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Abstract: Knowledge tracing predicts students’ future performance based on their histori-
cal performance data, which is significant for students’ learning resource recommendation,
learning path prediction, and other aspects. Students’ knowledge mastery, learning ability,
and question difficulty all influence the performance metrics of knowledge tracing. This
paper proposes a deep knowledge tracing model that integrates temporal causal inference
and the PINN (Physics-Informed Neural Network) model. The model first uses the tem-
poral causality model to explores the causal relationships between students’ knowledge
points, which is then combined with the deep learning-based knowledge tracing model
for prediction. Next, it treats the logical model as a ’physical model’, adds a loss term,
considers the confounding factors caused by students’ answer preferences, and adjusts stu-
dents’ learning ability through backdoors to obtain more accurate predictions. In the public
education datasets ASSISTment2012 and ASSISTchall, the predictive performance of the
TLPKT-PINN model is superior to some classical models and LPKT. From the experimental
results, we can conclude that considering the degree of mastery of causal knowledge points
and adjusting the loss term can improve the accuracy of predicting student grades.

Keywords: smart education; knowledge tracking; temporal causality; causal inference;
learning process

1. Introduction
With the increasing emergence of online learning tutorials, students can study courses

through the internet. AI-powered educational technologies (AI-EdTech) are increasingly
being used to automate and scaffold learning activities [1]. Smart learning systems offer
new ways of acquiring knowledge and have been expanding their popularity and influence
over recent decades [2]. More and more traditional classrooms are integrating with online
education, leading to a continuous accumulation of data from online learning activities.
These data can be used in scenarios such as student knowledge state identification, learning
performance prediction, exercise recommendation, etc. Students can autonomously solve
problems based on their interests or teachers’ requirements, and check their mastery levels
to engage in targeted learning. Teachers can also monitor students’ mastery levels to
optimize their teaching methods. Knowledge tracing is a key research area in educational
data mining, and has attracted a lot of attention from academics [3]. Knowledge tracking
is the task of tracking students’ knowledge status based on their learning activities, and
it is mainly divided into Bayesian-based knowledge tracing and deep learning-based
knowledge tracing.
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The classic Bayesian Knowledge Tracing (BKT) model [4] estimates students’ mas-
tery of knowledge points through a probability model, using a Hidden Markov Model
(HMM) [5] to treat students’ knowledge states as hidden variables. BKT can based on the
state transition matrix to predict the next knowledge state. Its advantages include that it
can dynamically update a student’s knowledge status to deal with uncertainty, and provide
personalized learning recommendations. However, BKT also has some drawbacks, such
as the sensitivity to model parameters, which can lead to the need for large amounts of
historical data to model accurately. On large-scale datasets, its computational complexity
is high. And the model defaults to the idea that students will not forget what they have
done, which is not true. With the development of deep learning, knowledge tracing models
have begun to integrate with deep learning techniques. The Deep Knowledge Tracing
(DKT) model [6] utilizes recurrent neural networks (RNNs) [7] to capture students’ learning
processes, predicting student’s mastery of knowledge points based on their sequence of
responses. The advantages of DKT include its ability to handle complex time series data
and capture long-range dependencies, thereby providing personalized learning recom-
mendations. However, some deep learning-based knowledge tracing models may lack
interpretability. And it models one skill at a time, ignoring the relationships between
different skills.

In recent years, the Learning Process-consistent Knowledge Tracing (LPKT) model [8]
has been used to track knowledge by simulating the evolving paths of knowledge mastery
during the student learning process. This model can capture and utilize the dynamic
changes in students’ learning processes, providing more precise personalized learning
support. However, this model only considers the relationship between knowledge states
and exercises, without accounting for the causal relationships between knowledge points.
According to real-life teaching, we know that there is a causal relationship between knowl-
edge points, such as the causal relationship between addition and multiplication, where
addition is the cause of multiplication and multiplication is the result of addition. When
students are learning a certain knowledge point, their mastery of causal knowledge points
will definitely affect their mastery of that knowledge point. So, when predicting students’
grades, we need to consider the causal relationship between knowledge points. However,
the LPKT model does not consider this relationship.

In our previous work, we utilized a causal inference algorithm to mine causal rela-
tionships between the levels of knowledge mastery, and established rules to identify the
strength of causal effects, but we did not consider the time factor. The temporal causal
model considers time factors, captures the dynamic characteristics of causal relationships
over time, describes long-term effects and feedback effects, adapts to complex temporal
systems, and can thus obtain more accurate causal relationships between knowledge points.
Additionally, regarding the prediction results, they may be contrary to the principle that “if
a student performs well, then his corresponding learning ability is high; if a student has a
high mastery level of knowledge points, he may like to do relatively difficult exercises”.
Based on the LPKT model, we propose a deep learning knowledge tracing framework called
the TLPKT_PINN model based on the temporal causality model and optimize the loss
function by incorporating physical loss. We conducted experiments on two real datasets,
and the results indicate that our proposed framework is better at accurately tracking the
evolution of knowledge states. The innovations in our work are as follows:

(1) We use a temporal causal model to explore the relationships between the knowledge
points, which can be combined with the general mastery levels of students to derive
the final knowledge state influenced by causally related knowledge points.

(2) By implementing backdoor adjustment, we can obtain students’ learning abilities
and problem difficulty levels, effectively removing the confounding factors related to
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students’ preferences. It can improve the prediction of students’ learning abilities and
problem difficulties.

(3) We add the physical loss term. We also increase the accuracy of predicting student
performance by increasing the penalty for violating common-sense patterns in the
student learning process.

2. Related Work
2.1. Knowledge Tracing

Knowledge tracing is a well-known problem in AI for education, consisting of mon-
itoring how the knowledge state of students changes during the learning process and
accurately predicting their performance in future exercises [9].

Knowledge tracing can be traced back to the late 20th century, with Corbett and An-
derson (1995) [4] proposing BKT. BKT uses a HMM to treat students’ knowledge states
as hidden variables and predicts the next state based on a state transition matrix. The
BKT model primarily relies on four parameters: the probability that a student has mas-
tered the knowledge point before answering questions related to it; the probability that
the student will transition from not mastering to mastering the knowledge point on their
next attempt; the probability that the student has mastered the knowledge point but an-
swers related questions correctly (the guessing probability); and the probability that the
student has mastered the knowledge point but answers incorrectly (the slipping proba-
bility). Based on these four parameters, the model can further characterize the student’s
response to the next question using conditional probabilities. Subsequently, BKT has a
lot of extensions. Käser et al. [10] proposed the Dynamic Bayesian Knowledge Tracing
(DBKT) model, which utilizes Dynamic Bayesian Networks (DBNs) to capture the dynamic
changes in students’ knowledge states during the learning process, then leading to more
accurate student modeling and personalized education. DE BAKER et al. [11] introduced
the Three-Learning-State BKT (TLS-BKT) model, which divides the learning process into
three states through an evaluation function. This model improves the binary node states
in the BKT model, transforming the original “not mastered/mastered” states into “not
mastered/learning/mastered” states, enhancing the model’s flexibility and robustness.

In recent years, an increasing number of researchers have introduced the deep learning
into knowledge tracing to enhance its expressiveness and performance. A typical model
based on deep learning is DKT proposed by Piech et al. RNNs based on long short-term
memory (LSTM), These networks can learn sequences of observations, thus causing the
model to be well suited for time series applications [12]. DKT was the first to apply deep
learning to knowledge tracing, allowing it to capture more complex student knowledge
states without the need for explicit manual encoding of knowledge domains. It uses an
RNN as a hidden unit to generate knowledge state vectors that represent students’ knowl-
edge states, and it outputs predicted student responses through a sigmoid linear layer.
The LSTM mechanism, with its inherent “gate” design, can effectively extract the features
and correlations of multiple time sequences [13]. Due to the interpretability issues of
inputs and outputs, deep learning knowledge tracing has seen numerous improved models.
For example, the Dynamic Key–Value Memory Network (DKVMN) [14] incorporates an
attention mechanism, allowing it to utilize the relationships between foundational concepts
and directly output students’ mastery levels for each concept. Graph-based Knowledge
Tracing (GKT) [15] is a knowledge tracing method based on graph neural networks, aimed
at capturing the complex relationships between knowledge by constructing knowledge
graphs and leveraging the powerful representation learning capabilities of graph neural
networks to model students’ learning processes. The Context-aware Attentive Knowledge
Tracing (AKT) [16] model constructs context-aware representations of questions and an-
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swers, using a monotonic attention mechanism to summarize students’ past performances
over time scales and employing the Rasch model to capture individual differences among
questions covering the same concept. At present, deep learning technology has achieved
state-of-the-art results in the processing of Euclidean data [17]. Lyu et al. [18] proposed a
DKT-STDRL model that utilizes Convolutional Neural Networks to extract spatial features
from students’ learning sequences and LSTM to process temporal features.

2.2. Temporal Causal Inference

In real life, the occurrence of most events is not at regular intervals but is discrete.
A point process is a powerful modeling tool for event sequences, consisting of a time
series [19] of binary events occurring in continuous time. Point processes have been suc-
cessfully applied in various fields such as social networks, finance, equipment maintenance,
and electronic health records. The characteristic feature of point process models is their in-
tensity function. The occurrence times of various types of events ε = 1, . . . . , E are unevenly
distributed. A multivariate point process containing E type of events can be represented
using a counting process {Ne}E

{e=1}, where Ne = {Ne(t)|t ∈ [0, T]}. The intensity function
shown in Equation (1) can be defined for type u as the expected instantaneous rate of occur-
rence of type e events given the history. Each intensity function captures the instantaneous
occurrence rate of a class of events conditioned on historical events.

λe(t) =
E(dNe(t)|Ht)

dt
(1)

where Ht = {ti, ei|ti < t, ei ∈ ε} representing all types of events that occurred before time t.
Granger causality [20] emphasizes the temporal sequence of events and was originally

used to study the dependency structure of multivariate time series. It has also been
extended to multi-type event sequences [21]. In short, to test the causality between A and B,
let Ωn be the set of all information up to time (t = 1, 2, . . . , n) (including information other
than A and B), and let Bn be all the information about B up to time n. Here, both Bn and Ωn

are multivariate random variables, and Bn ∈ Ωn. Thus, Ωn − Bn represents all information
up to time n excluding B. Assume that the following: (1) the present and the past can
influence the future, but the future cannot influence the past; (2) Ωn does not contain
any redundant information, meaning that if a variable Zn is functionally related to one or
more other variables, it should be removed from Ωn. If P(An+1|Ωn) ̸= P(An+1|Ωn − Bn),
then variable B is considered a cause of variable A, indicating that Bn contains unique
information that influences the occurrence of An+1. Intuitively, for event sequence data, if
including historical events of one type improves the prediction of future events of another
type, we say that one type of event has Granger causality with respect to the other type.

The Hawkes process [22] assumes that past events can independently and additively
influence the occurrence of future events, specifically through a collection of pairwise
kernel functions. The Hawkes process is a mathematical model used to model self-exciting
processes; it is a counting process that describes a series of events occurring over time.
In this process, the occurrence of each event increases the likelihood of the next event
happening, while the effect of this stimulation gradually diminishes over time.

The core concept of the Hawkes process is the conditional intensity function, it repre-
sents the expected frequency of an event occurring near a certain point in time, given all
past events. Its mathematical expression is as follows:

λ∗(t) = µ + ∑
ti<t

g(t − ti) (2)
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where λ∗(t) is the conditional intensity function, µ is the background intensity, g(t − ti)

is the triggering kernel, and ti is the time of the i-th event. The triggering kernel can
take various forms, with one common type being the exponential decay function, which
indicates that the stimulating effect of past events on the current time point decreases
exponentially as the time interval increases.

An event sequence records the occurrence of a specific type of event. Point processes
can be used to describe event sequences. A set of point processes can be input, where each
point process represents an event sequence, and the output is a causal graph established by
the different processes. In the causal graph, each node represents a point process, and each
directed edge captures the directed interaction from one point process to another.

2.3. PINN Model

In the field of computational science, surrogate models currently play an increasingly
important role, especially in situations that require handling complex physical processes
and large data analysis. Neural networks are becoming increasingly popular tools, being
widely applied to simulate the complex systems. However, traditional neural network
models often have shortcomings in strictly adhering to physical laws. Recent research [23]
has combined high-fidelity and low-fidelity data, using data fusion techniques to reduce
noise impact and improve solution accuracy. This method effectively integrates data of
varying quality when dealing with complex systems in the real world, thereby enhancing
prediction performance.

M. Raissi [24] combined the Gaussian process model with the linear differential equa-
tion. This method can automatically infer the parameters and structure of differential
equations from data, addressing uncertainties in the process, thereby improving predictive
performance. H. Owhadi [25] employed the Gaussian process [26] regression to design
function representations for given linear operators, accurately inferring solutions and pro-
viding uncertainty estimates for several prototype problems in mathematical physics. The
Physics-Informed Neural Networks (PINN) model [27] is a type of machine learning model
that combines deep learning with physical knowledge. Unlike traditional data-driven
neural networks, PINN models use physical laws to guide the model during training,
thereby enhancing its generalization capability. This is particularly evident in situations
where data are scarce or noisy. The PINN model is typically composed of a deep neural
network. Its characteristic is the inclusion of physics-informed terms in the loss function,
which represent the physical laws being followed. In traditional machine learning methods,
the learning process is primarily data-driven, and models heavily rely on large amounts of
high-quality data. However, in practical applications, there often exist challenges such as
data scarcity or noisy data. In such cases, relying solely on data-driven models makes it
difficult to achieve accurate and reliable predictions. Taking a one-dimensional damped
harmonic oscillator as an example, the working principle of the PINN model is as fol-
lows: First, define the physical problem and the corresponding physical laws, such as the
motion equation of the harmonic oscillator. The inputs are time t and position x, while
the outputs are velocity v and acceleration a of the neural network. The loss function of
the model consists of data error terms and physics-informed error terms. The data error
terms measure the difference between predicted values and actual observations, while the
physics-informed error terms ensure that the predictions comply with the relevant physical
laws. By optimizing the loss function, the neural network is trained to ultimately produce
predictions that adhere to the physical laws.
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3. TLPKT_PINN Model
3.1. Overall Framework of the Model

In the learning process of students, their learning activities consist of a series of ques-
tions they pose and the corresponding answers. For a group of students S = {s1, . . . ., si}, a
set of exercises E = {e1, . . . ., ei}, and a set of knowledge concepts K = {k1, . . . ., ki}, student
i spends time at at time point t answering the exercise e derived from the knowledge
concept k, and receives a response a ∈ {0, 1}, where a = 1 indicates that the student
answered the question correctly, and a = 0 indicates that the student answered the question
incorrectly. Therefore, for a student, we can define their learning process as follows:

x = {(e1, at1, a1, t1), it1, (e2, at2, a2, t2), it2, . . . , (en, atn, an, tn), itn}

where (en, atn, an, tn) represents a fundamental learning unit in the student’s learning
process. Here, et is the exercise, att is the time spent by the student in answering the
exercise et, at indicates the binary correctness label (1 for correct, 0 for incorrect), and itt

represents the interval time between learning units.
Since each exercise is associated with the specific knowledge points, we use the Q-

matrix with 0 and 1 to represent the relationship between exercises and knowledge points.
Specifically, if exercise ej requires knowledge point km, then Qjm= 1; otherwise, Qjm= 0.

Our deep learning knowledge tracking model is shown in Figure 1, which includes
three modules: learning module, forgetting module, and prediction module. The specific
implementation will be explained in the following chapters.

The innovations of this model are as follows:

• Temporal causal knowledge point relationship mining: Inputting student ID, problem-
solving time, and the correct or incorrect situation of knowledge points, the inten-
sity function between knowledge points is obtained. Then, the intensity function
is combined with Granger causality to finally obtain the temporal causal relation-
ships between knowledge points. By using temporal causality to obtain the causal
relationship between knowledge points, the causal relationship between knowledge
points is combined with the student’s mastery level of knowledge points output by the
knowledge tracking model to obtain the final student’s mastery level of knowledge
points, which is finally used for predicting student grades;

• Calculating students’ learning ability and the difficulty of exercises: Students with
different learning abilities have varying preferences for answering questions. Students
with stronger learning abilities tend to prefer more relatively difficult questions, which
may result in a lower accuracy rate. However, we should not underestimate their
learning potential because of this. Similarly, students with lower learning abilities may
also have a low accuracy rate on simple exercises, and we cannot therefore overestimate
the difficulty of the question. To more accurately assess students’ learning abilities
and the difficulty of exercises, we constructed a prior causal model for learning ability
and exercise difficulty. Initially, we assumed that all students had the same level of
learning ability. When identifying students’ abilities, we considered exercise difficulty
as the confounding factor, and when identifying exercise difficulty, we treated students’
abilities as the confounding factor. We employed backdoor adjustment to eliminate
the influence of these confounding factors.

• Using the physical loss function to adjust the loss term and optimize the prediction:
the logistic growth model can describe the dynamic process of students’ knowledge
mastery. In order to enable the neural network to learn the rules that conform to the dif-
ferential equations of the logistic model, the logistic model is used as a physical model
to construct a physical loss function for constraints. The academic performance of
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students is related to their abilities and the difficulty of their problems. If the predicted
student score is high, it indicates that the student’s learning ability is high and the
selected question is relatively difficult. On the contrary, if the predicted student score
is low, it indicates that the student’s learning ability is low and the selected question
is relatively easy. We use student abilities obtained through backdoor adjustments
and interventions, and if we violate the above common sense, the punishment will be
increased.
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3.2. Causal Relationship Mining of Knowledge Points

For the relationship between knowledge points in temporal causal mining, its strength
function [28] is modeled by two recurrent neural networks: one is a recurrent neural
network (RNN) that captures the relationships between events over time, and the other is
an RNN based on a time series for updating intensity functions. On this basis, an attention
mechanism is introduced. For each student’s interactive information (zi, ti)

e
i , that is to say,

at time ti, obtain the knowledge point zi. Separate the situations of correctly and incorrectly
obtained knowledge points, recode the knowledge point, and derive the causal relationship
between correctness and errors of knowledge points.

The intensity function can be represented as λ(t) = ϕθ(t; hti ), where hti is the feedback
loop capturing the influence of previous events, defined as hti = hv(ti; hti ). The weights ϕ

and v represent the network parameters. The influence of historically learned knowledge
naturally decays over time, so a temporal component is added to the original RNN to
ensure that the final states gradually diminish.

Endogenous variables can be expressed as follows:

he
i = ϕh

e (W
h
e (zi, ti) + Bh

e he
i−1γ(ti − ti−1) + bh

e ) (3)

Here, ϕ represents the activation function, γ(t) is the decay function, (zi, ti) denotes
the embedding vector of the knowledge point z and the time features, Wh

e (zi, ti) indicates
the influence from the current event, and Bh

e he
i−1γ(ti − ti−1) represents the influence from

historical events.
The temporal RNN event sequence encoder first transforms the event sequence into

hidden states. Then, utilizing the attention mechanism of time process, the intensity
function of the event type z appears on events that have a significant impact, guided
by specific parameter vectors uz. The attention distribution is represented as shown in
Equations (4) and (5):

eziz = tanh(he
i uz) (4)

aziz =
exp(eziz)

∑
i

exp(eziz)
(5)

Define the infectious matrix in a manner similar to a conventional point process to
reflect the event dependency between events: Aziz =< aziz >. Thus, we obtain the event
dependency representation sz for event type z:

sz(t) = ∑
i

azizhe
i γ(t − ti) (6)

λz(t) = f (wesz(t)) (7)

To correctly integrate the dense feature vectors sampled at different timestamps, we
employed a synchronous RNN, passing the hidden states to subsequent layers to compute
the exogenous intensity. Using the synchronous RNN allows us to obtain the hidden state
hx

t of the time series x:
hx

t = ϕx
t (W

x
t xt + Bx

t hx
t−1 + bh

x ) (8)

Finally, the endogenous and exogenous intensities are jointly modeled, with the
intensity function based on the collaborative layer under endogenous and exogenous
representations. Therefore, the intensity function can be expressed as follows:

λz(t) = f (wesz(t) + wx
z hx

t ) (9)
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where the first term wesz(t) represents the endogenous component of event dynamics, and
the second term wx

z hx
t represents the exogenous intensity.

To integrate the intensity function with the Granger causality test, we first calculate the
intensity function for each knowledge point occurrence sequence to quantify the changes
in their occurrence rates. Next, by introducing the intensity function as an independent
variable within the Granger causality test framework, we evaluate the predictive capability
of these intensity functions for other knowledge points. This means that if the appearance
of one knowledge point can increase the probability of another knowledge point appearing,
it indicates that there is a causal relationship between the two knowledge points, and thus,
we can deduce a causal relationship matrix between knowledge points.

3.3. LPKT Model Integrating Temporal Causality
3.3.1. Learning Embedding and Knowledge Point Embedding

Use an embedding matrix E ∈ RJ×de to represent the exercise set, where J is the number
of exercise and de is the dimension. Each exercise et in the learning unit xt is represented as
a vector et ∈ Rde . To obtain the learning embedding lt ∈ Rdk of the basic learning unit, the
exercise et, student response time att, and answer status at are concatenated together, and a
multi-layer perceptron (MLP) is used to deeply fuse the exercise embedding, response time
embedding, and answer embedding, as shown in Formula (10):

lt = WT
1 [et ⊕ att ⊕ at] + b1 (10)

where ⊕ represents the concatenation operation, W1 ∈ R(de+dk+da)×dk is the weight matrix,
and b1 ∈ Rdk is the bias term.

The purpose of knowledge embedding is to store and update students’ knowledge
states during the learning process. In the LPKT model, knowledge embedding is initialized
as an embedding matrix h ∈ RM×dk , where M is the number of knowledge concepts, and
each row of matrix h represents the mastery level of the corresponding knowledge concept.
In every learning interaction among students, the LPKT model updates the learning gains
for each knowledge concept into the knowledge embedding, while also incorporating the
forgetting effect.

3.3.2. The Learning Module

Learning gain represents the differences in student performance at two time points,
that is to say, taking into account the differences in performance during two consecutive
learning interactions. The previous learning embedding lt−1 and current learning embed-
ding lt of the student are connected as fundamental input elements to model the learning
gain. There are two main factors influence a student’s learning gain: the interval between
learning sessions and the knowledge state of previously related causal knowledge points.
On one hand, the interval between two learning units is a critical factor in the learning
process; generally, if the interval is shorter, it indicates that the student’s learning process
is compact and continuous. On the other hand, when a student engages with a particular
knowledge point, the mastery state of previously related causal knowledge points will also
affect their mastery of that knowledge point. Therefore, the above two factors are modeled
to capture the evolution of learning gain.

We concatenate the interval time to the basic input elements between two consecutive
learning embedding. For the student’s prior knowledge status, in order to focus on the
knowledge state related to the knowledge concepts of the current exercise, we first combine
the current knowledge concept vector qet associated with ht−1 to obtain the knowledge
state h̃′

t−1:
h̃′

t−1 = qet · ht−1 (11)
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The level of mastery that a student has over a specific knowledge point is not only
related to their current state but also to the states of knowledge points that have a causal
relationship with that knowledge point. The mastery level of the knowledge points that
have a causal relationship with knowledge point X in the knowledge state h̃′

t−1 of student i
is denoted as Mastery(Y). The mastery level for each knowledge point is defined as the sum
of the product of the weights of the edges (the causal strength between knowledge points)
in the causal matrix for knowledge point (X) and the mastery levels of the neighboring
points (the knowledge points that are causally related). The weighted sum is then divided
by the total weight to normalize the result. The specific formula is shown as follows:

Mastery(X) =

|ch(X)|
∑

Y∈ch(X)
WX(Y)× Mastery(Y) +

|ch(X)|
∑

Y∈ch(X)
WY(X)× Mastery(Y)

|Adj(X)| (12)

Finally, the mastery of each student, denoted as Mastery(X), is integrated to obtain the
final knowledge state vector h̃t−1.

The modeling of students’ learning gains lgt is as follows:

lgt = tanh(WT
2 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b2) (13)

where W2 ∈ R(4dk)×dk is the weight matrix and b2 ∈ Rdk is the bias term.
After obtaining the student’s knowledge state and learning gains, the learning gate Γl

t
is used to control the student’s ability to absorb knowledge, defined as follows:

Γl
t = σ(WT

3 [lt−1 ⊕ itt ⊕ lt ⊕ h̃t−1] + b3) (14)

where W3 ∈ R(4dk)×dk is the weight matrix, b3 ∈ Rdk is the bias term, and σ is the nonlinear
sigmoid activation function.

Then, multiply Γl
t by lgt to obtain the actual learning benefit of the student’s t-th

learning interaction. Similarly, in order to focus on the learning gain of relevant knowledge
concepts in exercise et, we multiply LGt by qet

to obtain the relevant learning gain L̃Gt−1:

LGt = Γl
t(lgt + 1)/2 (15)

L̃Gt−1= qet
· LGt (16)

where the learning gain of students LGt will always be positive, with a range mapped from
(−1, 1) to (0, 1).

3.3.3. Forgetting Module

Learning plays an enhancing role in students’ knowledge status, but over time, ac-
cording to the forgetting curve theory, the number of knowledge points remembered by
students will exponentially decrease. In order to model the complex forgetting effect, we
used the forgetting gate Γf

t to simulate the forgetting process of students. The gate is mod-
eled based on three factors: (1) the student’s previous knowledge state ht−1, (2) learning
gain LGt−1, and (3) interval time itt. Therefore, the definition of the forgetting gate is as
follows:

Γf
t = σ(WT

4 [ht−1 ⊕ LGt ⊕ itt] + b4) (17)

where W4 ∈ R(3dk)×dk is the weight matrix, b4 ∈ Rdk is the bias term, and σ is the nonlinear
sigmoid activation function.
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Then, the update of students’ knowledge status after completing the t-th learning
interaction is shown in Formula (18):

ht = L̃Gt + Γ f
t · ht−1 (18)

3.3.4. Prediction Module and Objective Function

When given an exercise, students will attempt to apply the knowledge they have
already mastered to the corresponding knowledge concepts to solve it. Therefore, the
student’s relevant knowledge state should be used to infer their performance in the next
exercise. The prediction formula is as follows:

yt+1 = σ(WT
5 [et−1 ⊕ h̃t] + b5) (19)

where W5 ∈ R(2dk)×dk is the weight matrix, and b5 ∈ Rdk is the bias term.
The cross-entropy loss between the predicted value y and the actual answer a is chosen

as the objective function:

L(θ) = −∑T
t=1 (at log yt + (1 − at) log(1 − yt)) + λθ ||θ||2 (20)

where θ represents all parameters and λθ is the regularization hyperparameter. The Adam
optimizer is used to minimize the objective function in small batches.

3.4. Loss Function Optimization
3.4.1. Student’s Ability and Exercise Difficulty Based on Backdoor Adjustment

Students with different learning abilities have distinct preferences in answering ques-
tions. For example, students with stronger learning abilities tend to tackle more challenging
exercises, but this may result in a relatively lower accuracy rate in their answers. Con-
versely, students with weaker learning abilities tend to choose easier problems, leading to a
higher accuracy rate. Therefore, we should not overestimate or underestimate a student’s
learning ability. Based on relevant knowledge of causal inference, it can be argued that ‘the
accuracy of a student’s answers’ is a major ‘cause’ for identifying learning ability, while
‘exercise difficulty’ acts as a ‘confounding factor’ in the causal relationship between the two.
We can derive the structural causal models shown in Figure 2.
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In order to accurately identify students’ learning abilities, we use ’backdoor adjust-
ment’ to conduct interventions. We defined the learning ability and exercise difficulty,
assuming that each level has the same prior probability; that is,

P(PD = d) =
1
D

, P(LA = l) =
1
L

(21)
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where D and L are the number of divisions for learning ability and exercise difficulty levels,
respectively. The post-intervention learning abilities is obtained as shown in Formula (22):

P(LA|do(CS)) = ∑D
d=1 P(LA|CS, PD = d)P(PD = d) (22)

3.4.2. The Logistic Model

The logistic model is a type of model based on the logistic function. In the field of
knowledge tracing, its basic concept is that the probability of correctly answering exercises
can be represented by mathematical functions of students and KC parameters. Using
student grades as the dependent variable, we can learn general parameters from historical
data to model students and make predictions for answering questions. In the logistic
model, students’ binary answers (correct/incorrect) follow a Bernoulli distribution. At
the beginning of the 21st century, researchers proposed using logistic models to handle
knowledge tracking tasks, with student grades as the dependent variable, and learning
general parameters from historical data to model students for answer prediction.

We use the Sigmoid function to describe the probability of a student mastering a certain
knowledge point at a certain moment. This is a nonlinear function, typically manifested as:

P(y = 1|x) = 1
1 + exp(− fθ(x))

(23)

We consider its dynamic changes over time and convert it into a differential equation.
Assuming that students’ mastery of a certain skill changes over time, a dynamic model
similar to “learning progress” can be used to represent the changes in students’ mastery of
the skill:

dP(t)
dt

= rP(t)(1 − P(t)) where P(t) =
1

1 + exp(− fθ(x(t)))
(24)

where P(t) is the probability of a student mastering a certain skill at time t. R is the
learning rate, indicating the speed at which students acquire skills. fθ(x(t)) is the output
of the model, representing the student’s mastery of the knowledge points at time t. This
differential equation is a standard logistic growth model that can describe the dynamic
process of students’ knowledge acquisition.

3.4.3. Optimize the Loss Function

In order for the neural network to learn the rules that conform to the differential
equations of the logistic model, we can impose constraints by introducing loss terms in
the differential equations. In this case, the loss function not only considers the prediction
results of the network, but also needs to consider whether the network output P(t) satisfies
the differential equation of the logistic growth model.

We need to ensure that the derivative of the network output P(t) with respect to time
t conforms to the Logistic equation. We calculate the derivative of the neural network
output P(t) with respect to time t through automatic differentiation. Assuming P(t) is the
probability of a student mastering a certain skill at that time output by the neural network,
we construct the loss function as follows:

Lpinn =
∫ T

t0

(
dP(t)

dt
− rP(t)(1 − P(t))

)2

dt (25)

where dP(t)
dt is the derivative of the neural network output with respect to time t. This loss

term ensures that the probability P(t) of the neural network output follows the dynamic
changes in the logistic growth model.
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According to the laws of reality, if the predicted student academic performance is
high, the corresponding learning ability of the student should be relatively high, and if the
predicted student academic performance is low, the corresponding learning ability of the
student should be relatively low. Therefore, based on this phenomenon, we construct a loss
term between academic performance and learning ability:

Lability = ∑i (
⌢
y i − f (Ci))

2
(26)

where f (Ci) is the student ability obtained through backdoor adjustment, and ŷi is the
score that maps the predicted student academic performance to the interval (0, 1).

The final loss function is expressed as shown in Formula (26):

L = Lcls + λLpinn + Lability (27)

where λ is a hyperparameter that balances physical constraints with traditional losses.
By optimizing this comprehensive loss function, the neural network can not only make
predictions based on students’ historical data but also follow the differential equations of the
logistic model, thus better simulating the dynamic process of students’ knowledge mastery.

4. Experiment
4.1. Datasets

We use two diverse real-world datasets to evaluate the effectiveness of the model in
different learning scenarios. Table 1 shows the statistical information of all datasets. We
introduce and compare each datasets as follows:

• ASSIST2012: This dataset was collected from the educational platform ASSISTMENTS,
which provides high school math problems. This dataset contains data from the
2012–2013 academic year, and students need to do similar exercises to master these
problem sets. We filtered out records without knowledge concepts and students who
completed fewer than 20 questions.

• ASSISTchall: This dataset was collected from ASSISTMENTS in 2017 and was used in
a data mining competition. The data were gathered from a longitudinal study that
tracked middle school students’ use of the ASSISTMENTS blended learning platform
from 2004 to 2007. In this dataset, the learning sequence of students is much longer
than ASSIST2012.

Table 1. Information on the dataset.

ASSIST2012 ASSISTchall

Number of students 28,914 1600
Number of knowledge concepts 265 102

Number of problems 532,090 3142

4.2. Results and Discussion

We compared TLPKT_PINN with several previous methods. For fair comparison, all
these methods have been tuned to have the best performance.

• BKT: Using the hidden Markov model and Bayesian inference methods, it is used to
evaluate and predict the dynamic changes in students’ mastery of knowledge points
during the learning process.

• DKT: The model is based on a Recurrent Neural Network (RNN) and is used to dynam-
ically track students’ mastery of knowledge points. It analyzes students’ interactive
data, learns their knowledge status, and predicts their performance in future tasks.
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• DKVMN: This model defines a static matrix to store potential knowledge concepts and
a dynamic matrix to update the corresponding knowledge states over time through
read and write operations, using a memory network to obtain the interpretable student
knowledge states.

• AKT: This uses two self-attention encoders to learn context-aware representations
of exercises and answers; the knowledge evolution model is called the knowledge
retriever, which utilizes attention mechanisms to retrieve knowledge obtained in the
past that is relevant to the current exercise.

• LPKT: Modeling the learning gain during the learning process by capturing the dif-
ference between two consecutive learning units. The diversity of learning benefits is
measured by students’ relevant knowledge status and interval time. The learning gate
is used to distinguish students’ ability to absorb knowledge, and the forgetting gate is
used to determine the decrease in students’ knowledge over time.

This article conducted experimental comparisons with these classic knowledge track-
ing models and their latest variants, using Area Under Curve (AUC) and Root Mean Square
Error (RMSE) under the ROC curve to analyze the performance of the comparison models.
For all datasets, we performed standard 5-fold cross validation on all models. Therefore,
for each group, 80% of the students were divided into a training set and the remaining 20%
were used as a testing set. We randomly initialized all parameters in a uniform distribution.
We learned all hyperparameters on the training set and evaluated the test set using the
model that performed best on the validation set. We added a dropout layer with a dropout
rate of 0.2 to prevent overfitting. In our implementation, dk and de parameters are set to
128, and da is set to 50. The small positive value γ to enhance the Q-matrix was set to 0.03.
The experimental results are shown in Table 2.

Table 2. Experimental results.

ASSIST2012 ASSISTChall

AUC RMSE AUC RMSE

BKT 0.622 0.511 0.638 0.513

DKT 0.701 0.432 0.721 0.447
DKVWM 0.685 0.437 0.710 0.450

AKT 0.769 0.414 0.766 0.431
LPKT 0.778 0.407 0.772 0.415

TLPKT_PINN 0.828 0.375 0.798 0.382

It can be seen that as an improvement to the LPKT model, the TLPKT-PINN method
in this paper performs better in both datasets compared to deep learning methods such
as DKT, DKVMN, and DIKT-CI, which showed an increase of at least 5% in AUC values
across three datasets. In addition, as an improvement of the LPKT model, TLPKT-PINN has
increased the AUC values by at least 2.6% in both datasets. This improvement is due to its
integration of temporal causal relationships between knowledge points and consideration
of student performance prediction.

4.3. Ablation Experiment

In order to investigate the impact of each module in the TLPKT_PINN model on the
final performance prediction, we designed several ablation experiments to validate our
model. The specific setup information is as follows:

• LPKT-PINN: Remove the temporal causality module from the model;
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• TLPKT_PINN_ability: Remove the module that adjusts the learning ability through
backdoor adjustment in the model, and remove the learning ability term from the loss
function term;

• TLPKT: Remove the physical loss module from the model.
• TLPKT_1: Remove additional loss terms from the model.

With the results given in Table 3, it is clear that the temporal causality module, the
physical loss module, and the physical loss module adjusted by learning ability have
an effect on the experimental results. By comparing the performance results of LPKT-
PINN, TLPKT_PINN_ability, TLPKT, and TLPKT_1, it can be seen that both the temporal
causality module and the loss module have improved the model performance, indicating
the effectiveness of each module in the TLPKT-PINN model. In addition, it can be seen
from the results of LPKT-PINN that a better prediction performance can be achieved by
considering the temporal causality between knowledge points. It is worth noting that in
the causal module of knowledge points, the optimization effect of ASSIST2012 dataset is
more significant, which may be due to the relatively small number of knowledge points
in this dataset, and the causal network of learned knowledge points is not too complex.
Finally, it was verified through TLPKT and TLPKT_1 that optimizing the loss term can
improve the prediction performance.

Table 3. Results of ablation experiments.

ASSIST2012 ASSISTChall

AUC RMSE AUC RMSE

LPKT_PINN 0.786 0.410 0.788 0.405
TLPKT_PINN_ability 0.803 0.384 0.789 0.392

TLPKT 0.801 0.392 0.784 0.398
TLPKT_1 0.792 0.405 0.781 0.399

4.4. Updating the Mastery Level of Students’ Knowledge Points

Figure 3 shows a student’s learning sequence. The student performed the following
exercises in temporal order. The mastery level of students’ knowledge points was obtained
through the combination of neural networks and temporal causality:
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Figure 3. Student answer sequence and the mastery level of the student’s knowledge points.Among
them, e1-e9 are exercises, and the colors represent the knowledge points contained in the exercises.
The specific knowledge points and corresponding colors are located in the upper right corner. The
check or cross below the exercise represents whether the student did the problem correctly or
incorrectly. For better identification, we will fill in different blue colors for students with mastery
levels greater than or equal to 0.5, 0.3~0.5, and less than 0.3.
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It is known that through the study of temporal causality, these three knowledge points
have a causal relationship. We can see that when the degree of mastery of a knowledge point
changes, the degree of mastery of its causal knowledge points also changes accordingly.

4.5. Performance Analysis of PINN Model

A key feature of the logistic model is its ability to simulate the “asymptotic” and
saturation effects in the learning process. Students progress quickly in the early stages
of learning, but as their mastery approaches saturation, their progress gradually slows
down. As shown in Figure 4, during the learning process, students’ knowledge reserves in
the early stage are not high, which basically conforms to the trend of the logistic model.
However, the deviation of the results predicted by the neural network is slightly larger.
But in the latter part, after training the neural network, the neural network prediction
performance is better. Therefore, we decided to use the logistic function as a physical model
for the first 15% step time, and controlling the learning progress output of the network
through the logistic function to simulate the process of students from not understanding a
certain knowledge point to fully mastering it, in order to impose constraints. As shown in
Figure 5, after adding the PINN model, its mean square error is slightly smaller, indicating
that adding the PINN model can improve the accuracy of predicting students’ grades.
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5. Conclusions
In this paper, we propose a deep learning knowledge tracking model that integrates

temporal causality and the Physics-Informed Neural Network (PINN) model. Since the
probability of a student’s mastery of a knowledge point is affected by the mastery prob-
ability of its causal knowledge points, the model mines the causal relationship between
knowledge points through the temporal causality model and combines the temporal causal-
ity matrix with the student’s learning, which can lead to the student’s final mastery of the
knowledge points affected by the related knowledge points. We found through experiments
that in the first half of students’ learning process, the logistic model is more in line with
their actual answer situation, and after training, the neural network is more in line. So,
we treated the logistic model as a physical model within the first 15% of the time step and
constrained the prediction of the neural network, finding that it can improve the accuracy of
student performance prediction. Adding another loss term would violate the principle that
’if a student’s performance is high, they have high learning ability; if their learning ability
is low, they do not have good learning ability’, increase the punishment, and thus improve
the ability to predict student performance. It can be concluded from the experiments that
the TLPKT_PINN model has a better prediction effect in the dataset and shows the changes
in the students’ learning process in a more rationalized way.

In future work, we can further explore the possibility of integrating the temporal causal
matrix more rationally with the student learning process, thus reducing the time complexity,
and in the knowledge tracking model, we can investigate how to automatically learn the
specific weights in the q-matrix in order to more accurately represent the relationship
between the exercises and the knowledge concepts.
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DKT Deep Knowledge Tracing
DKVMN Dynamic Key–Value Memory Network
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