significantly lower variance values, reflecting its
concentration near the optimal solution.

• The standard PSO showed a gradual decrease in variance, indicating a more balanced
yet less specialized search approach.

This suggests that the independent design of the exploration and exploitation groups
has met expectations. However, deep exploration near the optimal solution in the early
stages is of limited use, as the global best position is likely to change rapidly. Similarly,
extensive searches in the later stages have a lower probability of finding better solutions
and are less conducive to convergence. To address this, the IPSO algorithm introduces
a dynamic grouping strategy, allowing particles in the exploration group to gradually
transition to the exploitation group as iterations progress. This adjustment effectively
eliminates redundant global searches in the later stages. As a result, during iterations
76 to 100, the variance levels of IPSO closely align with those of PSO. This demonstrates
that IPSO successfully balances the behaviors of the two groups of particles. Furthermore,
the broader exploration in the early iterations enables IPSO to outperform PSO, yielding
better search results. This improvement will be further discussed in the next section.

2.4. Performance of IPSO

To validate the performance of the IPSO algorithm, the CEC2022 benchmark test
functions were used for performance evaluation. In the CEC2022 set, Function 1 is a
Unimodal Function, Functions 2–5 are Basic Functions, Functions 6–8 are Hybrid Functions,



Appl. Sci. 2025, 15, 1343 6 of 15

and Functions 9–12 are Composition Functions [18]. For this study, Functions 1, 2, 7, and 9
were selected as representative test cases, as shown in Table 2.

Table 2. CEC2022 benchmark test functions.

Sequence Function

Func1 f1 = ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2+(∑n
i=1 0.5ixi)

4

Func2 f2 = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2]

Func7 f7 =
∣∣∣(∑n

i=1 x2
i )

2 − (∑n
i=1 xi)

2
∣∣∣0.5 + (0.5∑n

i=1 x2
i + ∑n

i=1 xi)/n + 0.5

Func9
f9 = ∏n

i=1

(
1 + i∑n

j=1
2jxi − round(2jxi)

2j

) 10
n1.2

− 1

The IPSO algorithm and the PSO algorithm were run on each test function, with the
optimization constraints as shown in Table 3.

Table 3. Optimization Constraints for IPSO and PSO Algorithms.

Sequence Dimension Number of Particles Number of Iterations Bounds

Func1 20 30 10 [−100, 100]
Func2 20 30 100 [−100, 100]
Func7 20 30 100 [−100, 100]
Func9 20 30 500 [−100, 100]

The results were plotted as fitness curves, as shown in Figure 1. It can be observed that
the IPSO algorithm outperforms the PSO algorithm in terms of both convergence speed
and accuracy.
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However, both algorithms exhibit a degree of randomness during the optimization
process. To obtain more reliable data, both algorithms were executed 30 times on each test
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function, and their performance was compared using optimal values, worst values, means,
and variances. The test results are summarized in Table 4. Compared to the traditional
PSO algorithm, the IPSO algorithm shows improvements in both the optimal and average
values, with a significant reduction in variance, indicating higher convergence accuracy
and greater stability.

Table 4. Optimization Results of Test Functions.

Function Algorithm Optimal
Values Worst Values Means Variances

Func1
PSO 3.417 45.10 15.52 107.2
IPSO 2.889 27.75 10.40 40.00

Func2
PSO 60.33 3103 681.6 3.52 × 105

IPSO 14.61 164.2 16.64 849.9

Func7
PSO 1.017 4.602 2.198 0.572
IPSO 0.4364 1.011 0.6271 0.0213

Func9
PSO 0.0901 0.1010 0.0960 6.84 × 10−6

IPSO 0.0890 0.0993 0.0946 4.47 × 10−7

2.5. Prediction Model Construction

The impact signals collected multiple times from the high-impact recorder exhibit
high dimensionality and non-linearity. Furthermore, the acquired experimental data are
limited, resulting in a small sample problem. SVM is particularly effective in addressing
challenges related to small samples, non-linearity, and high-dimensional pattern recogni-
tion. Therefore, this paper utilizes SVM to construct the fault prediction model. To enhance
the performance of the SVM-based fault prediction model, the IPSO algorithm is employed
for parameter selection of the SVM model. Figure 2 illustrates the flowchart for constructing
the IPSO-optimized SVM fault prediction model, with the specific steps outlined as follows:
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1. Divide the collected data that caused damage to the high-impact recorder into training
and testing datasets.

2. Initialize the particle positions and velocities for the IPSO algorithm, and group the
particles based on the initial ratio.

3. Update the particle positions, which represent the parameters to be determined for
the SVM. Train the SVM model using the parameters from each group with the
training dataset.

4. Conduct 10 rounds of 5-fold cross-validation on the trained SVM model, using the
average as the fitness value.

5. Compare the fitness value of the current iteration with that of the previous iteration.
If the current fitness value is better, accept the new position; if the fitness value is
worse but the particle belongs to the exploration group, accept the position with a
certain probability according to the principle outlined in Equation (8).

6. If the maximum number of iterations has not been reached, some particles from the
exploration group will join the exploitation group, and the process returns to Step 3.

7. If the maximum number of iterations has been reached, use the global best particle
position as the output, which serve as the final parameters for the SVM model. The final
SVM model is obtained by training with these parameters and the training dataset.

8. Evaluate various metrics of the SVM model using the testing dataset to draw experi-
mental conclusions.

3. Experiments and Results
3.1. Data Collection

To construct the IPSO-SVM model for fault prediction in high-impact recorders, high-
impact experiments were conducted. The specific steps for experimental design and data
collection are as follows:

3.1.1. Determining the Experimental Range

Before the experiments, simulations of the PCB’s response under high-impact condi-
tions were conducted using Ansys and Is-Dyna. The purpose of these simulations was to
analyze the stress distribution and dynamic response of the recorder across different impact
acceleration ranges to determine a reasonable range for the experimental accelerations.

Ansys: The finite element method was used to construct the structural model of the
recorder, simulating the stress distribution and strain under various impact acceleration
conditions. The simulation identified potential weak points and vulnerable areas in the
recorder, providing a design basis for the experiments.

Is-Dyna: The dynamic response of the recorder under high-impact loading was simulated,
predicting its failure behavior within the acceleration range of 10,000 g to 100,000 g. The Is-Dyna
simulation further calibrated the Ansys analysis results, ultimately determining that controlling
the experimental range between 20,000 g and 90,000 g was more reasonable.

3.1.2. Connecting Equipment and Sensors

In the experiment, a high-impact acceleration sensor with the model number M350D02
(PCB Piezotronics, Depew, NY, USA) was used. The main parameters of the sensor are
shown in Table 5.

After connecting the data recorder to the sensor, it was installed on the high-impact
testing platform, as shown in Figure 3a. Acceleration curves were then collected, as shown
in Figure 3b.
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Table 5. Sensor Parameters.

Parameter Specification

Model number M350D02
Sensitivity 0.05 mV/g

Measurement Range ±100,000 g
Frequency Range 4 to 10,000 Hz

Weight 5.5 g
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3.2. Experimental Grouping and Data Collection

A total of 10 experimental setups were used, with each setup undergoing multiple
impact tests on the testing platform until the equipment was damaged. After each experi-
ment, the equipment status was checked, and acceleration curves were recorded. Multiple
sets of acceleration curves collected from each setup were used as training data. To ensure
data diversity and representativeness, the following grouping design was implemented:

• 3 setups with incrementally increasing acceleration, but with different step sizes.
• 3 setups with relatively constant peak acceleration values.
• 4 setups with randomly varying acceleration within the range of 20,000 g to 90,000 g.

Acceleration peaks under different impact conditions were recorded, as shown in Table 6.

Table 6. Experimental Peak Acceleration.

Experiment Number Peak Acceleration Value (Unit: g)

01 [24,439, 38,164, 50,529, 61,137, 72,144, 85,871]
02 [32,518, 41,486, 52,299, 62,395, 74,480, 82,090]
03 [46,702, 51,136, 58,175, 64,463, 71,025, 78,388, 78,388]
04 [63,097, 61,659, 60,010, 61,211, 63,038, 60,193, 60,078, 62,297, 61,125, 61,269]
05 [65,681, 66,628, 65,624, 68,690, 71,801, 70,041, 69,895, 70,766]
06 [79,280, 75,419, 78,034, 81,033, 76,744]
07 [31,368, 73,325, 79,391, 35,725, 64,369, 88,706]
08 [48,370, 51,866, 76,331, 31,079, 58,324, 23,794, 40,863, 57,906, 39,087, 87,732]
09 [37,443, 56,419, 33,818, 79,596, 27,284, 76,450, 47,402, 88,521]
10 [25,139, 65,858, 34,232, 71,183, 46,534, 59,143, 86,526]
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3.3. Data Processing
3.3.1. Data Labeling

To construct the dataset for the SVM, experimental data were split into two categories:
“damaged” and “undamaged”, with labels 1 and 0, respectively. Based on the physical
definition of the data, two types of key vectors were defined:

Critical Vectors:
Critical vectors are the acceleration data when the recorder transitions from an “un-

damaged” to a “damaged” state. For example, in the data shown in Table 6 (Data 01),
the complete vector [24,439, 38,164, 50,529, 61,137, 72,144, 85,871] is labeled as “damaged”
(label 1), while the vector obtained by removing the last data point, [24,439, 38,164, 50,529,
61,137, 72,144], is labeled as “undamaged” (label 0). Extracting critical vectors is crucial
for the accuracy of the model because they contain key information about the device in its
extreme state, making it easier for SVM models to identify them as support vectors.

Non-Critical Vectors:
Non-critical vectors are data points where the recorder is still in an “undamaged” state

and can withstand more than one impact. For instance, from Table 6 (Data 01), the complete
data [24,439, 38,164, 50,529, 61,137, 72,144, 85,871] can be used to extract shorter vectors,
like [24,439], [24,439, 38,164], [24,439, 38,164, 50,529], and [24,439, 38,164, 50,529, 61,137],
all of which are non-critical vectors and are labeled as “undamaged” (label 0). These vectors
provide additional training samples, helping the model better learn the characteristics of
the “undamaged” state.

As a result, from the 10 sets of experimental data in Table 6, a total of 20 critical vectors
and 53 non-critical vectors were extracted.

3.3.2. Data Length Normalization and Expansion

Due to inconsistencies in vector lengths among the experimental data, all vectors were
standardized to a length of 10 (using the longest dimension as the standard) to facilitate
SVM model processing. For the missing parts, zeros were used as padding. The zero values
indicate that the recorder was damaged, and no subsequent experiments were conducted,
effectively skipping a particular experiment. It can be inferred that varying the position of
the zero-padding does not alter the experimental results. However, the position of the zero
elements can affect the SVM training outcomes. This allows for data expansion, as illustrated
by the transformation, shown in Table 6 (Data 01), to the expanded format in Table 7.

Table 7. Example of Expanded Data.

Serial Number Data Vector

01-01 [0, 0, 0, 0, 24,439, 38,164, 50,529, 61,137, 72,144, 85,871]
01-02 [0, 0, 0, 24,439, 0, 38,164, 50,529, 61,137, 72,144, 85,871]
01-03 [0, 0, 0, 24,439, 38,164, 0, 50,529, 61,137, 72,144, 85,871]
01-04 [0, 0, 0, 24,439, 38,164, 50,529, 0, 61,137, 72,144, 85,871]
01-05 [0, 0, 0, 24,439, 38,164, 50,529, 61,137, 0, 72,144, 85,871]

. . . . . .

3.3.3. Composition of the Dataset

After the above processing, all critical vectors were expanded, resulting in a total of
2842 expanded critical vectors. From each dataset of critical vectors, 25 expanded vectors
were randomly selected, totaling 500 expanded critical vectors for training. Additionally,
since non-critical vectors are less likely to become support vectors in SVM training and
excessive data can increase training time, 53 non-critical vectors were directly added to the
training set. As a result, the training set contained 553 vectors in total. Finally, 200 expanded
critical vectors were randomly selected from the remaining dataset to form the test set.
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3.4. Results

Training vectors from the training set were used to train both the IPSO-SVM model
and the PSO-SVM model. During the training process, the fitness values were recorded,
and the fitness curve was plotted as shown in Figure 4. This demonstrates that, for the
specific scenario of high-impact data, the IPSO algorithm outperforms the traditional PSO
algorithm in terms of performance.
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Use the trained model to make predictions on the test set and record the number of
correct predictions, as shown in Table 8.

Table 8. Prediction Results of the Test Set.

Model Number of Test Samples Actual Label Number of Correct Predictions

IPSO-SVM
100 1 85
100 0 96

PSO-SVM
100 1 81
100 0 89

For SVM models, common evaluation metrics include accuracy, recall, F1 score, and
precision. Based on the prediction results, these metrics were calculated for both models,
as shown in Table 9.

Table 9. Model Validation Metrics.

Model Accuracy Precision Recall F1 Score

IPSO-SVM 90.5% 95.5% 85.0% 89.9%
PSO-SVM 85.0% 88% 81.0% 84.3%

The experimental results indicate that the IPSO-SVM model outperforms the tradi-
tional PSO-SVM model in terms of precision, accuracy, and recall, demonstrating superior
performance in high-impact experiments. These findings further validate the potential
of the IPSO-SVM model under small-sample conditions, proving that it can effectively
enhance the accuracy and stability of fault prediction for high-impact equipment. Therefore,
the IPSO-SVM model provides a valuable technical foundation for the reliability assessment
of high-impact equipment and offers theoretical and practical guidance for implementing
health monitoring and maintenance decisions in real-world applications.
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3.5. Comparison with Other Models

In recent years, deep learning and other artificial intelligence methods have made
significant advancements in fault prediction. Long Short-Term Memory (LSTM), a special-
ized type of Recurrent Neural Network (RNN), has been widely used in fault prediction
due to its ability to capture long-term dependencies in time-series data. In this study,
an LSTM-based fault prediction model was constructed to evaluate its performance in
scenarios involving small samples, high dimensionality, and nonlinearity [19]. The basic
parameters of the LSTM model are shown in Table 10:

Table 10. The basic parameters of the LSTM model.

Parameters Value

Number of hidden units 128
Activation function ReLU

Optimization algorithm Adam
Learning rate 0.001

Batch size 32
Training epochs 50

Additionally, to provide a more comprehensive comparison, a commonly used ma-
chine learning algorithm—Random Forest—was selected as another baseline [20]. The pa-
rameters of the Random Forest model are shown in Table 11:

Table 11. The parameters of the Random Forest model.

Parameters Value

Number of decision trees 100
Maximum depth 10

Minimum samples for split 2

Prediction results are shown in Table 12:

Table 12. Prediction Results of the IPSO-SVM model and other models.

Model Accuracy Precision Recall F1 Score

IPSO-SVM 90.5% 95.5% 85.0% 89.9%
LSTM 89.0% 91.5% 86.0% 88.7%

Random Forest 83.5% 86.0% 80.0% 82.9%

The data indicate that IPSO-SVM outperforms LSTM and Random Forest in fault predic-
tion tasks. IPSO-SVM achieved the highest accuracy (90.5%), precision (95.5%), and F1 score
(89.9%), followed by LSTM, which, despite having a higher recall rate (86%), had slightly
lower precision and F1 score. Random Forest exhibited the lowest performance, with an
accuracy of 83.5% and precision of 86.0%. These results suggest that IPSO-SVM is more
effective than LSTM and Random Forest in handling small samples and nonlinear data.

4. Discussion
This study introduced the IPSO-SVM model to address the challenge of fault predic-

tion for high-impact recorders under small sample conditions. By improving the Particle
Swarm Optimization (PSO) algorithm through particle grouping, dynamic inertia weight
mechanisms, and probabilistic acceptance of inferior solutions, the IPSO algorithm made
significant progress in addressing the issues of premature convergence and local optima in-
herent in traditional PSO algorithms. Experimental and simulation data demonstrated that
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the prediction accuracy of the IPSO-SVM model reached 90.5%, significantly outperforming
the traditional PSO-SVM model.

The implications of this study are substantial. Firstly, it offers an effective technical
solution to enhance the reusability of high-impact recorders, reducing potential costs
associated with repeated use of the equipment. The IPSO-SVM model can also play a critical
role in fault prediction tasks where the data are limited, high-dimensional, and nonlinear,
making it particularly suitable for industrial applications where data are scarce or expensive
to obtain.

In addition to the high-impact recorder applications, the IPSO-SVM model shows
considerable promise in a variety of other industrial contexts. For instance, devices like
acceleration recorders and free-field shock wave pressure recorders typically operate in
extreme environments, with unpredictable reliability after each use. By collecting a small
sample of historical operational data, the IPSO-SVM model can predict the future opera-
tional conditions of these devices, thus reducing the costs associated with frequent device
replacements or failures caused by multiple uses. This is particularly valuable in industries,
such as aerospace, defense, and energy, where equipment downtime or failure can be costly
and detrimental.

Moreover, the IPSO-SVM model’s effectiveness extends beyond high-impact equip-
ment. It can also be applied in medical device development, where certain high-cost
equipment cannot be used to gather large datasets. In scenarios involving small sample
sizes, such as with costly medical instruments, the IPSO-SVM model can provide reliable
fault predictions, helping to save on development costs and ensuring the accuracy of
the devices without needing extensive testing datasets. This demonstrates the model’s
flexibility and potential for a wide range of applications, from high-end manufacturing to
healthcare technology.

Despite these advancements, the study does acknowledge several limitations that
offer opportunities for future research.

Limitations of the Model Research:

1. Limited dataset size: Future research could explore the robustness of the model by
incorporating more diverse samples or different types of failure data.

2. Choice of optimization algorithm: Although the IPSO algorithm performed well
in this study, other optimization algorithms (e.g., genetic algorithms or ant colony
optimization) may perform better in different scenarios. Further comparative studies
should be considered.

Analysis of Fault Prediction for High-Impact Recorders:

1. Data analysis results: Analysis of the data reveals that the model’s success rate in
predicting label 0 (undamaged) is higher than that for predicting label 1 (damaged).
This may indicate that there is room for improvement in data collection methods and
grouping structures during the experiment, warranting further exploration.

2. Choice of training data: This study only used the peak value of impact acceleration
for training. Whether including additional data, such as bandwidth and frequency
could lead to better prediction results still needs to be investigated.

3. Dimensionality issues: The data used in this experiment had 10 dimensions. Under
higher-impact conditions, the data length may exceed this dimension, leading to
longer training times and potentially impacting prediction results. To address this,
dimensionality reduction techniques, such as Principal Component Analysis (PCA),
could be considered. However, the specific impact of these techniques on prediction
results is difficult to estimate and warrants further research.



Appl. Sci. 2025, 15, 1343 14 of 15

5. Conclusions
This study proposes the IPSO-SVM model for fault prediction in high-impact recorders,

addressing the challenge of limited sample sizes. The IPSO-SVM model achieved a predic-
tion accuracy of 90.5%, outperforming the traditional PSO-SVM model by 5.5%. This im-
provement is attributed to the optimizations introduced in the IPSO algorithm, including
particle grouping and dynamic inertia weights, which effectively address issues like pre-
mature convergence and local optima.

In addition to outperforming PSO-SVM, the IPSO-SVM model was also compared with
other advanced models, including LSTM and Random Forest. The IPSO-SVM model showed
superior performance, achieving a prediction accuracy that was 1.5% higher than LSTM and
7% higher than Random Forest in the fault prediction task. These comparisons demonstrate
the IPSO-SVM model’s ability to perform well with limited data, offering a more reliable
prediction solution compared to traditional machine learning models.

The IPSO-SVM model also demonstrated its ability to handle high-dimensional data
with limited samples, making it a valuable tool for predicting failures in high-impact
equipment. The model’s high accuracy ensures more reliable operation of equipment,
reducing costs associated with frequent replacements and downtime.

Furthermore, this model has significant potential for application in other industrial
fields, such as aerospace, military, and medical device development, where small datasets
and high reliability are common challenges. For instance, it can be used to predict faults
in devices like shock wave pressure recorders, thus enhancing reliability and reducing
operational costs.

In conclusion, the IPSO-SVM model offers a promising solution for fault prediction
in high-impact recorders, demonstrating improved accuracy and practical applicability in
industries with limited data and high reliability demands.
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