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Abstract: Breast cancer, a prevalent and significant cause of cancer-related mortality in
women, often necessitates precise detection through nuclear medicine techniques. Despite
the utility of computer-aided navigation in thoracoscopic surgeries like mastectomy, chal-
lenges persist in accurately locating and tracking target tissues amidst intricate surgical
scenarios. This study introduces a novel system employing a channel R-CNN model to
automatically segment target regions in thoracoscopic images and provide precise cutting
curve indications for surgeons. By integrating a Detection Network Head and Thorax
Network Head, this multi-channel framework outperforms existing single-task models,
marking a pioneering effort in cutting curve indication for thoracoscopic procedures. Utiliz-
ing a specialized dataset, the model achieves a notable region segmentation mIOU of 79.4%
and OPA of 83.2%. In cutting path planning, it attains an mIOU of 68.6% and OPA of 77.5%.
The system operates at an average speed of 23.6 frames per second in videos, meeting the
real-time response needs of surgical navigation systems. This research underscores the
potential of advanced imaging and AI-driven solutions in enhancing precision and efficacy
in thoracoscopic surgeries.

Keywords: image-guided surgery; semantic segmentation; surgical navigation; precision
surgery

1. Introduction
Over the last decades, breast cancer has ranked as the most commonly diagnosed

cancer among US women (excluding skin cancers) and is the second leading cause of
cancer death among women after lung cancer [1]. There were 2.26 million cases of female
breast cancer in the year 2020, which constitutes the most commonly diagnosed cancer
worldwide [2]. Due to the reluctance to undergo radiation therapy and the fear of recur-
rence, breast-conserving-surgery-eligible patients are increasingly electing mastectomy [3].
Thoracoscope surgery is a technique for breast-related operation in the treatment of thorax
illness [4], which prolongs progression-free survival rates and improves the prognostic
effect for metastatic diseases. For thoracoscope surgery, the entire breast may be removed,
including all of the breast tissue and sometimes other nearby tissues. Both breasts of
severe patients could be removed in a double mastectomy [5,6]. Therefore, thoracoscope
surgery requires the experiences and skills of surgeons [7]. Errors in operations, includ-
ing target area miscuts and incorrect cutting curves, may lead to blood vessel bleeding,
spasm, and even paralysis and surgical failure [8]. Moreover, reoperation of the surgery
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could also increase patient stress and the risk of failure. Aiming at addressing such prob-
lems, computer-aided surgery systems can provide effective indications by giving accurate
guidance regarding target issues to promote the surgeon’s perception in the operation
environment and the control of surgical tools [9–11]. Recent studies about thoracoscope
surgery navigation mainly focus on the resection of small and deep-seated pulmonary
nodules [12], the assessment of the micro-coil position relative to the lesions [13], and the
localization of the tumor [14]. To our best knowledge, there are no related systems for
thoracoscope surgery to guide the surgeons’ cutting paths.

For the cutting curve indication in thoracoscopic surgery, given in Figure 1a, specific
category segmentation masks (e.g., electrotome, fibrous tissue, and pectoralis major) are
depicted in Figure 1b. Our proposed thoracoscopic surgery indication system based on
the channel R-CNN is applied to segment, classify, and track the excised contours of
target areas and to generate the cutting curves for clinical operation. However, detecting
and tracking the target areas of thoracoscopic tissues under fickle and complex surgery
situations, which usually includes the surgery instrument occlusion and blurred blood
stains, could be a challenging task for clinical applications. Furthermore, operation errors
like the cutting of target areas of the pectoralis major and blood vessels may influence the
effects of mastectomy and can even cause surgery failure. Therefore, traditional approaches
including machine learning segmentation models are not suitable for this task under
certain situations.
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Figure 1. System interface. (a) Clinical shooting of thoracoscopic surgery system. (b) Target region
indication of a specific frame.

This paper proposes a novel system that can automatically and accurately segment
target regions from thoracoscopic surgery images and provide cutting curve indications for
surgeons. Mask R-CNN [15] is utilized to build the proposed two-stage structure network,
the channel R-CNN, where the feature maps of surgery frames are extracted by DenseNet
first. Then, the features are input into the parallel channels to generate the instance
segmentation masks (channel 1#) and the rough cutting curve (channel 2#). Our previously
proposed leapfrog algorithm [16] is applied for path planning in the prediction of refined
cutting curves. We also design an improved objective function to evaluate the segmentation
performance of the rough cutting path; moreover, the replanning strategy based on the
leapfrog algorithm chooses the optimized refined cutting curve for further generation.

The proposed system is related to image segmentation, cutting indication, and
computer-aided surgery navigation. These works are briefly reviewed in this section.

Image segmentation. Recent advancements in neural networks have significantly
transformed the field of image segmentation [17–21]. Liu et al. [22] proposed an effi-
cient medical image segmentation network based on an alternating mixture of a CNN
and Transformer tandem, which is called Eff-CTNet, which achieved better performance
with less computation sources. Alam et al. [23] proposed a graph model initialized by a
fully convolutional network (FCN) named Graph-FCN for image semantic segmentation.
H-DenseUNet [24] extracted the intra-slice features efficiently and used the 3-D counterpart
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with hierarchically aggregating volumetric contexts for liver and tumor segmentation.
Chen et al. [25] highlighted the convolution with upsampled filters, atrous spatial pyramid
pooling (ASPP), and combining methods from DCNNs as well as probabilistic graphical
models for better segmentation performance. Mask R-CNN [15], which served as the base
model for this paper, has been widely applied for medical image segmentation and achieves
accurate and fast performance by adding a branch for predicting the object mask. Mask
R-CNN is still one of the most representative segmentation models and is widely applied
in clinical contexts; its variations [26–29] provide stable foundations for medical image
segmentation. However, the proposed channel R-CNN distinguishes itself by employing a
novel multi-channel architecture; by integrating DenseNet as a base model, it processes
feature maps through two parallel channels: one for instance segmentation using Mask
R-CNN and another for generating surgical cutting curves. This dual-channel approach
not only enhances segmentation accuracy but also provides real-time surgical guidance,
setting it apart from traditional single-task models.

Cutting indication. An improper cutting curve not only makes the surgery difficult but
may also lead to the injury of other tissues; therefore, cutting curve indication is a difficult
and critical challenge in medical applications [30]. Chrysovergis et al. [31] applied the
CNN model for the assessment of unconstrained surgical cuttings in VR; different cutting
trajectories were distinguished and selected for optimization. Fast and efficient fluid dy-
namic visualizations for the heart surgery simulation were proposed by Sugeng et al. [32];
comparison of the frame rates for the surgery simulation proved the effectiveness of their
approaches. Jin et al. [33] presented the meshless total Lagrangian adaptive dynamic relax-
ation (MTLADR) algorithm to address the shortcomings, including high computational
cost and the need for re-meshing in clinical surgical cutting. Tang et al. [34] designed a
hybrid CNN–Transformer network to capture both the local and global information and
performed experiments on two datasets to demonstrate its superior capability. A periac-
etabular tumor resection was simulated using a pelvic bone model by Cartiuax et al. [35],
by which the location of the cut planes with respect to the target planes was significantly
improved. However, the existing methods still face limitations with real-time requirements
and are not able to handle the cutting curve indication in thoracoscopic surgery; high
computation costs and a complex operation background add difficulties to their clinical
applications. Despite these advancements, existing methods face limitations in real-time
applications and complex surgical environments. The channel R-CNN overcomes these
challenges by incorporating a Thorax Network Head (TNH) that generates rough cutting
curves, specifically designed for thoracoscopic surgery. This integration allows for real-time
navigation and precise cutting path planning, addressing the high computational demands
and operational complexities of current methods.

Computer-aided surgery navigation system. Image-guided surgery navigation tech-
niques have been widely applied in various clinical scenes [36–38]. The main purpose
of image-guided surgery (IGS) is to provide help to surgeons in order to perform safer
and less invasive procedures while removing tissue tumors, resulting in surgeries that are
conducted more efficiently and less riskily. As for thoracoscopic surgery, Lee et al. [14]
developed a thoracoscopic surgical navigation system with real-time augmented image
guidance to assess the potential benefits for minimally invasive resection of chest tumors,
which improved the accuracy of tumor localization. Hanna et al. [39] described the evolu-
tion of thoracoscopic spine surgery from basic endoscopic procedures using fluoroscopy
and anatomical localization through developmental iterations. Moreover, a virtual reality
simulation system [40,41], three-dimensional navigation [42,43], intraoperative fluorescence
visualization [44], CT imaging [45], integrated models [46], and holographic laser projec-
tion [47] models have been deployed for thoracoscopic surgeries. However, no existing
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studies focus on the cutting path planning process of chest surgery. To our best knowledge,
the indication difficulties for the clinical operations caused by complex backgrounds and
huge computation costs have not yet been addressed. The channel R-CNN contributes to
this field by offering a comprehensive solution that combines instance segmentation and
surgical navigation. Its dual-channel architecture not only segments surgical areas with
high accuracy but also guides cutting paths, providing a level of functionality and integra-
tion that surpasses existing multi-task models. By leveraging the strengths of DenseNet
and the innovative use of parallel channels, the channel R-CNN sets a new standard in
both segmentation and navigation capabilities, making it a valuable tool in the realm of
computer-aided surgery.

Moreover, the proposed framework based on the channel R-CNN is an effective
attempt at thoracoscopic surgical navigation, which has the advantages of high accuracy,
light weight, and fast real-time response. Moreover, influences from occlusion regions by
surgical instruments are also reduced, and the robustness of our system is strongly proved
by experiments. A flowchart of the proposed framework is given in the next section. The
contributions of our system are listed as follows:

(1) A real-time image-guided thoracoscopic surgery navigation system for surgeon op-
eration with target region segmentation and cutting path indication is proposed.
To our best knowledge, this is the first trial in the cutting operation indication of
thoracoscopic surgery;

(2) The channel R-CNN network is innovatively designed, the Detection Network Head
(DNH) and Thorax Network Head (TNH) operate in parallel to process the surgery
navigation task;

(3) The improved leapfrog algorithm is applied to refine the cutting curve generation
based on rough segmentation results, and the combination with the region detection
results ensures the accuracy of the cutting curve and reduces the surgery risk.

This paper is organized as follows. Section 2 presents the Materials and Methods.
Results and Discussions are given in Section 3. Section 4 presents the Conclusions.

2. Materials and Methods
2.1. Dataset Preparation

A high-quality dataset carries important prior knowledge for network training. Our
proposed dataset is provided by the Peking Union Medical College Hospital comprising
six videos captured from real thoracoscopic surgeries. This study was approved by the
ethics committee of Research Center for Big Data and Intelligent Measurement and Control
from Beijing Jiaotong University; all subjects provided informed consent for enrolling in
this study.

2.1.1. Thoracoscopic Surgery Image Dataset

The proposed dataset for segmentation contains 7320 image frames from the thora-
coscopic surgery video. All the patients’ sensitive information is removed and checked
by the hospital’s ethics committee. The Nottingham grading system presented by the
World Health Organization (WHO) serves as the reference for histological labeling of
sample categories.

The 7320 images are from 8 patients who had thoracoscopic surgeries based on the
needs of breast beauty. Each frame consists of different imaging components (histopatho-
logical and non-histopathological parts), including an electrotome (5190), fibrous tissue
(3420), pectoralis major (4510), burnt spots (2030), rib periosteum (2800), fat (3070), blood
vessel (1050), and nervous tissue (910), which are presented in Figure 2. In the clinical
practice of thoracoscopic surgery, cutting into tissues such as muscles and nerves could
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cause potential bleeding, muscle weakness, and paralysis. Therefore, accurate and timely
surgery navigation reduces the risk and improves the cutting efficiency.
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Figure 2. Typical imaging components from video frames. (a) Electrotome. (b) Fibrous tissue.
(c) Pectoralis major. (d) Burnt spots. (e) Rib periosteum. (f) Fat. (g) Blood vessel. (h) Nervous tissue.

Slides from the proposed dataset are digitized with a semi-rigid electronic thoracic
video endoscope (Olympus, LTF-160, Olympus UK, Southend-on-Sea, UK), which has a
flexible tip and incorporates a 2.8 mm working channel. The video output applies the raw
format of the thoracoscope; then, the output is divided into the RBG frames with 8-bit color
depth for each channel. Typical samples of the dataset are given in Figure 3, by which the
visual details are provided.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 5 of 22 
 

practice of thoracoscopic surgery, cutting into tissues such as muscles and nerves could 

cause potential bleeding, muscle weakness, and paralysis. Therefore, accurate and timely 

surgery navigation reduces the risk and improves the cutting efficiency. 

 

Figure 2. Typical imaging components from video frames. (a) Electrotome. (b) Fibrous tissue. (c) 

Pectoralis major. (d) Burnt spots. (e) Rib periosteum. (f) Fat. (g) Blood vessel. (h) Nervous tissue. 

Slides from the proposed dataset are digitized with a semi-rigid electronic thoracic 

video endoscope (Olympus, LTF-160, Olympus UK, Southend-on-Sea, UK), which has a 

flexible tip and incorporates a 2.8 mm working channel. The video output applies the raw 

format of the thoracoscope; then, the output is divided into the RBG frames with 8-bit 

color depth for each channel. Typical samples of the dataset are given in Figure 3, by 

which the visual details are provided. 

 

Figure 3. Three samples of the segmentation dataset. (a,c,e) are the original images, and (b,d,f) are 

the results of the manual annotation and network output. Class labels are provided on the top left 

corner of the bounding box; segmented masks are distinguished with different color attributes. 

Representative samples are extracted and labeled by four pathologists with decades 

of clinical experience. The content of each frame is hand-annotated with the web-based 

tool LabelImg [48], the frame size is saved to 1280 × 720, and the ground truth is also 

provided. Aiming at providing effective labels, all the annotations are made in consider-

ation of the consistency principle. The original dataset is preprocessed by the combina-

tions of data augmentation approaches, which include cropping, flipping, mirroring, ro-

tation. Then the preprocessed dataset is input into the network for training. The proposed 

dataset is divided into training, validation, and testing sets according to the ratio of 6:2:2; 

5-fold cross-validation is applied to ensure robustness. 

(a) (b)

(c) (d)

(e) (f)

Figure 3. Three samples of the segmentation dataset. (a,c,e) are the original images, and (b,d,f) are
the results of the manual annotation and network output. Class labels are provided on the top left
corner of the bounding box; segmented masks are distinguished with different color attributes.

Representative samples are extracted and labeled by four pathologists with decades of
clinical experience. The content of each frame is hand-annotated with the web-based tool
LabelImg [48], the frame size is saved to 1280 × 720, and the ground truth is also provided.
Aiming at providing effective labels, all the annotations are made in consideration of the
consistency principle. The original dataset is preprocessed by the combinations of data
augmentation approaches, which include cropping, flipping, mirroring, rotation. Then
the preprocessed dataset is input into the network for training. The proposed dataset is
divided into training, validation, and testing sets according to the ratio of 6:2:2; 5-fold
cross-validation is applied to ensure robustness.
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2.1.2. Cutting Curve Dataset

In the video frames, we choose the essential images Iess where cutting indications are
completely visible and crucial for thoracoscopic surgeries. The dataset for training the TNH
model is generated by manual labeling of the essential images Iess to produce the frames Icc

with clear cutting curves. We select 4 frequently faced surgical cutting lines and generate
5158 images in total from the 8 video sequences.

Feature maps generated from DenseNet are applied for the training of the TNH with a
resolution of 1280 × 720. As given in Figure 4, examples from the cutting curve dataset
with corresponding splitting indications labeled by our pathologists are demonstrated. To
our best knowledge, there is no available dataset for thoracic cutting indication at present.
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2.2. Methods

The main content of this section is as follows: First, the navigation problem in tho-
racoscopic surgery is specifically defined. After that, the proposed framework used for
surgery navigation is given. Finally, evaluation metrics which indicate the model navigation
performance are provided.

2.2.1. Problem Definition

The proposed model is applied to address the navigation issues of thoracoscopic
surgery, which include the cutting indication of the electrotome in operation, as given
in Figure 1a. It consists of instance segmentation and trajectory planning. We assign the
stromal parts of the original frames as the background and assign the key regions annotated
by pathologists as the RoIs. They are the instance segmentation objects including the fibrous
tissue, pectoralis major, burnt spots, etc. Thoracoscopic surgery is a step-by-step incision
process working towards the muscle gaps using the electrotome; our goal is to provide the
cutting indications while eliminating interference from the RoIs. In this case, the surgery
navigation system is designed to be a two-stage structure; a rough cutting curve is generated
in the first stage; then, it is refined using the restrictive conditions extracted from the RoIs
in the second stage, by which the final cutting path is produced. The proposed framework
could be achieved by object location (put bounding boxes around the RoIs), classification
(determine the specific categories of the RoIs: fibrous tissue, pectoralis major, burnt spots,
etc.), instance segmentation (draw accurate masks for the RoIs), and trajectory planning
(refinement of the initial cutting curve). The outputs of the instance segmentation from the
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proposed channel R-CNN are provided (Figure 1b), and different RoIs are indicated by
uniquely colored masks; corresponding class labels are also generated.

2.2.2. Model Definition

(1) Network Structure: As given in Figure 5, details of the proposed channel R-CNN
are provided. DenseNet is applied as the base model, which outputs the feature maps
of the surgery frames. Then, the features are fed into two parallel channels to generate
the instance segmentation masks and the rough cutting curve. In channel 1#, the Mask
R-CNN structure is applied. Feature maps from the DenseNet are input into the region
proposal network (RPN) [49] to obtain the alternative proposals, which are the RoIs. Then,
the proposed Detection Network Head (DNH) is applied to output the specific category,
accurate bounding box, and mask graph. As for channel 2#, the proposed Thorax Network
Head (TNH) produces a rough cutting curve to navigate the operation of the thoracoscopic
surgery, depending on the feature maps from DenseNet. Finally, the refined cutting curve
is generated based on the outputs of the DNH and TNH, and an improved leapfrog
algorithm [16] provides the path planning for the prediction. Due to the multi-channel
architecture of the proposed model, we name it the channel R-CNN.
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Figure 5. Overview of the proposed channel R-CNN structure. DenseNet is applied as the base
model, and feature maps are extracted and fed into the two parallel channels (channel 1# and 2#).
The Detection Network Head (DNH) is applied to output the specific category, accurate bounding
box, and mask graph; the Thorax Network Head (TNH) produces a rough cutting curve. Finally, the
refined cutting curve is generated based on the outputs of the DNH and TNH using the improved
leapfrog algorithm.

(2) Objective Function: the proposed system aims to navigate the thoracoscopic surgery
by outputting the refined cutting curve. The DNH and TNH models accomplish this task.
Specific loss functions are designed: for channel 1#, Ldet evaluates whether the RoIs are
located accurately, Lcat is applied to measure the classification accuracy for different thoracic
components, and Lmask determines whether the bounding boxes regress to true ROI edges.
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For channel 2#, a cutting prediction loss Lcut is proposed for the TNH, which evaluates the
segmentation performance of the cutting path, as follows:

Lcut =
N

∑
k=1

(−qk log(pk)− (1 − qk) log(1 − pk)) (1)

where N represents the total number of applied frames in the model training; pk ∈ (0, 1),
pk = nin/ntotal , and nin represents the pixel number in the two-dimensional confidence
interval of the annotation path; ntotal represents the total pixel number of the cutting curve
generated by the TNH. pk is output by the sigmoid function of the proposed model. qk = 1
when the created curve has an intersection with the ground truth; if not, qk = 0. Therefore,
the loss function L of the proposed channel R-CNN consists of two parts (channel 1# and
2#), by which the rough cutting curve is generated.

L = Ldet + Lcat + Lmask︸ ︷︷ ︸
DNH

+ Lcut︸︷︷︸
TNH

(2)

(3) Cutting path replanning: after generating the segmentation mask and the rough
cutting curve from the DNH and TNH, we refined the initial cutting path based on the
previously published work, using the improved leapfrog algorithm [16]. The mask image is
effectively combined with the initial cutting indication information by the refined process,
in order to avoid the key areas that would be likely to affect the patients’ bodily function
if they are cut up accidentally, as given in Figure 6. The image which combines the
segmentation mask and the rough cutting line is marked as the directed graph G = (V, E),
V represents the pixel nodes, and E stands for the detected edges (the mask EM and the
rough cutting lines ER). Then, the frogs are randomly generated to construct the initial
population, which depicts the potential path among pixel nodes, and they are recorded as
U = (U1, U2, . . . , Ud); here, d represents the dimension of path space solution. Then, the
source node is set as VS, which iterates over the U to find the optimal path EO comparing
with ER. Then, the forwarding-satisfaction rate of each option is applied to select a more
effective path, which is given as follows:

PS(s, e) =

n
∑

j=1
xi,jδi,j

ε
(3)

where xi,j represents the pixel value at the position (i, j), and PS(s, e) stands for the
forwarding-satisfaction rate from the source node to the end node. δi,j is the degree of
information correlation between the pixel xi,j and its neighborhood pixels. ε represents the
routing hops of the path to be calculated. Then, the optimal path EO is selected according
to the presented routing satisfaction rate.
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Moreover, the optimal path EO is further refined using the detected edges (segmen-
tation mask EM); we define the positive factor fPO, negative factor fNE, and the penalty
factor fPE to modulate the refined path dynamically.

ER = (α × fPO + (1 − α)× fNE + fPE × EM
∗ ∩ EO(E)) → EO(E) (4)

where α ∈ (0, 1), which is the adjusting item of the factors. When α increases, the force
that constrains the optimal cutting line EO close to the segmentation mask will increase.
fPO and fNE adjust the refined cutting path jointly, which closes to the segmentation mask
border while maintaining the rough boundary. EM

∗ refers to the alarming parts in the
segmentation masks, including the pectoralis major, rib periosteum, and nervous tissue.
fPE keeps the refined cutting line away from the sensitive areas by testing the intersection
of EM

∗ and EO. Therefore, the initial cutting curve is reoptimized, the critical areas of the
thoracoscopic surgery are avoided, the operational efficiency is improved, and the potential
risk is reduced. The generation process of the refined cutting curve using the improved
leapfrog algorithm is given in Algorithm 1:

Algorithm 1. Refined Cutting Curve Generation

Input: ~ directed graph G = (V, E)
Output: ~ fine-tuned cutting path EF

1: Treat pixels of graph G as individuals in frog population and record its size as P, set
the population number as M, and set the first and maximum iteration number as 1 and I;
2: Define the frogs as the vector

{
X1, X2, . . . , Xi, . . . , Xp

}
, where

Xi = (xi1, xi2, . . . , xij, . . . , xin). When xin = 0, the node is removed; otherwise, the node
is selected;
3: Calculate the forwarding-satisfaction rate PS(s, e) of each path using Equation (3);
then, adjust the frog order;
4: Divide P frogs into M populations, and set the sub-population as
{F1, F2, . . . , Fn, . . . , FM}. Iterate over the potential paths U = (U1, U2, . . . , Ud), and set
Xh as the path with highest forwarding-satisfaction rate and Xl as the path with the
lowest rate. Update the value of Xh in sub-population Fn;
5: Re-adjust the frogs of sub-population Fn according to PS(s, e), and generate the
optimal subpopulation. Obtain the globally optimal path EO by comparing with
U = (U1, U2, . . . , Ud);
6: Re-arrange the frog order in sub-population Fn, and apply the positive factor fPO, the
negative factor fNE, and the penalty factor fPE for the calculation of PS(s, e). Iterate over
the frog population on the segmentation mask EM;
7: Update the refined cutting path EF in circulation, loop step 3, and compare with the
local optimal cutting path EL;
8: end if
9: Determine whether the EF outperforms the EL;
10: Update the refined cutting line: EF = EF ∩ EL;
11: Return EF

(4) Implementation and Transfer learning: the proposed channel R-CNN model is
constructed based on the Visual Studio 2018, Opencv 3.4.1, and the Tensorflow1.12.0. The
Win 10 (64-bit) system with 64 GB of RAM and an Intel Core (TM) i7-8700 are applied for
training. Due to the limited hardware configuration, the original input data (1280 × 720)
are divided into 32 patches with overlap, and each patch is resized to 512 × 512 pixels.
The labeled information provided with the resized patches are input into the model for
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training; as for the testing stage, the image patches are reassociated together and output as
the whole files.

Moreover, the originality of the thoracoscopic surgery navigation system results in
insufficient medical image data. The proposed framework is limited by accurate annotation
information and the balanced data category. Therefore, transfer learning [50] is applied
to address the problem of lacking data. Shallower layers in the deep learning model
obtain more general parameters, which map the data from the source feature space to
the target feature space [51]. Pre-training preserves the shared parameters and saves
the training procedure, which also reduces the overfitting on the limited labeled dataset.
Considering the diversity across object categories and scenes, the benchmark status in
computer vision tasks, the benefits of transfer learning, and the widespread adoption
within the research community, the MS COCO dataset [52] was applied for the pre-training
of the channel R-CNN, which contains 91 target categories, 328,000 images, and 2.5 million
labels. Parameters of the pre-trained model are initialized with the MS COCO dataset; then,
the DNH and TNH channels are fine-tuned with the proposed thoracoscopic sugary image
dataset. The channel R-CNN framework is trained with the multi-stage strategy, which is
divided into three steps.

Stage 1: pre-train the higher layers (Dense Block and Transition Layer) of the DenseNet
backbone [53] with the MS COCO dataset. The DNH is trained using the feature maps
from DenseNet. Stochastic Gradient Descent (SGD) with backpropagation is applied for
model training. Based on the principles of transfer learning, the DNH is firstly trained for
50 epochs; then, the DenseNet with the DNH is fine-tuned using the thoracoscopic sugary
image dataset;

Stage 2: according to the proposed cutting prediction loss function Lcut, the fixed
parameters in Stage 1 are transferred to the TNH; then, it is fine-tuned with the thoraco-
scopic sugary cutting dataset, by which the rough cutting line is generated. In the training
process, Stochastic Gradient Descent (SGD) is applied. As given in Figure 7, the fined-tuned
model is observed to converge after 210 epochs; we found the transfer learning works well
in practice;

Appl. Sci. 2025, 15, x FOR PEER REVIEW  11  of  22 
 

 

Figure 7. Training process of the proposed model. 

2.2.3. Evaluation Metrics 

As given in Table 1,  ' '&P N   refer to the prediction categories generated by the pro-

posed channel R-CNN;  &P N   are the actual categories provided by the annotation. Aim-

ing at illustrating the indication performance of the proposed channel R-CNN framework, 

the mean Intersection Over Union (mIOU), Overall Pixel Accuracy (OPA), Standard Mean 

Accuracy (SMA), and Dice coefficient (DC) are used to evaluate the segmentation perfor-

mance. The DNH channel achieves  the classification of segmented masks based on  the 

confusion matrix in Table 1. 

Table 1. Confusion matrix for the evaluation of detection performance. 

  Prediction Category ( 'P )  Prediction Category ( 'N ) 

Actual category ( P )  True positive (TP )  False negative ( FN ) 

Actual category ( N )  False positive ( FP )  True negative (TN ) 

As for the segmentation performance, record the segmentation results as r and the 

annotation as a. Define the pixel confusion matrix  1,1 1,2 , ,( , ,..., ,..., )i j n nC C C C C ; n is the total 

number of statistical pixels, and  ,i jC   is the number of pixels annotated as  ia  while seg-

mented as  jr . The Jaccard coefficients  iJ   for classes  ia   are calculated as follows: 

,

,

i i
i

i j i i

CTP
J

TP FP FN T P C
 

   
  (5)

where  iT   represents the total number of pixels annotated with  ia , and  jP   refers to the 

number of pixels segmented as  jr . Thus, mIOU is presented as follows: 

1 N

imIOU J
N

    (6)

N is the number of categories. OPA is given as follows: 

,

,

i i i

i j i j

C
OPA

C
 
 

  (7)

SMA is calculated as follows: 

Figure 7. Training process of the proposed model.

Stage 3: take the segmentation mask and the rough cutting curve from the above
two stages, initialize and augment the frog population P, and conduct the first and second
generation to obtain the globally optimized cutting curve. Set the number of nodes as 1000,
the total number of frogs as 2400, and the number of iterations I as 95; then, operate the
generation process of the refined cutting curve using the improved leapfrog algorithm, and
calculate the forwarding-satisfaction rate for potential paths U = (U1, U2, . . . , Ud). Use the
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adjusting factors fPO, fNE, fPE to update the forwarding-satisfaction rate PS(s, e); iterate all
the alternative options until the refined cutting path EF is generated.

2.2.3. Evaluation Metrics

As given in Table 1, P′&N′ refer to the prediction categories generated by the proposed
channel R-CNN; P&N are the actual categories provided by the annotation. Aiming at illus-
trating the indication performance of the proposed channel R-CNN framework, the mean
Intersection Over Union (mIOU), Overall Pixel Accuracy (OPA), Standard Mean Accuracy
(SMA), and Dice coefficient (DC) are used to evaluate the segmentation performance. The
DNH channel achieves the classification of segmented masks based on the confusion matrix
in Table 1.

Table 1. Confusion matrix for the evaluation of detection performance.

Prediction Category (P’) Prediction Category (N’)

Actual category (P) True positive (TP) False negative (FN)
Actual category (N) False positive (FP) True negative (TN)

As for the segmentation performance, record the segmentation results as r and the
annotation as a. Define the pixel confusion matrix C(C1,1, C1,2, . . . , Ci,j, . . . , Cn,n); n is the
total number of statistical pixels, and Ci,j is the number of pixels annotated as ai while
segmented as rj. The Jaccard coefficients Ji for classes ai are calculated as follows:

Ji =
TP

TP + FP + FN
=

Ci,i

Ti + Pj − Ci,i
(5)

where Ti represents the total number of pixels annotated with ai, and Pj refers to the number
of pixels segmented as rj. Thus, mIOU is presented as follows:

mIOU =
1
N

N

∑ Ji (6)

N is the number of categories. OPA is given as follows:

OPA =
∑i Ci,i

∑i ∑j Ci,j
(7)

SMA is calculated as follows:

SMA =
1
N ∑i

Ci,i

∑j Ci,j
(8)

DC is presented as follows:

DC =
2TP

2TP + FP + FN
(9)

3. Results and Discussions
3.1. Evaluations on Thoracic Tissue Contour Segmentation

This section discusses the quantitative results for thoracic tissue contour segmentation,
which are shown in Table 2. Four methods are applied for performance comparison.
FCN-8s achieves competitive results due to its ability to capture spatial information at
multiple scales; DeepLab utilizes atrous convolution (also known as dilated convolution) to
effectively capture object boundaries and fine details in images; U-Net is commonly used
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for biomedical image segmentation tasks and is designed to efficiently capture both local
and global features through a U-shaped architecture with skip connections; manual traits
refers to a manual feature extraction approach where handcrafted features are used for
segmentation, and it involves extracting and selecting features based on domain knowledge
and manual analysis. The average performance (indicated by mIOU, OPA, SMA, and DC)
of the proposed DNH model is compared with these four baseline approaches using
our dataset.

Table 2. Performance comparison of segmenting thoracic histological images as “Electrotome” (EL),
“Fibrous tissue” (FT), “Pectoralis major” (PM), “Burnt spots” (BS), “Rib periosteum” (RP), “Fat” (FA),
“Blood vessel” (BV), and “Nervous tissue” (NT). Time represents the processing time spent on one
frame; the unit is ms. Bold results refer to the best performance.

JPM JRP JBV JNT mIOU OPA SMA Time

FCN-8s [54] 78.5% 75.4% 80.6% 82.2% 76.8% 83.1% 82.8% 24.4
DeepLab [25] 64.4% 51.5% 63.9% 61.1% 59.5% 74.4% 57.9% 27.2

U-Net [55] 80.7% 72.3% 63.7% 75.4% 73.6% 82.0% 85.1% 26.5
Manual traits [56] 61.2% 46.7% 52.3% N/A 49.5% 76.7% 53.6% 29.1
Channel R-CNN 83.1% 83.6% 73.5% 83.9% 79.4% 83.2% 88.4% 23.3

Table 2 (Row 5) shows the segmentation performance of our model, which achieves
79.4% mIOU, 83.2% OPA, and 88.4% SMA among the proposed dataset. The proposed
approach outperformed the other baseline models with slightly better results. In the
subclasses, the channel R-CNN reaches relatively good performance in PM, RP, and NT
classification. Meanwhile, it only achieves a value of 73.5% for blood vessels. This is
due to the fickle appearance of vessels, which adds to the model detection performance.
For the comparison of processing efficiency, the channel R-CNN achieves an efficiency of
23.3 ms on one frame, which outperforms the other models with the leading edge of 1.1 ms,
3.9 ms, 3.2 ms, and 5.8 ms. We credit the segmentation improvement to the following
two differences between our model and the baseline models: First, a two-stage structure
was applied in the left channel; the RPN module (1st stage) transfers the focusing region
information to the DNH module (2st stage) using the “attention” mechanisms. Second,
a larger neural network, DenseNet, was adopted for the segmentation avoiding failing
into the overfitting dilemma with a mass of parameters. As for the efficiency advantage,
the channel R-CNN outperforms others due to its ability to integrate region proposal
networks (RPNs) and achieve instance segmentation within a single framework. This
integration allows for shared computation between the two tasks, leading to improved
speed and performance. Additionally, the use of features shared across tasks helps reduce
redundant computations.

Segmentation outcomes of the thoracic tissue contour and surgical instruments are
as given in Figure 8. Clear and complete borders of different regions are produced by the
DNH channel.

As given in Figure 9, we compare the segmentation performance of FCN-8s, U-Net,
and the channel R-CNN for specific thoracic tissue categories. Examining the results
presented in Figure 8a–c, it is concluded that the proposed system outperforms the existing
approaches with the increasing rates of metrics varying from 1% to 11%. Feature maps
from the DenseNet provide more explicit semantic characteristics for segmentation and
propose obvious flags for boundary division. All the models gain better results for the
pectoralis major (PM) and burnt spots (BS); this is due to their unique texture features
and richer datasets. As for the “Blood vessel” (BV) and “Nervous tissue” (NT), there still
exist much room for improvement; smaller morphological areas and chromaticity similar
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to the background increase the difficulties of segmentation and detection. However, the
segmentation accuracy of the proposed channel R-CNN is still close to that of clinicians,
which provides a technical basis for further promotion.
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3.2. Evaluations of Cutting Curve Segmentation

DenseNet [57] is applied as the baseline model for the cutting curve. Considering the
predictable relationship between waves at different pixels, the l1 and l2 error of the cutting
curve with the segmentation mask along with the peak signal-to-noise ratio (PSNR) are
taken to evaluate the cutting indication performance. Ablation studies are conducted to
further illustrate the improvement produced by channel 2# and the leapfrog algorithm, as
given in Table 3. It is concluded that the proposed TNH module with the optimization
process performs the best on all the metrics. The addition of the TNH and leapfrog
algorithm increases the segmentation PSNR and reduces the mis-division error, and more
target pixels are included in the mask, which is depicted by the higher segmentation metrics.
The proposed channel R-CNN outperforms the Mask R-CNN method with improvements
of 1.9%, 0.6%, 0.5%, and 1.1% for the mIOU, OPA, SMA, and DC metrics, respectively. For
the U-Net model, its segmentation performance is close to the proposed network for the
metrics of OPA and SMA, while its efficiency (24.7 ms) is relatively poor in comparison to
all models, which may be due to the deep architecture and extensive skip connections. The
numerous layers and complex connections in U-Net lead to a higher computational load
during both training and inference. As for the comparison of efficiency, the baseline model
DenseNet obtains the fastest processing time of 20.4 ms, the baseline model combining with
the TNH and leapfrog algorithm exhibit a decrease in processing efficiency (0.8 ms and
1.4 ms, respectively), but considering the improvement in detection accuracy, the processing
time of 21.8 ms is acceptable on the premise of meeting clinical real-time requirements. The
mask segmentation performance of the proposed network structure is proved by the model
performance comparison.
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Table 3. l1 and l2 error and commonly applied evaluation metrics for the cutting curve segmentation
using thoracic histological images. Time represents the processing time spent on one frame; the unit
is ms. Bold results refer to the best performance.

l1 l2 PSNR mIOU OPA SMA DC Time

DenseNet [57] 2.1 0.2 35.62 61.2% 73.9% 72.7% 69.6% 20.4
+TNH 1.8 0.2 35.74 63.4% 76.3% 75.1% 73.7% 21.2

+Leapfrog 1.6 0.1 35.97 70.5% 78.1% 80.2% 81.3% 21.8
Mask R-CNN [15] 1.7 0.1 35.83 68.6% 77.5% 79.7% 80.2% 22.1

U-Net [55] 1.7 0.3 34.48 67.5% 77.4% 78.2% 80.5% 24.7

3.3. Robustness Analysis

In order to evaluate the robustness of the proposed DNH module for thoracoscopic
surgery region segmentation, we conducted comparison experiments using clinical surgery
videos with a resolution of 1280 × 720 at 24 fps. Surgical images under different complex
backgrounds were input into the DNH module, and the region segmentation results of three
test videos captured in one surgery are as shown in Figure 10, which effectively handles
various states of surgical instrument occlusion. There rarely exists an abrupt direction
change in the thoracoscopy angle during surgery; therefore, the segmentation of target
regions is conducted based on the frames ordered in a small time period. Electrosurgery
focus is indicated by the segmented mask, by which the chief surgeons obtain clearer
cutting views. The proposed DNH can achieve robust segmentation of critical areas in
clinical video sequences.
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Figure 10. Target region segmentation by the DNH in different clinical videos. (a–c) Three individual
test videos from one surgery.

As given in Figure 11, four main states with frequent occurrence including appliance
occlusion (AO), tissue occlusion (TO), partial occlusion (PO), and complete visible (CV) are
presented. It is concluded from Figure 11 that the proposed channel R-CNN effectively
produces clear cutting curves in complex situations, which reduces the interferences from
background pixels.

To further analyze the cutting indication performance of the proposed method for
thoracoscopic surgery, visual segmentation on extra real surgery videos from cooperative
units is carried out, using images with a resolution of 1280 × 720 at 24 fps from the cutting
curve dataset. Table 4 illustrates the total number of frames and the percentage of frames
with different states for each video sequence on cutting curve segmentation. The table
outlines the channel R-CNN model’s segmentation efficiency across eight video segments,
showcasing the distinct percentages of events like AO, TO, PO, and CV. Variations in event
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distribution are evident, with average AO event percentages spanning from approximately
16.54% in v8 to 35.09% in v1. The TO event percentages fluctuate notably, ranging from
18.17% in v4 to 48.48% in v8. Meanwhile, PO event percentages average around 16.88%,
with v3 exhibiting the highest at 19.49% and v8 the lowest at 9.27%. CV event percentages
show a range from 5.47% in v2 to 32.13% in v4. The average number of frames across
segments is 669, with v5 recording the highest at 1320 frames and v8 the lowest at 284 frames.
The average processing for each frame remains stable at 41.6 ms. These quantitative
metrics highlight the diverse performance characteristics of the model across different
video segments, indicating the influence of event composition, frame count, and duration
on segmentation efficiency, which also indirectly illustrates the stronger segmentation
robustness of the proposed model.
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Figure 11. Visual cutting curves of the TNH under different conditions from a real surgery video.
(a) Appliance occlusion (AO). (b) Tissue occlusion (TO). (c) Partial occlusion (PO). (d) Complete
visible (CV).

Table 4. Descriptions of the duration, frame count, and the proportion of frames showcasing primary
states within the cutting curve dataset for video sequences.

Events [%]
Frames Time [s] t/Frame (ms)

AO TO PO CV

v1 35.09 23.11 13.28 28.52 634 26.41 41.6
v2 25.04 42.93 26.56 5.47 515 21.45 41.7
v3 31.89 24.23 19.49 24.39 798 33.25 41.7
v4 32.78 18.17 16.92 32.13 606 25.25 41.7
v5 19.09 39.45 21.73 19.73 1320 55.00 41.7
v6 26.37 42.76 14.61 16.26 493 20.54 41.6
v7 22.29 38.06 15.57 24.08 508 21.16 41.7
v8 16.54 48.48 9.27 25.71 284 11.83 41.7

Table 5 shows the segmentation performance including the mIOU, OPA, SMA, DC, and
time cost per frame (ms) for each video sequence to evaluate the efficiency and robustness
of the proposed model. The average speed of our system is 23.6 fps in videos. It is
concluded from Table 5 that the channel R-CNN achieves stable and consistent distribution
for segmentation in each scoring index, the results of video sequence v3 and v4 on SMA and
DC reach over 90%, reaching 91.2% and 90.9%, respectively. Therefore, the generalization
ability of our system is proved by performance evaluation using the video sequences, by
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which the thoracoscopic surgery is indicated using the clinical information from target
regions and cutting curves.

Table 5. Segmentation performance and time costs of one-frame processing for video sequences
(CON: thoracic tissue contour segmentation; CUR: cutting curve segmentation). Bold results refer to
the best performance.

v1 v2 v3 v4 v5 v6 v7 v8

Time (ms) CON 27 26 24 24 23 26 24 24
CUR 23 22 23 21 22 23 22 23

mIOU
CON 78.3% 82.5% 79.6% 76.1% 73.8% 80.7% 83.4% 80.9%
CUR 71.8% 70.3% 68.6% 72.1% 73.4% 72.2% 70.6% 69.2%

OPA
CON 77.4% 83.7% 84.5% 83.2% 81.1% 82.6% 83.8% 81.0%
CUR 78.5% 77.0% 76.1% 78.4% 80.6% 77.3% 77.5% 79.1%

SMA
CON 90.1% 86.8% 85.7% 91.2% 88.5% 86.2% 89.5% 88.7%
CUR 78.2% 79.8% 80.7% 78.4% 78.6% 79.0% 78.3% 80.6%

DC
CON 86.9% 89.2% 90.9% 84.6% 88.1% 89.3% 90.8% 88.8%
CUR 80.4% 76.5% 80.8% 79.1% 81.6% 80.7% 81.2% 80.4%

3.4. User Study

Five chest doctors were invited to experience and evaluate our indication system. After
the test, all the experimenters were asked to complete the questionnaire as the raw material
for the system evaluation, in which there were five key questions: (1) the accuracy of
thoracic tissue contour segmentation; (2) the accuracy of cutting curve indication; (3) system
smoothness; (4) the cutting guidance under obstruction of appliances and tissues; (5) the
utility of online guiding. All the questions are scored between 0 and 10, where the value is
positively correlated with satisfaction degree. Table 6 records the average scores for the
five questions, and the limits to be improved are also illustrated. As depicted in Table 6, the
accuracy of the thoracic tissue contour segmentation and the correctness of the cutting curve
indication have received better feedback (8.5 higher on average). The cutting guidance
under view occlusion is also acceptable. For the system smoothness, corresponding scores
are rather general. This is due to the current system’s computational efficiency; clinical
surgery indication requires timely responses, and changes in patient states caused by the
surgical procedure could range between a few seconds. Therefore, we need to concentrate
more on real-time performance, by optimizing the algorithm efficiency with TensorRT or
reducing network parameters. Moreover, it is also a feasible choice to process surgery data
parallelly using multi-thread processing.

Table 6. Survey results by questionnaire.

Questions D1 D2 D3 D4 D5 Mean Standard Deviation

1 8.5 9.8 9.4 9.9 8.4 9.2 0.64
2 8.3 8.9 8.4 8.6 8.8 8.6 0.23
3 8.1 7.7 7.5 7.9 7.3 7.7 0.29
4 8.0 8.5 8.9 8.5 8.0 8.4 0.37
5 8.5 7.5 8.5 7.9 8.6 8.2 0.43

3.5. Evaluation of Time and Computation Complexity

The hardware of the channel R-CNN is given in the section “Implementation and
Transfer learning”, and a comparison of the processing efficiency between the proposed
system and the other similar methods is depicted in Table 7.
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Table 7. Comparison of processing efficiency. Bold results refer to the best performance.

Method Size Processing Time (ms/Image)

FCN-8s [54] 1280 × 720 54
DeepLab [25] 1280 × 720 46

U-Net [55] 1340 × 1030 48
Manual features [56] 1280 × 720 62

Proposed 1280 × 720 53

As given in Table 7, the processing time for one image is listed. DeepLab [25] achieves
the highest efficiency among all the models of 46 ms/image; atrous convolution and
probabilistic graphical models contribute to the improvement. U-Net [55] reaches a similar
running time as DeepLab of 48 ms/image, which is superior to other existing methods.
Due to the proposed loss function and multi-channel network structure, the channel R-
CNN achieves a lower running efficiency of 53 ms/image compared to U-Net, while
outperforming the FCN-8s [54] and manual features [56] methods with an improvement of
1 ms and 9 ms, respectively. Considering the segmentation performance of target regions
and cutting curves, the accuracy of the proposed system compensates for the response
efficiency. However, in view of the real-time and safety requirements of clinical applications,
frame rates above 30/s are common, and the efficiency of the proposed model needs to be
further optimized.

Figure 12 shows the computation complexity in bytes for FCN-8s, DeepLab, U-Net,
manual features, and the proposed channel R-CNN. It is concluded that DeepLab and
U-Net achieve relatively lower complexity when facing different scales of input data. The
proposed system and FCN-8s gain similar space complexity, and the channel R-CNN runs
faster than FCN-8s, whose segmentation performance is also higher. Although the efficiency
and computation complexity of the proposed model is slightly worse than DeepLab and
U-Net, its segmentation results are obviously better. The channel R-CNN has taken the
segmentation accuracy and efficiency into account concurrently, which has the potential for
clinical application in thoracoscopic surgery.
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from our proposed dataset. Values are generated on a virtual machine and Python 3.8.6, which will
be only applied for comparison experiments.

To further evaluate the practical utility of the proposed system, we sought the expertise
of chest specialists to provide insights on the processing time in the context of real-world
applications. The feedback from these medical professionals offers a valuable perspective
on the system’s readiness for use in clinical settings. According to Dr. Zichen Wang from
Qilu Hospital of Shandong University, the processing time of the proposed system appears
to align well with practical requirements for timely diagnosis and decision-making in
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chest imaging tasks. Dr. Lin Wei from CNPC Central Hospital noted that the system’s
performance is promising and could significantly enhance workflow efficiency in the
clinical environment. Their expert assessment adds depth to our evaluation of the system’s
processing time and reinforces its potential application in real-world scenarios.

4. Conclusions
A novel channel R-CNN network for thoracoscopic surgery navigation to assist sur-

geons in cutting manipulation is proposed. The excised contours of target regions are
tracked through semantic segmentation by a Detection Network Head (DNH) in channel
1#. Then, the cutting curve indication is conducted using the Thorax Network Head (TNH)
in channel 2#, which involves rough and refined cutting operations. Results from the
indicators exhibit an mIOU of 79.4% and 70.5% and OPA of 83.2% and 78.1% for the target
contour and cutting curve segmentation, respectively. The contribution of the framework
modules to the final results is verified by an ablation study. The comparative experimental
results illustrate that our framework could achieve accurate and robust navigation under
complex surgery situations in a clinical environment. It is feasible to implement semantic
segmentation and navigation for thoracoscopic surgery using the RNN network.

Our proposed technique, while promising, has room for enhancement, particularly in
clinical applications such as segmentation accuracy and real-time responsiveness. In future
studies, we aim to optimize the system’s efficiency by reducing network configuration
parameters and implementing an inference acceleration refiner. This will be crucial for
meeting the stringent demands of real-time surgical navigation. To further improve seg-
mentation accuracy, we plan to refine the loss function to minimize surgical risks, especially
in critical tissue areas. This enhancement is vital for ensuring patient safety and surgical
precision. Considering the framework structure, we will explore the application of more
natural scenes to adapt the real-time network, maintaining accuracy while significantly
boosting efficiency. This adaptation is essential for the model’s practical deployment in
dynamic surgical environments.

Additionally, to meet real-time surgical navigation requirements, this future study will
further optimize the model architecture to improve real-time performance and response
speed; explore the use of specialized hardware (such as GPU, TPU, etc.) for acceleration
to improve the computational efficiency; introduce online learning mechanisms to enable
models that learn and adjust in real-time from new data to adapt to constantly changing
surgical environments; and design end-to-end systems. On the other hand, the proposed
model is also subjected to potential limitations: under real-time requirements, the model
may require more computing resources and storage space, which may limit its deployment
in resource-constrained environments; real time surgical navigation involves sensitive
medical data; therefore, strict data privacy protection and security measures are required;
the model needs to have good robustness in real-time surgical environments and be able to
handle data noise, uncertainty, and unexpected situations, which may be challenging and a
key direction for our future study. By expanding the application of the proposed model
and addressing current limitations, the channel R-CNN could become an invaluable tool in
enhancing surgical outcomes and training interns.
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