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Abstract: While traditional self-supervised learning methods improve performance and
robustness across various medical tasks, they rely on single-vector embeddings that may
not capture fine-grained concepts such as anatomical structures or organs. The ability to
identify such concepts and their characteristics without supervision has the potential to
improve pre-training methods, and enable novel applications such as fine-grained image
retrieval and concept-based outlier detection. In this paper, we introduce ConceptVAE, a
novel pre-training framework that detects and disentangles fine-grained concepts from
their style characteristics in a self-supervised manner. We present a suite of loss terms
and model architecture primitives designed to discretise input data into a preset number
of concepts along with their local style. We validate ConceptVAE both qualitatively and
quantitatively, demonstrating its ability to detect fine-grained anatomical structures such
as blood pools and septum walls from 2D cardiac echocardiographies. Quantitatively,
ConceptVAE outperforms traditional self-supervised methods in tasks such as region-
based instance retrieval, semantic segmentation, out-of-distribution detection, and object
detection. Additionally, we explore the generation of in-distribution synthetic data that
maintains the same concepts as the training data but with distinct styles, highlighting its
potential for more calibrated data generation. Overall, our study introduces and validates
a promising new pre-training technique based on concept-style disentanglement, open-
ing multiple avenues for developing models for medical image analysis that are more
interpretable and explainable than black-box approaches.

Keywords: self-supervised learning; concept disentanglement; echocardiography; medical
image processing

1. Introduction
Unsupervised and, in particular, Self-Supervised Learning (SSL) methods facilitate

the use of unlabeled data to learn its underlying structure. These pre-training methods
have demonstrated improved performance and robustness across a wide range of medical
imaging tasks, outperforming models trained solely through supervised learning [1–3].

The core idea of SSL pre-training is to develop meaningful representations from input
samples, represented as a single continuous embedding vector encapsulating the content
displayed in an input [4]. These representations can be viewed as an aggregation of local
concepts, their corresponding styles and their contribution on the overall meaning of the
input. The nature of the representations learnt can vary depending on the specific method
employed [5]. For example, some methods encourage the representations to be similar
for similar or augmented input samples, and dissimilar for samples that depict distinct
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concepts [6]. Other methods aim to ensure that the representations can be accurately
reconstructed from partially masked inputs or features [7,8].

Regardless of the approach employed, each method aims to develop a single-vector
representation of the input, which may fail to capture fine-grained concepts present in
it. For example, a 2D echocardiography of the heart can be broken down into concepts
such as heart chambers, valves, and walls. However, the SSL methods’ single-vector
representation makes it challenging to discern whether such concepts are learned during
pre-training [9,10].

Moreover, similarity constraints imposed in SSL under various augmentations can
cause algorithms to merge certain concepts and their associated styles. For example, two
augmented views of the same input must produce similar representations. However,
cropping or zooming can exclude some object parts from a view, while blurring or color
jittering can alter local textures, making them different between the augmented views. This
is one reason why SSL pre-trained models typically do not perform well on localized tasks,
such as detecting localized pathologies, instance retrieval or Out-of-Distribution (OOD)
detection [11,12]. The ability to identify individual concepts that make up larger objects
within input images, and capture particular traits of these concepts such as textures, will
result in more expressive embeddings that can alleviate some of these weaknesses.

In this paper, we present a novel pre-training method that learns to discretise an input
image into a set of fine-grained concepts, and identifies a unique set of styles for each
concept. Inspired by human perception, where the brain rapidly recognizes objects by first
identifying essential concepts as key components and then perceiving detailed information
like fine textures, our approach aims to mimic this process [13–15]. Using 2D cardiac
echocardiographies, we show that the proposed method, which we term ConceptVAE and
illustrate in Figure 1, can identify fine-grained concepts representing anatomical structures
and regions such as heart chambers, walls or blood pools without any supervision.

Figure 1. ConceptVAEoverview, where the blue blocks are trainable while the grey blocks are only
updated using exponential moving average.

The main strength of our proposed framework is the concept (content)–style disentan-
glement that happens natively during the pretraining procedure, a behavior that doesn’t
occur within traditional SSL methods. We demonstrate the achievement of disentangle-
ment and investigate its potential in a plurality of diverse downstream tasks (such as
segmentation, object detection, retrieval, generation, outlier detection) where we directly
exploit the proposed disentangled latent space. Applications in medical imaging, where as-
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pects such as model explainability and interpretability hold great interest, can benefit from
concept-style disentanglement of the latent space. Although traditional deep learning (DL)
models are capable of performing the aforementioned tasks with good performance, they
lack such properties since they are black-box solutions (regardless whether pretraining was
used or not in their development). Disentanglement can also be used as a tool to explore
the underlying structure of data, through the explicit decomposition into observed local
concepts and their style properties.

Briefly, ConceptVAE extends the Variational Autoencoder (VAE) framework to encode
a 2D input image into a latent space using a 2D grid of concept probability distributions
(one pij(c) for each image region, where c is a concept and i, j are spatial indexes) and their
associated style vectors (sij = f (cij, x), where sij is the style property vector of concept cij

that is present at location i, j in input image x). We find that even a modest number of
discrete concepts and styles (e.g., 16 concepts and 8 style components) are sufficient to
model 2D echocardiographies. We design a series of loss functions that guide a neural
network to detect underlying concepts from an input image and identify particular styles
for each concept.

We validate the effectiveness of the embeddings learnt via ConceptVAE through
distinct tasks including region-based instance retrieval, semantic segmentation, object de-
tection, and OOD detection, demonstrating consistent improvements over more traditional
SSL methods.

In summary, our work’s key contributions are the following:

• We introduce ConceptVAE, a novel SSL training framework that yields models capable
to fine-grained disentangle concepts and styles from medical images. We evaluate
the model using 2D cardiac echocardiographies, given the accessibility of datasets for
pre-training and validation. Nevertheless, ConceptVAE is designed to be versatile and
can potentially be applied to all 2D image modalities.

• We qualitatively validate ConceptVAE and demonstrate its ability to identify concepts
specialised for anatomical structures, such as blood pools or septum walls.

• We quantitatively validate ConceptVAE and show consistent improvements over
traditional SSL methods across various tasks, including instance retrieval, semantic
segmentation, object detection, and OOD detection.

• We assess ConceptVAE’s ability to generate data conditioned on concept semantics
and discuss its potential to enhance robustness in dense prediction tasks.

The remainder of this article is organised as follows. We start by discussing back-
ground information and related work (Section 2), followed by a detailed overview of
ConceptVAE (Section 3), an analysis of the pre-trained model’s ability to disentangle con-
cepts and styles (Section 4), and a quantitative evaluation of the model for multiple tasks
(Section 5). The paper ends with conclusions and future work (Section 6).

2. Related Work
We identify a series of related works that can be categorized into three distinct groups:

(i) SSL methods, encompassing both general approaches from natural images and those
specific to medical images [4,16]; (ii) Disentangled Representation Learning (DRL) methods,
which aim to train models capable of identifying and mapping factors of variation to seman-
tically meaningful variables [17,18]; and (iii) the application of SSL methods to improve
performance in medical image processing tasks related to 2D echocardiographies, such as
segmentation or information retrieval. Below, we discuss these groups independently and
explore their interplay.

The primary SSL methods can be categorized in (i) contrastive learning methods
(e.g., [19,20]), which aim to create similar representations for input images showing
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the same objects and contrastive representations for images showing different objects;
(ii) correlation-based methods (e.g., [21]), which aim to preserve the variance of the em-
beddings while decorrelating variables related to distinct objects; and (iii) masked image
modeling methods (e.g., [22,23]), which aim to reconstruct the original input from its
masked version. Recent studies indicate that, despite differences in methodology and train-
ing objectives, contrastive and correlation-based methods are closely related and may yield
similar results, as they minimize criteria that are equivalent under certain conditions [24]. All
methods in these groups focus on developing single-vector (and not local or concept-based)
representations, which can be used in distinct downstream tasks.

Within SSL methods, some approaches yield models with interesting emergent prop-
erties. For example, vision transformer models [25] trained with DINO [26,27] can generate
features that explicitly describe the semantic segmentation of an image. These features can
be directly linked to actual objects present in the image, which can be broadly interpreted as
independent concepts. Training with DINO improves performance in image classification,
segmentation, and even information retrieval. Building upon DINO, ref. [28] associated
a fixed number of prototypical concepts with the semantics of each image using a pixel
assignment scheme based on k-means clustering, further enhancing semantic segmentation.

Despite the fact that global representations developed through SSL methods can
linearly separate certain object classes, these methods do not ensure that the learned latent
space structure is meaningful. Specifically, intermediate feature maps (i.e., the spatial
feature maps before the final projector head) may not be sufficiently descriptive to reliably
differentiate between similar visual concepts or to group together representations of objects
from the same class. Additionally, these representations might either be intertwined
with style information or attempt to suppress it to achieve invariance against train-time
augmentations [18].

In contrast, DRL is a family of training methods aimed at isolating the factors of varia-
tion driving the generative process behind a data distribution into distinct latent variables.
Refs. [18,29] provide overviews of recent techniques in DRL. Among various benefits, DRL
can improve a model’s explainability, controllability, and robustness [29]. Nevertheless,
DRL methods often need labels to learn meaningful representations [30] and have lim-
ited applicability to image-based tasks, primarily focusing on image generation [29]. In
contrast, ConceptVAE is designed as a general pre-training strategy that benefits multiple
downstream tasks.

Within DRL, ConceptVAE is similar to content-style disentanglement [18], as it deliber-
ately assigns distinct roles to different components of the latent space. For example, certain
components represent anatomical concepts such as heart valves (acting as the content),
while others capture their local specifics (acting as the style). Our model uses both discrete
and continuous latent variables, for the content and style of input images, respectively.
This approach has proven successful in other DRL works, e.g., for clustering latent space
representations in generative adversarial modeling [31]. However, our two latent variables
are not independent: the style is determined as a function of both the input image and a
predicted grid of discrete concepts.

While some methods enforce DRL at train time through either inductive biases, priors
or supervision [18], other methods work post-hoc as post-processing of pretrained models
in order to separate style and content. For example, ref. [32] uses style annotations to
compute a linear projection that is applied on the entangled representations to separate
them in two sub-matrices: a diagonal style matrix and an invertible dense content matrix.
We draw inspiration from this approach, and enforce a unit-covariance constraint on
the style component of our latent space, while letting adjacent concepts cooperate for
reconstructing the input image.
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Modeling images with a discrete codebook has been previously employed for purely
generative purposes in models such as VQ-VAE [33,34]. Unlike our approach, these models
require a significantly larger codebook size because a discrete code must represent a
combination of entangled concept and style. In contrast, our model requires only a small
array of discrete concepts, as they are disentangled from the styles, which are represented
in the latent space by small-sized continuous vectors.

Similar methods have been employed in cardiac image analysis before. For example,
ref. [35] used spatial binary anatomical factors as content to compute an image-level
modality factor as style for reconstructing MRI and CT data. Additionally, traditional
SSL methods have been successfully applied in medical image analysis for tasks such as
instance retrieval [36], semantic segmentation [37], and object detection [16]. However,
these models are adapted from natural image analysis and are not specifically tailored for
medical imaging.

3. ConceptVAE
Figure 1 presents a high-level overview of ConceptVAE. In essence, the method

employs a VAE-like architecture to reconstruct an input from the model’s embeddings. It
then converts the features into a set of concepts and styles via the concept discretizer and
concept stylizer blocks.

We include a self-supervised input reconstruction task because we train the model
from scratch and require an encoder that can produce meaningful low-level embeddings.
However, this task is separated (through a stop-gradient operation) from concept and style
identification. Using an existing pre-trained encoder can replace this task.

To prevent feature collapse, such as unique features for all inputs or a single concept
for all concept maps, as well as improve training stability, we use a mirrored network
for augmented versions of the input, updating it only with Exponential Moving Average
(EMA)—a technique proven in SSL methods with similar aims [26].

Both the original and augmented input embeddings are transformed, discretized and
styled using the concept discretizer and stylizer blocks. To ensure consistency in concepts
between augmented versions of the input, a specialized loss term is employed. To guide
the model in learning significant concepts and styles, the original inputs are reconstructed
from the concepts and styles using the EMA decoder. A dedicated reconstruction loss term
is employed to ensure that the inputs reconstructed from concepts and styles closely match
the originals. This process encourages the model to capture and represent meaningful
features of the data within the learned concepts and styles. Similarly, localised loss terms
guide the model to learn diverse concepts and styles.

The following subsections elaborate on the architecture, the rationale behind its design,
and the training procedure, including details about the selected loss function terms and
optimization parameters.

3.1. Model Architecture

Figure 2 displays the detailed architecture of ConceptVAE. A simple auto-encoder
operates independently (in terms of gradients) from the rest of the model. It comprises an
Encoder Stem that generates features xstem at a 4× output stride, and an Image Decoder that
reconstructs the original input. After a stop-gradient operation, an Encoder Middle block
applies a series of residual convolutional blocks starting from the encoder stem’s features,
projecting the features to concepts.

The projections are used by a Concept Discretizer classification head, with xmiddle having
a 16× output stride. For each spatial location, a Softmax activation creates a probability
distribution over C concepts. Using the Gumbel-Softmax trick [38] with hard sampling and
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gradient pass-through, a grid of one-hot vectors is sampled from the concept probabilities
grid. This one-hot vector grid indexes a learned matrix of concept embeddings to produce
a 2D concept map xconcept.

Subsequently, xmiddle and xconcept are concatenated along the channel axis and passed
into a Concept Stylizer block. This block generates a 2D grid xstyle of S channels capturing
the style properties of each concept. At this point, each location within the 16×-stride grid
has an identified concept and an associated style vector. The channel-wise concatenation of
xconcept and xstyle constitutes the model’s latent space (xlatent). Notably, xconcept is derived
from discrete embeddings, using a shared learnable embedding matrix for all input samples.
In contrast, xstyle is a continuous tensor computed based on local features xmiddle and the
sampled discrete concepts xconcept. Consequently, xstyle is specific to the sampled xconcept,
meaning that sampling a different concept at location i, j will result in a different style
vector xij

style.

Figure 2. ConceptVAE model architecture and training setup, where the EMA blocks represent
the exponential moving average mirrors of regular blocks. Loss components are shown in colored
ellipses, and s.g. denotes stop-gradient. Solid arrows indicate tensor flows within the model, while
dashed arrows represent tensors involved in loss functions.

A Feature Decoder projects the latent space to reconstruct the lower 4×-stride features
of the Encoder Stem, denoted as xrec

stem. Lastly, the EMA Decoder is employed to recover the
original input image from the latent space. This reconstruction is core to ConceptVAE,
as it guides the model to learn how to decompose an input into fine-grained concepts
with associated styles, and reconstruct the input from concepts alone or from concepts and
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associated styles. Using the EMA Decoder for the reconstruction ensures there is no mode
collapse for the concepts or styles.

Architecturally, the Encoder Stem module is designed as a simple sequence of convo-
lutional, instance normalization, max-pooling, and Leaky ReLU stages. The final layer is
a normalization layer that ensures channel-wise zero mean and unit standard deviation,
helping to prevent potential feature collapse. This module contains three convolutional
layers with 3 × 3 kernels and strides 2, 1, 1 respectively, and one max-pooling layer with
2 × 2 kernel and stride 2, yielding a field of view size of 17 px. The Image Decoder block
maintains this simplicity, consisting of 2 upsampling stages based on 3 × 3 transposed
convolution layers with stride 2. Regular 1 × 1 convolutions, normalization, and Leaky
ReLU layers are inter-twined between the two up-sampling stages to improve the module’s
decoding capacity.

The Encoder Middle block employs a residual architecture. As in the Image Decoder
block, the first layer is a Leaky ReLU activation, as the input to this block comes from the
normalized convolutional output of the Encoder Stem. The block comprises three residual
stages with 3, 5, and 5 residual layers, respectively. Each residual layer includes two
sequences of normalization, Leaky ReLU, and convolution. Max-pooling and normalization
layers are positioned between each residual stage. This number of layers was selected to
ensure that the receptive field-of-view xmiddle exceeds the shorter dimension of the input
image. In our case, the input image has dimensions (h, w) = (256, 320), and the field of
view is approximately 300 pixels. Larger or smaller architectures can be selected to model
distinct input dimensions.

Equation (1) describes the operation of the concept discretizer. A classification head
fcd computes the concept probability logits; Gumbel noise − ln(− ln(u)) is added, and a
temperature (Tsamp) Softmax computes the sampled concept ratios. A one-hot vector is
created based on the concept with largest ratio and the pass-through technique ensures
differentiability (where sg is the stop-gradient operator, I is the input image).

p(c)|I = So f tmax( fcd(xmiddle(I)))
u ∼ U(0, 1)

psamp(c) = So f tmax
(

ln(p(c)|I)− ln(− ln(u))
Tsamp

)
yhard = 1hot(arg max(psamp(c)))

yhard = sg(yhard − psamp(c)) + psamp(c)

(1)

The Concept Stylizer is based on a small 3-layer sequence of convolution—Leaky
ReLU—convolution layers, all with bottleneck (1 × 1) kernels. Its function is to customize
the selected concept at each spatial location within the 16×-stride grid.

The Feature Decoder begins with two residual stages that process xlatent, followed by
two transposed convolution stages that up-sample the grid to a 4× output stride relative
to the input size. These two residual stages operate on a neighborhood of 5 × 5 spatial
locations, allowing adjacent concepts to collaborate in the reconstruction. The impact of
neighborhood size on reconstruction and modeling quality is discussed in Section 4.

Neither the Image nor the Feature Decoder employ skip-connections that reuse internal
encoder feature maps. This design is essential, as it compels the model to rely solely on its
latent space, xlatent, to represent the data manifold and reconstruct the inputs.

3.2. Training Objectives

To train ConceptVAE, we devise a series of loss terms inspired by classical (discrete)
VAE formulations, but adapted to guide the learning process towards identifying and
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personalizing concepts. We employ two types of reconstruction losses, illustrated in blue
in Figure 2: an image-based loss Limg, which uses Mean Squared Error (MSE) over pixel
values, and a feature-based loss L f eat, which uses MSE over low-level feature tensors. The
simple auto-encoder is trained using Limg between the original input image Iorig and the
reconstructed image based on the 4×-stride feature map. The EMA version of the Encoder
Stem is used to compute the target for the tensor produced by the Feature Decoder block,
while the EMA Decoder is used to compute the reconstructed image from xlatent. The use
of both pixel- and feature-level reconstruction losses has been previously employed in
VAE/GAN setups [34,39], to boost both training stability and image generation fidelity.

The feature decoder takes both xconcept and xstyle as inputs. While xconcept is generated
by sampling from a discrete concept codebook, xstyle is computed directly as a (continu-
ous) function of xmiddle and xconcept. Consequently, the network could potentially exploit
this setup by minimizing the influence of xconcept and relying more heavily on the more
direct path of xstyle, effectively reducing its operation to that of a simple auto-encoder. In
this scenario, xconcept would lose its semantic significance, and xstyle would function as a
rich bottleneck representation rather than a style characteristic of a concept. To address
this undesired behavior, an image/feature reconstruction is performed where the style
components of xlatent are explicitly zeroed out. The EMA Decoder is reused to obtain a
reconstructed version of the input image, relying solely on xconcept, without the style com-
ponent xstyle. The target of this reconstruction is a blurred version of the input image,
with blurring serving as an approximation for removing fine details and textures, thereby
partially eliminating the notion of style. Both pixel- and feature-based losses are employed
to evaluate the reconstruction quality when using only the spatial distribution of concepts.
This approach guides the Feature Decoder block to focus on the concept component of
xlatent and also encourages the Encoder Middle to learn to detect relevant concepts within
input images.

Another key aspect of concept detection is its invariance to specific styles. This means
that two different (augmented) views of the same medical image should produce the
same concept maps, despite variations in their visual appearances. Pixel-level and texture
differences should be captured by xstyle, while more complex anatomical structures should
be encoded in xconcept. To guide this behavior during training, we introduced a Concept
consistency loss, illustrated with orange in Figure 2. The Concept Discretizer block first
computes a grid of concept probabilities, from which it generates a spatial grid of sampled
concept indices. Following this, the concept maps from augmented views should be
equivalent, even if the augmentations involve translations, rotations, or other spatial shifts
(We use equivalent instead of identical because augmentations like translations, rotations,
and shearing can spatially shift the placement of concepts within the image. Nevertheless,
the correspondences between the initial and shifted locations are known, and they can be
used to enforce similarity between p(c)|Iorig and p(c)|Iaugm).

The EMA Encoder Stem, EMA Encoder Middle, and the EMA Concept Discretizer are
used to compute the target probability distributions pema(c) for the concept consistency
loss: Lcc = −pema(c) ln p(c). The EMA concept probability map pema(c) is computed on
an augmented view of the initial input image which incorporates transformations such
as rotations, translations, shearings, zooming, gamma contrast changing and Gaussian
blurring. Since these operations can alter positions, we must account for the spatial
mapping between p(c) and pema(c). To simplify this and avoid optimization noise due to
imperfect mapping, each augmentation procedure selects a random location uniformly,
and all image operations are performed relative to this point. The result includes a tuple
of the augmented input image Iaugm, an initial location lij, and the equivalent location li′ j′
after all operations. In our implementation of Lcc we indexed only the grid positions of the
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spatial locations lij and li′ j′ from p(c) and pema(c), respectively. Therefore, only one pair of
grid locations (containing the concept probability distributions) is used per each sample
inside a training batch. We use the EMA blocks instead of the model blocks to prevent
feedback loops that could lead to collapsing concept probabilities (e.g., always detecting
the same concept).

An additional constraint Lstyle was imposed on xstyle to ensure it has unit covariance
and zero mean along the channel (style) dimension (illustrated with green in Figure 2).
Specifically, when xstyle is flattened across across batches (B), height (H) and width (W) if
forms a matrix of shape shape (S, BHW). This matrix must have a row-wise mean of 0,
a row-wise standard deviation of 1, and zero correlation between rows. This constraint
ensures that xstyle has independent components with a known range of values, discussed
in details in Section 5.5.

To control the deviation of p(c)|I from p0(c), we use two priors. Without enforcing
these priors during training, the entropy of pij(c) would be minimized, canceling the
effect of concept sampling and reducing the model’s operation to a deterministic auto-
encoder. Consequently, the concept probability grid p(c)|I would lose much of its semantic
significance, reverting to a regular discrete latent variable instead of encoding high-level
semantics into a fixed set of concept probabilities. This, in turn, would constrain the
functionality of the concept consistency loss. We employ two types of priors: at the grid-
location level and at image level. Since we are modeling echocardiographies, these images
typically feature an ultrasound cone centered within a surrounding black background. The
grid-location level prior is computed as follows: for grid locations inside the ultrasound
cone, the prior is a uniform distribution over the last C − 1 concepts, with the first concept
having zero mass (as we always designate the first concept to model the background). For
grid locations outside the cone, the prior assigns all probability mass to the first concept.

The KL-divergence DKL(p(c)|I ∥ p0(c)) is computed at all grid locations and averaged
across the (B, H, W) dimensions. For the image-level prior loss it is assumed that only the
first concept should be detected outside the cone, with a uniform spread of concepts inside
the cone across all samples in the current batch. Therefore, the concept probability vectors
of all grid locations inside and outside the echo cones are averaged across all samples in
the batch to obtain two image-level concept prevalence vectors: dcone(c) for the cone region
and dbg(c) for the background.

The KL-divergence loss with the same priors is used for these concept prevalence
vectors. Equation (2) formalizes the final prior loss Lprior, where 1c(b, i, j) is an indicator
function that equals 1 if location i, j in sample b of the current batch pertains to an ultrasound
cone. Ncone and Nbg are the total numbers of cone and background grid locations inside
current batch, respectively.

Lprior1 = ∑
b,i,j

α1

Ncone
DKL(pbij(c)|I ∥ pcone

0 (c))1c(b, i, j)

+
α2

Nbg
DKL(pbij(c)|I ∥ pbg

0 (c))(1 − 1c(b, i, j))

dcone(c) =
1

Ncone
∑
b,i,j

(pbij(c)|I)1c(b, i, j)

dbg(c) =
1

Nbg
∑
b,i,j

(pbij(c)|I)(1 − 1c(b, i, j))

Lprior2 = α3DKL(dcone(c) ∥ pcone
0 (c))

+ α4DKL(dbg(c) ∥ pbg
0 (c))

Lprior = Lprior1 + Lprior2 (2)
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To discourage overly granular concept maps, where sampled concepts change fre-
quently between adjacent grid location, we use a Concept cluster loss Lcluster, depicted in
orange in Figure 2). Overly granular concepts are undesirable because we want concepts
to represent larger anatomical structures spanning multiple grid locations rather than
smaller, granular pixel patterns. To enforce it, we use the one-hot vectors produced by
the Concept Discretizer block. We compute spatial derivatives between adjacent one-hot
vectors along the width and height dimensions. If two adjacent locations share the same
sampled concept their one-hot vectors are identical, resulting in a null spatial derivative.
Otherwise, the sampled concepts differ, leading to different one-hot vectors and a nonzero
spatial derivative. By minimizing the mean square of the spatial derivative, we reduce the
number of spatial transitions between sampled concepts, thereby creating larger concept
“islands”. The mean is taken only over grid-locations pertaining to ultrasound cones.

The final loss function is a weighted sum of the described sub-losses, as shown in
Equation (3). Here, fdec(x) denotes the feature computed by the Feature Decoder block based
on its input x, and Irec([xconcept, xstyle]) represents the reconstructed image based on latent
space components xconcept and xstyle.

L =β1Limg(Irec(xstem), I)+
β2Limg(Irec([xconcept, xstyle]), I)+

β3Limg(Irec([xconcept, xstyle := 0]), Iblurred)+

β4L f eat( fdec([xconcept, xstyle]), fstem(I))+

β5L f eat( fdec([xconcept, xstyle := 0]), fstem(Iblurred))+

β6Lstyle(xstyle)+

β7Lcc(p(c)|I , pema(c)|Iaugm)+

β8Lprior(p(c)|I)+
β9Lcluster(xconcept)

(3)

3.3. Pre-Training Data and Hyper-Parameters

To pre-train ConceptVAE, we used 72,500 frames extracted from 7500 echocardiogra-
phy video acquisitions. The dataset consisted exclusively of 2D B-mode echocardiographies
featuring apical or short-axis views.

We used the AdamW optimizer with a constant learning rate of 10−4, a batch size
of 64 images, and a weight decay of 5 × 10−3. During training, we apply random image
augmentations using the following transformations: rotation, translation, shearing, zoom-
ing, gamma contrast adjustment, and Gaussian blurring. Pre-training is performed until
convergence, which is equivalent to the loss function no longer varying significantly.

4. Latent Space and Qualitative Analysis
Upon convergence, the pre-trained model can be qualitatively analysed by ex-

amining the inferred concept probability maps for test images. A straightforward
method to implement this involves selecting the most likely concept at each grid location
(cij = arg max pij(c)) and overlaying the up-sampled concept indices grid onto the initial
input images, as in Figure 3. The probability of the most likely concept p(cij) = max p(c)
at each location i, j can be incorporated in the visualisations.

By examining a random selection of samples illustrated in Figure 3, we can make the
following initial observations:

• The prior constraint, which requires regions outside the cone to be modeled solely
by the first concept (i.e., the background concept at index 0) is generally respected.
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Exceptions occur at grid locations in the cone’s proximity, particularly at the bound-
aries between the cone and the background. As these are transition regions, they are
not particularly concerning, since the model’s confidence is expected to be low for
such regions.

• Certain concepts are specialized for specific anatomical structures. For example, con-
cept c11 models blood pools within the cone, concept c1 represents the Left Ventri-
cle (LV) free wall on the right hand size of the cone, concepts c5 and c7 correspond to
septum walls, and concept c6 covers the right-heart side of the cone, among others.

• Certain concepts, such as e.g., c13 and c14 appear more isolated and spanning a single
grid location. By qualitatively assessing multiple input samples, we hypothesise
these concepts encode information about the local anatomical shapes of nearby larger
concept islands. It appears these concepts have larger confidence assigned to them than
the average confidence inside larger concept islands. We term them modifier concepts.

Figure 3. Concept maps for three randomly sampled inputs. The 16×-stride concept grid is up-
sampled to the original image size. The indices of the most likely concept for each grid location are
displayed in red at the bottom-left of each location. The grid is color-coded according to concept
indices for better visualisation.

To qualitatively evaluate the impact of modifier concepts, the greedy concept map
of the middle image of Figure 3 is modified in two ways, by swapping 2 modifier and
2 normal concepts: first, (i) the modifier concepts c13 and c14 are swapped and the image is
reconstructed without any style component (xstyle := 0); and (ii) starting from the greedy
map, concepts c5 and c1 are now swapped and the image is reconstructed in the same
manner (with xstyle := 0). The effects are illustrated in Figure 4: in the former case only
minor shape modifications are observed around the grid locations where concept swaps
were done. In the latter case, the effect is more significant, as it appears that the LV free
wall changed place with the septum.

Figure 4. Effect of concept swapping. The left image is the reconstruction based only on the greedy
concept map (with xstyle := 0). The middle reconstruction illustrates the effect of swapping 2 modifier
concepts, while the right reconstruction illustrates big changes induced by swapping two anatomy-
specific concepts.

While modifier concepts seem to function primarily in a styling role, it is important
to note that the Feature Decoder block processes k × k regions of adjacent concept locations
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to reconstruct the low-level image features xstem. This means that neighboring concepts
cooperate to form larger and more complex anatomical structures. Modifier concepts are
not devoid of semantic meaning, as our experiments showed that replacing a specialized
anatomical concept like c1 with a modifier concept still yields similar reconstructions,
albeit with slight alterations in shape and/or region brightness patterns. Additionally,
although reconstructing images based solely on xconcept may produce rough outlines of
echocardiographies, suggesting that concepts only encode basic brightness blobs, we later
show that the concept probability grid contains rich semantics that can be used in tasks
such as instance retrieval (Section 5.1).

The region size k influences the operation and semantics of concepts. In the extreme
case of k = 1, there is no concept cooperation and to match Irec([xconcept, xstyle := 0]) with
Iblurred, concepts may be incentivised to encode blurred pixel patterns instead of semantic
content. At the other extreme, where k equals the grid size, each grid location has a full
receptive field of view, meaning it can observe the concepts from all other grid locations,
regardless of distances (similar to a self-attention layer [25]). This can be undesirable
because the model may rely on non-local relations between concept placements instead
of embedding semantic content within each concept. It would also hinder the extraction
of local region descriptors, making it impossible to describe the content of an image crop
without retaining the entire concept grid. Consequently, tasks such as region-based instance
retrieval would be challenging, as it would not be clear how to construct descriptors focused
on specific image regions.

We employed k = 5, meaning the receptive field of view before the up-sampling
layers inside the Feature Decoder block is 5 × 5 grid locations of xlatent). The rationale is
that k should be large enough to allow Irec([xconcept, xstyle := 0]) to have smooth pixel-
level transitions between adjacent concepts and thus be close to Iblurred, but small enough
to enable the construction of granular region descriptors and prevent the model from
exploiting non-local relations.

5. Quantitative Model Analysis
To assess the representation power of the model’s latent space, its suitability as a

general pre-training method, and the extent of content-style disentanglement, we employ a
linear evaluation protocol tailored to SSL (e.g., [19,20,40]) on several distinct tasks.

For comparison, we used a baseline model trained with Vicreg [21], featuring a
ResNet50 encoder and a lightweight RefineNet decoder [41] for dense tasks. This model was
pre-trained using the same dataset and configuration (e.g., image sizes) as ConceptVAE
(Section 3.3). For all following evaluation tasks, we used the output of the second to
last ResNet stage as the baseline latent space (as it has the same output stride as our
proposed model).

The linear evaluation protocol involved freezing the backbone and training only a
linear layer on top of the frozen embeddings for specific tasks ranging from object detection
to semantic segmentation or OOD detection, as detailed in the following sections.

5.1. Region-Based Instance Retrieval

Region-based instance retrieval involves searching a database of images for similar
samples using only localized descriptors, such as pathologies or anomalies. These methods
can aid in clinical diagnosis, medical research, trainee education, and support other tasks
by quickly identifying patients with similar anomalies, even when a diagnosis is not yet es-
tablished [36,42]. SSL methods are the most prevalent and effective, using the embeddings
of a pre-trained model to cluster images and retrieve those most similar to a query image
using nearest neighbors search [43].
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To use ConceptVAE for this task, we generate image region descriptors by concatenat-
ing the 5 × 5 concept probability vectors from a 5 × 5 sub-grid centered around a selected
query point. The sub-grid provides context for the query point.

Using an input image of size (256, 320), the concept grid has an output stride of 16,
resulting in a size of (16, 20) concepts. From each test image, we extract an array of (14, 18)
key points (i.e., all points with a complete 5 × 5 neighborhood). Since the model was
trained with 16 concepts and the descriptor uses a 5 × 5 grid, each descriptor is a vector of
size 400. For the baseline model, a similar searching mechanism was used, but the region
descriptor was the feature vector of a 1 × 1 feature map grid location. A single grid location
is sufficient for this model, since its feature representation is computed in a continuous
manner, without discrete variables, with a sufficiently large field of view.

For instance retrieval, nearest-neighbor matching based on the Euclidean distance
between descriptors can be employed. Initially, we conduct a qualitative analysis by
randomly sampling images from the test set and manually selecting specific query points to
analyze the results. The descriptors corresponding to these selected query points were then
used to search the database and retrieve samples with regions similar to the query points.
Figure 5 showcases six randomly sampled examples, which illustrate that the retrieved
image regions align well with the query semantics. For example, the retrieved regions
share the same cardiac chamber and view as the query points. Moreover, the anatomical
structures around the matched locations are visually similar to those in the query points.

For the retrieval task, the search is based solely on the concept descriptors This
approach ensures that the retrieval process focuses on the semantic content rather than
stylistic variations.

To quantitatively analyse this task, we use an independent test set of 450 images,
totalling 113,400 region descriptors (14 · 18 · 450). Performing nearest neighbor search on
this space is very fast. The set includes four echocardiographic views (apical 2-, 3-, and
4-chamber views, and a short-axis view), with frames captured at end-diastole (ED) and
end-systole (ES). For the apical views, LV contour annotations were available, from which
we extracted five key landmark points: left and right annulus, apex, mid-septum, and mid-
free-wall. We exploit these annotations to setup a retrieval tasks for these landmark points.
In total, there were 150 ED apical frames, each with five locations used as query points. The
search pool consisted of all 225 ES frames from all views, including the short-axis view. A
retrieval is considered a match if it corresponds to the ES image of the ED query and if the
retrieved location is adjacent to the annotated landmark point.

We present the results in Table 1, which shows the Mean Average Precision (mAP)
metrics for both models, computed using the top-5 search results. We observe that Con-
ceptVAE demonstrates more than double the performance of the baseline without any
retraining, revealing two important observations about ConceptVAE:

• The concept probability grid indeed encodes semantic content and thus xconcept func-
tions as a spatial arrangement of concepts, which for ConceptVAE are defined as
composable higher-level discrete features.

• ConceptVAE shows promising results for zero-shot instance retrieval based on local-
region queries, unlike more traditional approaches that operate at the image level and
need additional fine-tuning.
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Figure 5. Region-based instance retrieval using conceptual search. The leftmost column displays
query images, while the last three columns show the top-3 kNN retrieval results. Red dots indicate
the centers of the query and matched descriptor regions. Below each image, the view and cardiac
phase are displayed. Matches marked with an asterisk (*) are from the same acquisition as the query
image, but from a different cardiac phase.
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Table 1. Region-based instance retrieval mAP metric values.

Model

Landmark ConceptVAE Baseline

left annulus 0.418 0.148
mid-septum 0.281 0.098

apex 0.518 0.345
mid-free-wall 0.263 0.094
right annulus 0.371 0.128

average 0.370 0.163

5.2. Semantic Segmentation

The second task we employ is semantic segmentation, where features from the pre-
trained models are projected to match a down-sampled ground-truth mask. For this task,
we use five labels corresponding to heart chambers: left and right ventricles and atria in
apical views (A2C, A3C, and A4C views) and the left ventricle in the short-axis (SAX) view.

Starting with frozen model latent codes, a linear 2D convolutional kernel is fitted to
predict low-resolution (stride 16×) segmentation maps. Channel-wise softmax activation
is applied on top of the predicted linear logits, as shown in Equation (4). Here, pij(s)
represents the probability that location i, j to contain chamber s, xinput is the frozen latent
feature map, and Wk and wb are the kernel weight matrix and bias vector, respectively,
and containing 6 rows for the 5 prediction targets and one background channel.

pij(s) = So f tmax(Wk · xij
input + wb) (4)

The ground-truth was obtained by down-sampling the full scale chamber masks using
the area interpolation method. We perform training on an independent set consisting of
5000 training examples, and test the outcomes using an independent test set of 500 samples.
The Dice loss was employed as in Equation (5), where pij and tij are the predicted and
target chamber presence probabilities at location i, j, respectively.

LDice = 1 −
2 ∑i,j pijtij

∑i,j p2
ij + t2

ij
(5)

We explore three scenarios: (i) using only the concepts xconcept as input, (ii) using
the full latent space (xlatent = [xconcept, xstyle]) as input, and (iii) using only the style map
xstyle as input. We also investigate the influence of the linear kernel spatial size k for the
Feature decoder block on the evaluation scores, with different ranges, k ∈ {1, 3, 5, 7, 9}. To
investigate the effect of the proposed training procedure, we first compare with a randomly
initialized frozen model. The same random seed, dataset and number of linear-classifier
optimization iterations were used throughout all scenarios.

Table 2 presents the linear evaluation results in terms of Dice Loss, which is equivalent
to subtracting the Dice Score from 1. For both types of models (trained and randomly
initialized) and across all xinput setups, larger values of k result in lower test set losses.
This is expected, as larger kernels capture more local information, and concepts cooperate
locally to form larger anatomical structures. When xinput := xlatent and the model is trained,
the loss decreases only marginally when k exceeds 5 (i.e., the receptive field size used in
the Feature Decoder block).

In all scenarios, ConceptVAE achieves lower test losses. For both models, the lowest
losses occur when xinput := xlatent (i.e., both concepts and styles are used for segmentation).
When using only the concepts from the trained model, the losses are slightly higher but
still significantly lower than when using only styles. Additionally, when xinput := xstyles,



Appl. Sci. 2025, 15, 1415 16 of 23

the differences between the ConceptVAE and the random-init model are the smallest among
all three input scenarios. This result brings further evidence that xconcept contains semantic
information useful for downstream tasks like segmentation, while xstyle focuses on local
stylistic features. Moreover, there are virtually no differences in losses between using
only xconcept or only xstyle for the randomly initialised model, whereas these two scenarios
yield substantial differences for ConceptVAE. This highlights the impact of our proposed
unsupervised training framework on the model’s ability to separate concepts from styles.

Table 2. Dice loss on the semantic segmentation test set when using xconcept only, xstyle only, or xconcept

along with xstyle. For each row, the lowest Dice losses are marked with bold.

Kernel Concept Only Style Only Concept & Style

Concept
VAE

1 × 1 0.5876 0.6641 0.4853

3 × 3 0.2268 0.4238 0.1741

5 × 5 0.1311 0.2586 0.1087

7 × 7 0.1013 0.1825 0.0938

9 × 9 0.0903 0.1520 0.0900

Concept
VAE
Rand.
init.

1 × 1 0.6958 0.6942 0.6790

3 × 3 0.5413 0.5205 0.4655

5 × 5 0.3665 0.3504 0.2901

7 × 7 0.2465 0.2405 0.2016

9 × 9 0.1876 0.1990 0.1715

Vicreg 1 × 1 0.187

We also evaluate against the Vicreg baseline model using a similar procedure, but only
for the 1 × 1 sized convolutional kernel (details provided in Section 4), and illustrate the
outcomes in Table 2. We note that ConceptVAE, using trained concepts and 5 × 5 windows
or larger, achieves superior Dice metrics. This highlights the benefits of content-style
disentanglement and the model’s robustness against feature collapse.

5.3. Near-OOD Detection

To assess the proposed model’s capability to detect OOD samples, we employed a test
set comprising only parasternal long-axis (PLAX) views. Unlike the test set from Section 5.1,
which includes only apical and short-axis acquisitions, this set is considered OOD because,
although it contains echocardiographies, the views are different. The aim of this analysis
is to determine whether the latent space features can differentiate between the two data
distributions (i.e., apical and SAX versus PLAX views).

Most OOD methods are designed to work with supervised classification models
(e.g., [44,45]), thus requiring explicit labeling either for in-domain classes or for flagging
outlier samples. One method that does not require any labels and allows for fast log-
likelihood evaluation with respect to the underlying data distribution is Normalising
Flows (NFs). To this end, linear NFs [46] were fitted solely on the frozen embeddings of
in-distribution data (i.e., apical and SAX views) for both the proposed and baseline models.
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The NF took the form of Equation (6), where x represents an input derived from the latent
space, y is the transformed variable, and A, b are trainable parameters.

y = Ax + b

ln p(x) = ln pprior(y) + ln |det A|
pprior(y) = N (y|0, I)

(6)

For ConceptVAE, x is formed by concatenating a 5 × 5 window of concept probabilities,
excluding the style component. For the baseline model, x is the feature embedding of a
single location from the latent space feature grid. For all spatial locations corresponding
to ultrasound cones within the latent space grid, and for all training data, the region
descriptors x were extracted and fed into the NF to maximize ln p(x) for in-distribution data.
The same training data as in Section 5.2 was used to fit the NFs (i.e., only apical and SAX
views). After the NFs converged, an image-level score was computed for each test sample
by averaging the ln p(x) scores for all grid locations pertaining to the ultrasound cone.

Two sets of image-level scores were computed, one for in-distribution apical and SAX
views and one for OOD PLAX views. ROC curves were used to assess the score separability
between the two sets using ConceptVAE and the Vicreg baseline (Figure 6). ConceptVAE
has an area-under-curve of 0.753, being 10% larger than the baseline (with 0.655).

In contrast to the proposed ConceptVAE, the baseline model had access to PLAX data
during its development (as we used a vast collection of many echocardiography types
to pretrain the baseline model, following common practices for classical self-supervized
pretraining regarding dataset sizes and variability , therefore the PLAX view is not OOD
for the baseline model. Also, the contrastive objective used for developing the baseline
model should promote feature clustering w.r.t. data sub-groups (e.g., anatomical views).
Despite this fact, ConceptVAE produces local embeddings that are more separable between
echocardiographic views (even near-OOD ones), again indicating a reduction of feature
collapse due to the content-style disentanglement. This behavior of embeddings separability
even for near-OOD data does not usually manifest for regular deep-neural networks [47].

Figure 6. The ROC curves comparison between ConceptVAE and the Vicreg baseline model, for dis-
tinguishing in-distribution echocardiographic views from OOD PLAX ones. ConceptVAE has an
AuROC score of 0.753, while the Vicreg baseline has an AuROC of 0.655.

5.4. Aortic Valve Detection

To further evaluate the generalization capability of ConceptVAE, we aim to detect
latent space grid locations corresponding to the aortic valve (AV) region in views not used
during pre-training (i.e., PLAX). Similarly to Section 5.2, for this task we train a linear
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convolutional layer on top of frozen embeddings to perform a proxy object detection task.
Each testing sample has a bounding box annotation around the AV along with a label
indicating if it’s open or closed (depending on the cardiac phase depicted in the test image).
We downsized the bounding boxes to the output stride of the latent space and used an
overlap threshold t to determine the objectness [48] of each latent space grid location, i.e., if
the down-sampled bounding box overlaps a grid location with a ratio larger than t, then
that grid location objectness is set as 1, otherwise 0. Moreover, for each object grid location
the newly added convolutional layer also predicts the AV state (open or closed).

For ConceptVAE, the input to the linear layer is a 5 × 5 window of both concept
probabilities and associated styles for the concepts having the highest probability. The
output consists of 3 channels, one for classifying objectness and the other two for classifying
the AV state. For the baseline Vicreg model, the setup is similar, but the input is the feature
vector of a 1 × 1 latent space grid location (see Section 4 for details). Balanced binary
cross-entropy losses are employed to train both objectives (i.e., detection and labeling).

The results are illustrated in Table 3. The mAP scores are close (with the baseline
slightly better by 1.6% mAP), while the objectiveness AP is much larger for our proposed
model (+12%). This is because our model does a better job in locating Aortic Valve grid
positions, but somewhat lags in correctly classifying the AV state for the detected AV
locations. We hypothesise that locating the AV can be done by analyzing concepts (e.g.,
exploiting a linear separability of concept probabilities w.r.t. AV presence) while the AV
state can be inferred from the style component of the latent space. To test this, we trained a
new linear layer only on the concept components of the latent space and observe a severe
degradation in label classification performance while retaining the objectness classification
performance. The previous section revealed that the detected concepts on the near-OoD
PLAX views are still descriptive of the image’s semantics; however, the style component
may not fully capture all relevant fine details, since the proposed model was not trained on
PLAX views as opposed to the baseline model.

Table 3. Mean average precision scores for object detection on PLAX views.

Model

Metric ConceptVAE Baseline

“open-AV” class AP 0.337 0.297
“closed-AV” class AP 0.386 0.459

mean AP 0.362 0.378

objectness AP 0.786 0.665

5.5. Style-Based Synthetic Data Generation

We further explore how style information can be used to generate synthetic data.
Such data can be valuable for creating inputs conditioned by patient attributes, such as
generating images with more textured walls. To achieve this, we leverage the known range
of xstyle (since the constraint Lstyle is enforced during training), and investigate style-based
image generation. This involves adding Gaussian noise at various levels β as described
in Equation (7):

n ∼ N (0, I)

x∗style =
xstyle + βn√

1 + β2

(7)

where β controls the amount of noise injected into x∗style.
We then reconstruct the image using these style attributes. Randomly sampled recon-

structions w.r.t. multiple β (reusing the same sampled n) are illustrated in Figure 7, while
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Figure 8 illustrates reconstructions with multiple noise samplings nk ∼ N (0, I) and fixed
β = 0.3. We observe that even with relatively high β values, the reconstructions closely
resemble the unaltered concepts, while the image textures are modified (with minimal
changes to anatomical structures in terms of their shape or placement). This leads to the
following observations:

• The model uses xconcept to decode semantic content, such as anatomical structures
like chamber walls, blood pools, and valves, while xstyle is used to particularize local
textures, shadows and speckles.

• With ConceptVAE, synthetic data can be generated by modifying only textures and
speckles while retaining anatomical structures. This allows for the generation of
novel samples that can serve as style augmentations without modifying the content,
potentially enhancing the training performance of dense downstream models, such as
those used for segmentation.

Figure 7. Original images (left) displayed alongside reconstructions using x∗style with increasing levels
of injected noise, β. From the second column to the right, β values are 0 (unaltered reconstruction),
0.2, 0.4 and 0.6, respectively.

Figure 8. Reconstructed images with unaltered xstyle (left) alongside three reconstructions with
constant noise level β = 0.3. Each noisy reconstruction uses different noise, n ∼ N (0, I), as described
in Equation (7).

The samples generated with ConceptVAE remain within the original data distribution,
and thus can serve as a more calibrated augmentation method. In contrast, classical trans-
formations such as rotations and blurring may generate data points with appearances not
observed in the initial distribution (e.g., unnatural rotations or texture changes). Ultra-
sound medical imaging inherently introduces noise in video acquisitions in the form of pixel
speckles. ConceptVAE simulates the effect of different realizations of echocardiography-
specific noise, producing images that reflect this variability. Given the large variability
between acquisitions and patients in ultrasound imaging [49], the proposed method can
potentially improve the robustness of the models on downstream tasks.
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6. Conclusions
We present ConceptVAE, a novel SSL framework designed to learn disentangled

representations of 2D cardiac ultrasound images. This method involves converting input
embeddings into a set of discrete concepts and associated continuous styles.

Through multiple qualitative and quantitative analyses, we demonstrate that Concept-
VAE captures anatomical information within concepts vectors and local textures within the
style vectors, thereby achieving disentanglement. For example, by qualitatively analysing
the concept maps, we observe the method is able to specialise certain concepts to indepen-
dent anatomical structures such as blood pools or septum walls.

These properties prove beneficial for several downstream applications, including
region-based instance retrieval, object detection, and synthetic data generation.

Specifically, we provide empirical evidence that ConceptVAE outperforms traditional
SSL methods like Vicreg in region-based instance retrieval, OOD detection, semantic
segmentation, and object detection. Moreover, the method shows promising results in
generating synthetic data samples that reflect the original data distribution and preserve
anatomical concepts while varying styles.

For future work, we propose to apply the method to a broader range of medical image
modalities. Currently, we evaluated ConceptVAE on cardiac echocardiographies due to the
availability of an extensive dataset for pre-training and testing across various downstream
tasks. Additionally, we plan to devise an automated method to identify the number of
concepts needed, similar to the way object detection algorithms propose the number of
objects present in the image. Furthermore, we plan to test and extend our method to
3D data, which is prevalent in medical imaging, but adds another level of complexity
both for pre-training and for concept identification. In-depth analyses of disentangled
representations may also reveal other properties such as enhanced interpretability and
explainability, opening promising avenues for future research.
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