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Abstract: Used tires (UTs) are a global problem, especially in developing countries due
to inadequate management systems. During retreading, when the worn tread is replaced,
waste is generated in the form of tire fibers (TFs) and particles, which can be reused as raw
materials to produce economically and environmentally low-cost prefabricated elements.
Using TFs as a lightweight aggregate in nonstructural geopolymer-based elements is a
sustainable valorization option. This study aims to valorize used tires by incorporating
them as TFs into lightweight geopolymer mixes and analyzing their physico-mechanical,
thermal, and thermography properties for building and civil engineering applications. The
geopolymer is produced from a precursor (spent catalyst residue from catalytic cracking,
FCC) and an alkaline activator composed of rice husk ash (RHA), sodium hydroxide, and
water. The control sample’s (mortar with siliceous sand, CTRLSIL) compressive strength
came close to 50 MPa, while the TF mixes ranged from 32 to 3 MPa, which meet the
masonry standards. The thermal conductivity and thermography analyses showed that
increasing the TF content reduced the heat transmission and achieved a similar performance
to expanded-clay concrete and better performance than for conventional concrete.

Keywords: tire fibers; FCC precursor; rice husk ash; geopolymer; thermal conductivity;
thermography

1. Introduction
In September 2015, the Summit for Sustainable Development approved Agenda 2030

for sustainable development (SD), which includes 17 Sustainable Development Goals (SDG)
to end poverty, combat inequality and injustice, and address climate change [1,2]. SDGs
11, 12, and 13 emphasize that SD is not possible without drastically transforming the way
we build. This study focused on using more sustainable construction materials, such as
composites with recycled tire fiber (TFs), and reusing industrial waste like spent fluid
catalytic cracking catalyst (FCC) from the petrol industry and rice husk ash (RHA) to
reduce the ecological footprint by changes in production methods, waste reduction, and
recycling. It is important to note that one of the primary greenhouse gases (GHGs) is carbon
dioxide, and the Portland cement (PC) industry contributes 7% of the total carbon dioxide
emitted to the atmosphere by human activity [3]. This makes it a very polluting activity.
Complete PC substitution for alkali-activated systems represents a significant reduction in
the carbon footprint [4].

The progressive increase in the amount of rubber waste generated from used tires
(UTs) has resulted in an environmental problem. According to reports from major tire
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and rubber product manufacturing associations, global annual tire production is around
1.4 billion units, the equivalent to an estimated 17 million tons of UTs a year. The dynamic
growth in the number of UTs is well-exemplified by the EU, where production increased
from 2.1 million tons in 1994 to 3.3 million tons in 2010, and the annual cost of its disposal
in EU countries has been estimated at around EUR 600 million [5]. In 2020, the production
of 4.2 million tons of rubber tires was estimated [6]. Waste generation is inevitable and it
is therefore essential to have rational environmental management systems that minimize
waste generation and maximize reuse and recycling. Alternatively, recovering energy and
materials from discarded tires, known as valorization, is crucial [7,8].

In the EU, producers operate according to the Extended Producer Responsibility (EPR)
system [9], which covers about 15 countries. This appears to be the most suitable and
robust system for addressing and resolving issues that arise from UTs in a sustainable
manner by achieving a 100% recovery rate. In Spain, SIGNUS is responsible for ensuring
environmentally sound UT management [10].

An example in Latin America is Brazil, where 18.3 million tires were produced in
2003. The demand for UTs (retreads) is very high due to low purchasing power and the
high price of new tires. In recent years, the importation of UTs has increased, with up to
7 million tires in 2007 [11].

Retreading is an alternative in UT management and utilizes tire casings by replacing
worn treads and shoulders to reconstruct the original structure [12]. During this valorization
process, waste is generated in the form of TFs and particles in the scraping stage.

The reaction of an aluminosilicate mineral mixed with a highly concentrated alkaline
activating solution (based on a mixture of sodium hydroxide and an alkaline silicate
such as sodium or potassium silicate) produces a structure called a geopolymer [13,14].
This type of alkali-activated cement can provide a similar performance to conventional
PC- based binders, and offers an additional environmental advantage by reducing GHG
emissions [15].

This study analyzed the valorization of TFs as a lightweight aggregate in mortar based
on alkali-activated cement (AAC). Previous studies conducted on PC concrete with TFs
report decreased bulk density as the TF contents increase [16–18]. Additionally, the loss of
mechanical strength in flexural and compressive strength has been identified, even with
use of the fibers [19–25]. This consequence can be attributed to the poor or nonexistent
adhesion between the cement matrix and rubber [24–26]. Other properties, such as thermal
properties [27], have drawn the interest of some researchers.

In previously published research [28], composites with various lightweight aggregates
(pumice, expanded clay, coconut shell, among others) and using alkaline activation matrices
based on blast furnace slag and metakaolin (activated with sodium hydroxide and silicate)
have been described. The novelty of the present research lies in the use of TFs and an
alternative cementitious matrix. In this work, the mechanical properties and thermal
conductivity of AAC matrix composites prepared from FCC (activated with NaOH/RHA
suspension) with TF reinforcement were evaluated.

2. Materials and Methods
2.1. Materials

The chemical compositions of FCC and RHA are summarized in Table 1.
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Table 1. The chemical compositions of FCC and RHA as weight percentages.

SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O LOI Na2O P2O5 TiO2

FCC 47.76 49.26 0.6 0.11 0.17 0.02 0.02 0.51 0.31 0.01 1.22
RHA 85.58 0.25 0.21 1.83 0.5 0.26 3.39 6.99 - 0.67 -

Geopolymer mortars with aggregate were produced [29] at a water/binder (w/b) ratio
of 0.6 and an aggregate/binder (a/b) ratio of 2.25, both by weight. The binding material
was the spent catalyst residue from catalytic cracking (FCC), an aluminosilicate with high
pozzolanic reactivity, a density of 2.44 g/cm3, and a particle diameter of 17.1 µm. RHA was
used as a source [29] to prepare the alkaline activator, with a density of 1.90 g/cm3 and
a particle diameter of 62.2 µm. The activator for mortars containing siliceous/limestone
aggregate was prepared by mixing 270 g of tap water, 81 g of NaOH (pellets), and 78.75 g
of RHA in a 1 L thermal bottle. This mixture was stored in the thermal bottle for 24 h. The
suspension was used for mixing with 450 g of FCC and the corresponding quantity of the
aggregates and TFs (see Table 2). The activator for mortars with only TFs was prepared
by mixing tap water, NaOH, and RHA in the following proportions: water/FCC = 0.6,
NaOH/RHA = 1.029, and water/NaOH = 3.33 (see Table 2) and prepared using the same
procedure. The mechanical strength measurement of the mortars was then conducted
following standard UNE-EN 196-1 [30].

Table 2. Doses of the studied mortars.

Mortar Type FCC (g) Activator * (Water+
NaOH + RHA, in g) TFs (g) Aggregate (g)

CTRLSIL

450 270.00 + 81.00 + 78.75

0 1350
CTRLCAL

TF SIL15 99.70
1147.5

TF CAL15 97.53

TF SIL25 166.16
1012.5

TF CAL25 162.55

TF 2/1 675.00 405.00 + 121.50 + 118.13

337.50 0

TF 1.8/1 607.50 364.50 + 109.35 + 106.31

TF 1.6/1 540.00 324.00 + 97.20 + 106.31

TF 1.4/1 472.50 283.50 + 85.05 + 82.69

TF1.2/1 405.00 243.00 + 72.90 + 70.88

TF 1/1 337.50 202.50 + 60.75 + 59.06
* The activating suspension was prepared in a thermal bottle for 24 h.

TFs were produced by scraping tire surfaces during retreading, where the majority of
fibers and particles were generated. TFs were separated from particles, and the material
retained by the #0.63 mm mesh was used (Figure 1).

The aggregates used to produce geopolymer mortars were siliceous and limestone
aggregates, and the particle size distribution was analyzed by sieving according to the
mesh size series of standard UNE-EN 196-1 [30]. The density of aggregates was determined
by the pycnometer method for particle sizes between 0.063 mm and 4 mm (UNE-EN 1097-
6, [31]). This yielded a density of the siliceous aggregate equaling 2.54 g/cm3 and limestone
aggregate equaling 2.60 g/cm3. For TFs, the density was determined by the difference in
displaced volume using acetone as the fluid. The density obtained for TFs was 1.25 g/cm3.
The particle size distributions of the aggregates used in this study are shown in Figure 2.
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The geopolymer mortars with TFs were prepared based on the percentage content
of TFs (TFaggregate15 and TFaggregate25), which corresponded to replacement with the
volume of siliceous or limestone aggregate with TFs (15% and 25% replacement levels). To
further highlight the properties of the mortars with TFs, two control mortars (CTRLSIL for
mortars with the siliceous aggregate and CTRLCAL for those with the limestone aggregate)
without TFs (100% siliceous or limestone aggregate) were prepared. Other geopolymer
mortars were made with 100% TFs, where the FCC/TF volume ratios went from 2/1 to 1/1
(mortars TF2/1, TF1.8/1, TF1.6/1, TF1.4/1, TF1.2/1, and TF1/1). Table 2 summarizes the
doses of the manufactured mortars.

2.2. Equipment and Procedures

Two batches were prepared per mortar type with sufficient quantity to fabricate
three prismatic specimens measuring 40 × 40 × 160 mm3 each. Some specimens were
left inside a humid chamber at 20 ◦C and 100% relative humidity (RH) for 7, 28, and
90 days, while others were exposed to 65 ◦C curing for 1, 3, and 7 days. After the curing
period, each specimen’s saturated and dry weight were determined: immersion in water
for 24 h and subsequent drying in an oven at 60 ◦C until constant weight was achieved.
Mechanical strengths (compressive strength Rc, and flexural strength Rf) were obtained
under controlled displacement conditions at a speed of 1 mm/min using a universal
testing machine (Instron model 3382). Rf was the average value of three values obtained
from the prismatic samples, and the Rc (average value of six values) was measured with
the six portions obtained. Thermal conductivity tests were performed with C-THERM
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TCI equipment (C-Therm Technologies Ltd., Fredericton, New Brunswick, Canada). This
method allowed us to make estimates of the materials’ thermal conductivity within the
0.2–29 W/mK range.

Using the same mixtures as those above, plates of 150 × 150 × 20 mm3 were prepared
for thermographic analysis by employing a thermal imager, which allows for measurements
of the thermal jumps. The utilized equipment was a TESTO 870-2 thermal imager (Testo
Inc., Sparta, NJ, USA) with an infrared resolution of 160 × 120 pixels and emissivity of
0.93. Figure 3 shows the elements used for the thermography test, which consisted of a
fully thermally insulated box of 400 × 600 × 600 mm3 on all sides. The front part (centered
position) housed the 150 × 150 × 20 mm3 plate. On the central back part, the heat-emitting
point was inside the box (a Philips HR-250 R 250 W—230–250 V incandescent and infrared
luminaire was used to generate heat). The thermal imager was located on the front exterior.
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Finally, fragments from the mechanical tests were selected and examined by field emis-
sion scanning electron microscopy (FESEM) with the ULTRA 55 model (Zeiss, Oberkochen,
Germany), which allows for operations at very low potentials (0.02–5 kV). Sample prepa-
ration for visualization on this equipment required coating with a high vacuum system
(LEICA EM MED020 model, Leica Microsystems, Wetzlar Germany).

3. Results
The physical (bulk density and water absorption) and mechanical (flexural and com-

pressive strengths) properties of the AAC-based composites with TFs were characterized.
Additionally, the thermal properties (thermal conductivity and thermography studies)
were assessed. The following sections discuss the studied properties.

3.1. Dry Bulk Density and Water Absorption

The water absorption (Abs, as a percentage) and dry bulk density (ρd) for the control
mortars and the mortars with a partial substitution of siliceous and limestone aggregates for
TFs are depicted in Figure 4. It depicts how the ρd lowered when increasing the substitution
of aggregates for TFs because the density of the siliceous and limestone aggregates was
twice that of the TFs. In the mortars with 100% TFs without mineral aggregate, the ρd

lowered due to the reduction in the amount of the cementing binder. In all cases, the ρd

values were lower than those obtained for the control mortars [32].
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those with 15% or 25% volume replacement with TFs; (b) dry density for the composite mortars
without aggregate; (c) water absorption for the control mortars and the mortars with 15% or 25%
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(a,c), SIL (green columns) corresponds to mortars with the siliceous aggregate, CAL (red columns)
corresponds to mortars with the limestone aggregate.

The absorption value increased with the larger amount of TFs because TFs are capable
of trapping air and causing an increased porosity of the matrix. These results align with
previous research works, which indicate a higher air content in the rubber mortars com-
pared with regular mortars [21,33]. This can be attributed to the rough surface of TFs and
their ability to trap air [26].

The microstructural characterization (Figure 5) observed by FESEM allowed us to
analyze the cementing matrix and the interfacial transition zone for mortars TF2/1, TF
SIL25, and TF CAL25 after 7 curing days at 65 ◦C. Figure 5a,b shows smaller porosity in
the cementing phase (geopolymer) and a thinner paste/TF gap compared with the 100%
TF sample (Figure 5c), which showed that more pores were present in the matrix and had a
thicker gap. This behavior would explain the greater absorption and lower density of these
mortars compared with those made with 100% mineral aggregate. Obviously, this behavior
would directly affect the mortar strength [19].
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3.2. Mechanical Properties

Figures 6 and 7 present the mechanical strength (Rf, and Rc) values for the mortars
with siliceous and limestone aggregates (with and without TFs).
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Figure 7. Mechanical properties of the mortars with siliceous and limestone aggregates incorporating
TFs (0, 15 and 25% replacement by volume): (a) flexural strength (Rf) for the mortars cured at 20 ◦C;
(b) compressive strength (Rc) for the mortars cured at 20 ◦C.

In Figure 6, the Rf and Rc of the mortars cured at 65 ◦C (1, 3 and 7 curing days) sharply
decreased as the amount of TFs increased, and this trend was in accordance with the dry
density values. No significant differences for the Rc values were noted between curing days
1 and 7, and their strength value gradually increased or remained until curing day 7. This
means that the development of the cementing matrix was optimum after 1 curing day. This
behavior was described by Rovnanik [34], who measured the Rc and Rf developments of
metakaolin-based mortars cured at 60 ◦C and 80 ◦C, finding that the mechanical properties
were similar for 1, 3, and 7 curing days. Bing-hui et al. [35] also found a similar behavior:
these authors measured the Rc values for mortars cured for 24 and 72 h, which were very
similar. The same authors demonstrated that the curing at 20 ◦C was insufficient to yield
Rc values higher than 10 MPa after 24 h curing.

Figure 7 summarizes the results for the mortars cured at 20 ◦C (7, 28, and 90 curing
days). The decrease in both fRf and Rc followed a similar pattern to those cured at 65 ◦C,
which indicates a loss in mechanical strength as the amount of TFs increased.

Figure 8 shows that curing at 20 ◦C for 28 days generally yielded better results than
curing at 65 ◦C for 7 days. This was also observed for the control mortar, which indicates
that curing significantly affects the AAC matrix [36]. Aggregate use in the mortars was
indifferent to the obtained values, which were similar among the mortars with limestone
and siliceous aggregates. The Rc values obtained for the control mortars at both 65 ◦C and
20 ◦C agreed with the results obtained by other authors, but with similar alkali-activated
mortars [29].
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Figure 8. Comparison of the Rc values of the mortars with siliceous and limestone aggregates cured
at 65 ◦C for 7 days vs. 20 ◦C for 28 days.

Figures 9–11 present the mechanical strength values (Rf and Rc) of the mortars with
100% TFs. Figure 9 shows a decrease in the Rf and Rc of the mortars cured at 65 ◦C when
the binder quantity was reduced in relation to the TF volume. It generally depicts that
the strengths reached at 1 curing day at 65 ◦C were similar to those for longer curing ages
(3 and 7 days). This behavior means that geopolymeric binding matrix development is
optimum for a short curing period, and it is not necessary to prolong the curing process,
which reduces the energy use. Moreover, it highlights for the 1/1 composites that the
mechanical properties are good for nonstructural purposes (e.g., masonry blocks for non-
bearing walls [37]). Hence, the FCC and alkali activator uses are reduced, and consequently,
so are the environmental and economic costs of composite production.
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Figure 11. Comparison of the Rc of mortars with 100% TFs, cured at 65 ◦C for 7 days vs. 20 ◦C for
28 days.

In Figure 10, for the mortars cured at 20 ◦C, the Rf and Rc loss trend was similar
to those cured at 65 ◦C, with a drop in mechanical strength as the binder quantity was
lowered. In this case, the Rc gain from 7 to 28 curing days was notable, which suggests that
appropriate geopolymeric matrix development requires 28 days, unlike that observed for
the 65 ◦C curing process, for which only 1 day was required to achieve good mechanical
properties.

Figure 11 highlights that curing at 20 ◦C for 28 days and for mortars with a low
percentage of TFs (TF 2/1, TF 1.8/1 and TF 1.6/1) yielded better results than curing at
65 ◦C for 7 days, which was similar to that explained for the mortar with the partial
mineral aggregate replacement. This outcome indicates that curing significantly affects
the AAC matrix. Although curing at 65 ◦C uses more energy, it is advantageous to acquire
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good composite properties in a very short processing time. For composites with a high
percentage of TFs (TF 1.4/1, TF 1.2/1, and TF 1/1), the effect of the AAC matrix was not
significant in terms of the developed strength.

3.3. Thermal Conductivity

The thermal conductivity (k) results are summarized in Table 3. The incorporation of
TFs into the mortar structure decreased the material’s thermal conductivity as the amount
of TFs in its composition increased. The mortars with partial siliceous and limestone
aggregate substitution for TFs achieved lower thermal conductivity than conventional
PC concrete (λ = 2.24 W/m·K) [38]. The mortars with the limestone aggregate obtained
lower thermal conductivity values than those with the siliceous aggregate. This can be
attributed to the conductivity difference between both aggregates, which is larger for quartz
(7.69 W/mK) vs. calcite (3.59 W/mK) [39]. The network of pores generated by the nonpolar
nature of TFs also influenced the results because of the fibers’ capacity to trap air on their
rough surface. As the TF content increased, the presence of pores also grew [26,27,40,41].
Figure 12 presents selected photographs of the specimen surfaces after testing, which
confirmed the high pore content in the 100% TF composite. In the composites with 100% TF
(2/1 to 1/1), the results had similar values among the six mixtures, with the ones containing
a higher binder content achieving slightly better outcomes. This was because more compact
and more uniform mortars were achieved on their testing surfaces compared with those
with lower ratios. This resulted in less compact and less uniform specimens, given the
lower binder content. The values of all six mixtures fell within the typical intermediate
range for concrete with expanded clay [42]. ACI committee 213 R-03 proposed Equation (1)
for correlating density (ρ) and the thermal conductivity value (k), while Asadi et al. [36]
proposed Equation (2) to obtain them in concrete samples.

k = 0.0864 e0.0125ρ (1)

k = 0.0625 e0.0015ρ (2)

Table 3. Thermal conductivity (k) values.

Sample k (W/mK)

CTRLSIL 0.969 ± 0.030
TF SIL15 0.948 ± 0.103
TF SIL25 0.926 ± 0.033

CTRLCAL 0.925 ± 0.043
TF CAL15 0.881 ± 0.024
TF CAL25 0.849 ± 0.049

TF 2/1 0.524 ± 0.097
TF 1.8/1 0.500 ± 0.068
TF 1.6/0 0.524 ± 0.033
TF 2.4/1 0.528 ± 0.027
TF 1.2/2 0.535 ± 0.006
TF 1/1 0.551 ± 0.006

In the TF 2/1 composite, when applying both equations, the corresponding values
from Equations (1) and (2) were respectively 0.516 and 0.534 W/mK, which were similar
to the experimental data (0.542 W/mK). However, the values for TF 1/1 obtained from
the proposed Equations (1) and (2) were respectively 0.417 and 0.413 W/mK, and were
significantly lower than for the experimental one (0.551 W/mK). The thermal conductivity
of tire rubber fell within the 0.19–0.22 W/mK range [43]. Theoretically, the k value for TF
1/1 should be lower than that for TF 2/1, but the experimental results showed similar k
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values for both composites. This behavior could be attributed to the larger total volume
related to the interfacial transition zone gap when increasing the TF volume fraction [44].
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3.4. Thermography

The thermographic analysis was able to capture infrared thermal images every 5
min of the samples placed at the front of the thermally insulated box. Figure 13 shows
the type of images recorded from the equipment. These images were compared and
analyzed to quantitatively measure each specimen’s surface temperature and to observe
the temperature evolution [45].
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Figure 13. Infrared thermal images taken at different times (minutes) demonstrating the temperature
increase during the test. Sample FT 2/1 subjected to 80 ◦C (heat source) from 0 to 30 min.

In Figure 14, a section was taken from each infrared thermal image to obtain a quanti-
tative curve showing the temperature reached at each point on the image (pixel). Together
with the other curves obtained in the other images taken every 5 min, it illustrates that
the temperature increased until the maximum temperature was reached at 30 min. A
temperature increase was only shown in the part in which the specimen was located, and
not on the insulated box surface, where temperature increase was much lower.
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Figure 14. Thermography analysis: (a) infrared thermal image showing section P1, red circle
represents the maximum temperature zone, and horizontal black line represent the points in which
the temperature was calculated for representing in (b); (b) quantitative curve for section P1; (c) curves
taken every 5 min for section P1.

The thermographic analysis results are summarized in Figure 15. For the mortars
with the 25% TF replacing mineral aggregate, compared with the corresponding control
mortars, no significant difference was observed in the temperature reached outside the box.
However, a temperature differential of 4 ◦C was achieved for the composites with 100% TF.
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4. Conclusions
(1) TFs used as an aggregate in the AAC mortars reduced the dry bulk density and

increased absorption compared with the values obtained for the reference mortars.
(2) The compressive strength of the mortars containing TFs ranged from 3 to 32 MPa.

Compressive strength lowered as the TF content increased.
(3) The thermal conductivity values in the mortars in which the aggregate was replaced

with TFs lowered as the TF content increased. The thermal conductivity of the mortars
with 100% TFs came very close to 0.50 W/(m·K).

(4) Incorporating TFs into the FCC-based AAC cement mortars resulted in a lower
temperature and thermal jump by the thermography technique (5 ◦C) compared with
the values obtained with the reference mortars.

(5) In general, TFs used (derived from scrapping tires) in AAC-based materials can
improve the thermal properties of these materials, and can lead to energy savings
due to their low thermal conductivity. This is particularly beneficial when used in
construction typologies that require thermal insulation properties. This material
becomes an environmental benefit, especially as a result of working with waste
materials and secondary raw materials, and confers them with added value, which
cushions the impact of them accumulating in landfills. The obtained results highlight
the potential of using TFs for preparing low-thermal conductivity composites with an
AAC-based cementing phase, especially for systems with a high percentage of TFs
(e.g., TF 2/1, which presented the lowest thermal conductivity and the best behavior
in the thermography analysis).
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