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Abstract: This study investigates the dynamic behavior of induction motors (IMs) by
developing and validating four distinct mathematical models designed for transient and
starting regimes. These models, expressed in α,β and d,q coordinate systems, analyze
rotational frequency, electromagnetic torque, and current profiles with varying levels of
complexity, including current-based, flux linkage-based, and rotor winding electromagnetic
time constant approaches. Implemented in Fortran, the models address the limitations
of predefined tools like MATLAB/Simulink, offering enhanced precision, flexibility, and
suitability for non-standard scenarios. Validation against experimental data from a 3 kW
induction motor confirms the models’ accuracy, with consistent results across approaches.
Notably, the flux linkage models excel in capturing intricate transient phenomena, while
current-based models simplify integration with power system studies. These findings
provide a robust framework for analyzing IM performance under diverse conditions such
as voltage unbalance and rundown scenarios, enabling the optimization of motor operations
in energy-intensive industries.
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1. Introduction
Induction motors with squirrel-cage rotors (IMs) are the most widely used type of

electric motor [1]. They are relatively inexpensive and require minimal maintenance [2]. IMs
are extensively utilized across various applications, including metalworking, woodworking,
and general purpose machinery. They are also employed in press-forming, weaving, sewing,
hoisting, and earth-moving equipment, as well as in fans, pumps, compressors, centrifuges,
escalators, electric hand tools, household appliances, and numerous other devices [3–7].
Additionally, induction motors are commonly used in hydrogen compression systems due
to their reliability, efficiency, and ease of maintenance [8–10]. It is difficult to identify any
industry that does not rely on induction motors [11,12].

According to statistical data, electric motors and motor systems in industrial and
infrastructure applications with pumps, fans, and compressors in buildings are responsible
for 53% of the world’s total electricity consumption [13] (Figure 1). This underscores the sig-
nificant role of IMs as the most widely used type of electric machine in the industrial sector.

The theory of transient processes in electrical machines has been extensively developed,
as demonstrated by numerous studies on this topic [14–19].

With the increase in machine capacities and their intensified usage, there has been
a growing demand for higher precision in modeling complex processes in induction mo-
tors [20,21]. This has necessitated the refinement and development of motor calculation
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methods. However, achieving both high precision and simplicity in the solutions simulta-
neously remains a persistent challenge [22].

Appl. Sci. 2025, 15, x FOR PEER REVIEW 2 of 21 
 

 

Figure 1. Global electricity consumption by electric motors. 

The theory of transient processes in electrical machines has been extensively devel-
oped, as demonstrated by numerous studies on this topic [14–19]. 

With the increase in machine capacities and their intensified usage, there has been a 
growing demand for higher precision in modeling complex processes in induction motors 
[20,21]. This has necessitated the refinement and development of motor calculation meth-
ods. However, achieving both high precision and simplicity in the solutions simultane-
ously remains a persistent challenge [22]. 

Transient processes in induction motors (IM) are so diverse that it is impossible to 
study them comprehensively. As a result, research in this field is ongoing, as evidenced 
by a wide range of topics published in various sources. These studies primarily focus on 
the following aspects of IM operation: the starting regime [23,24], switching mode [25–
27], operation under voltage unbalance [28–31], diagnostics [32–35], and IM parameter 
identification [36–42]. Transient analysis is essential for accurately predicting dynamic be-
haviors such as starting currents, electromagnetic torque, and speed profiles in induction 
motors. This understanding enables the design of appropriate protection systems, opti-
mized switching devices, and configurations that enhance motor and network perfor-
mance. By addressing challenges such as voltage unbalance and load variations, transient 
analysis ensures both motor efficiency and reliable operation of power systems. 

Inrush currents arising in the stator and rotor windings during the starting process 
follow a complex oscillatory pattern [22]. The electromagnetic torque induced by these 
currents also exhibits oscillatory behavior and is a complex function of time [43]. Calcu-
lating the starting currents and torques of induction motors is essential for selecting ap-
propriate protection and switching devices. Furthermore, it is crucial for assessing the 
permissible voltage drop in the network during motor starting, especially when the mo-
tor’s capacity is comparable to that of the power supply equipment [44,45]. 

Transient processes do not last long. However, their effect on electric machine oper-
ation and the overall network and drive system can be significant [18]. Transient processes 
are more diverse and complicated than steady-state processes, which are generally tran-
sient processes particular case. Transient processes appear in electric machines when volt-
age, frequency, or load changes occur, such as switching machine on or off, reversing, 
short circuit, or parameter changes [46–48]. These processes are influenced by various fac-
tors, and their combinations can vary widely (e.g., voltage changes, frequency, equivalent 
parameters, or load variations). Therefore, it is essential to identify the primary influenc-
ing factors and avoid making the task overly complicated [49–52]. 

For induction motor transient processes research and analysis, mathematical model-
ing methods are widely applied [53–56]. The growing demand for precision in modeling 
induction motor dynamics has driven advancements in computational tools. 
MATLAB/Simulink, with its user-friendly interface and extensive library, is widely used 

Figure 1. Global electricity consumption by electric motors.

Transient processes in induction motors (IM) are so diverse that it is impossible to study
them comprehensively. As a result, research in this field is ongoing, as evidenced by a wide
range of topics published in various sources. These studies primarily focus on the following
aspects of IM operation: the starting regime [23,24], switching mode [25–27], operation un-
der voltage unbalance [28–31], diagnostics [32–35], and IM parameter identification [36–42].
Transient analysis is essential for accurately predicting dynamic behaviors such as starting
currents, electromagnetic torque, and speed profiles in induction motors. This understand-
ing enables the design of appropriate protection systems, optimized switching devices,
and configurations that enhance motor and network performance. By addressing chal-
lenges such as voltage unbalance and load variations, transient analysis ensures both motor
efficiency and reliable operation of power systems.

Inrush currents arising in the stator and rotor windings during the starting process
follow a complex oscillatory pattern [22]. The electromagnetic torque induced by these cur-
rents also exhibits oscillatory behavior and is a complex function of time [43]. Calculating
the starting currents and torques of induction motors is essential for selecting appropriate
protection and switching devices. Furthermore, it is crucial for assessing the permissible
voltage drop in the network during motor starting, especially when the motor’s capacity is
comparable to that of the power supply equipment [44,45].

Transient processes do not last long. However, their effect on electric machine opera-
tion and the overall network and drive system can be significant [18]. Transient processes
are more diverse and complicated than steady-state processes, which are generally transient
processes particular case. Transient processes appear in electric machines when voltage, fre-
quency, or load changes occur, such as switching machine on or off, reversing, short circuit,
or parameter changes [46–48]. These processes are influenced by various factors, and their
combinations can vary widely (e.g., voltage changes, frequency, equivalent parameters, or
load variations). Therefore, it is essential to identify the primary influencing factors and
avoid making the task overly complicated [49–52].

For induction motor transient processes research and analysis, mathematical modeling
methods are widely applied [53–56]. The growing demand for precision in modeling induc-
tion motor dynamics has driven advancements in computational tools. MATLAB/Simulink,
with its user-friendly interface and extensive library, is widely used for real-time modeling
of dynamic regimes in induction motors [57–61]. However, Simulink has notable disad-
vantages, particularly in specific applications. For instance, predefined macromodules
often lack transparency regarding their internal structure, which limits their adaptability
for non-standard scenarios or fault conditions [62,63]. Additionally, while Simulink blocks
offer ease of use through drag-and-drop functionality, their predefined functionality and
options can be restrictive. Users may struggle to find blocks that suit specific needs, or they
may face challenges in adjusting the behavior or appearance of existing blocks. Compatibil-
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ity issues between different versions or plat-forms of Simulink can further complicate its
application [62,64].

Another significant limitation of Simulink, particularly in the context of power systems
and power electronics, is its computational speed. For large-scale systems, the state-space
solver used by Simulink can become considerably slower than traditional solvers, such as
the nodal admittance methods employed in tools like EMTP-RV and PSCAD. This drawback
is especially critical in real-time applications, where low and consistent simulation time
steps are essential [65].

In contrast, custom modeling approaches, such as those developed in Fortran, over-
come these limitations by offering greater precision, reliability, and flexibility, particularly
in scenarios requiring detailed customization [66]. Fortran’s strengths enable the efficient
simulation of various operating modes, including power asymmetry and transient pro-
cesses, making it a robust platform for advancing the study of induction motor dynamics
beyond the constraints of predefined tools. Moreover, its adaptability allows it to serve as a
verification tool for validating the functionality of predefined tools like Simulink.

This study aims to address these challenges by developing mathematical models
tailored for analyzing the dynamic regimes of induction motors (IMs), which are crucial
in numerous industrial applications. By leveraging four distinct modeling approaches, it
provides a comprehensive framework for simulating key parameters such as rotational
frequency, electromagnetic torque, and current profiles under diverse operating conditions.
This approach enhances the understanding of transient processes in IMs and lays the
foundation for optimizing their performance, particularly in energy-intensive industries.

2. Transient Process Modeling in Induction Motor
2.1. Coordinate Conversion

To simplify the mathematical description of an induction motor (IM), coordinate
system transformations and the space vector concept are often employed [67]. The goal of
such transformations is to obtain equations with constant coefficients, making analysis and
control easer.

This simplification is achieved using the two-axis theory, which considers not the
actual magnetic flux in the air gap but its components along two mutually perpendicular
axes—longitudinal and transverse (d-axis and q-axis) [68]. Coordinate transformations
are widely used in technical applications to simplify complex systems by converting
coordinates from one system to another. This process is known as coordinate conversion.

According to mathematical principles, the number of variables remains unchanged
after a coordinate transformation. Typically, a system of equations with time-varying
coefficients (e.g., in the ABC phase coordinate system) is transformed into a system with
constant coefficients in the dq0 coordinate system.

In general, the transformation involves converting an equation system with varying
coefficients in the phase coordinate system (A, B, C or 1A, 1B, 1C) into an equivalent system
expressed in the dq0 coordinate system. This transformation simplifies the mathematical
representation and facilitates the analysis and control of electrical machines [69].

An example of such a transformation is the conversion of the stator current space
vector

.
I from the phase coordinates (1A, 1B, 1C) into the dq0 coordinate system (Figure 2).

If the phase currents contain a zero-sequence component, such that we define the
zero-sequence component as: (i1A + i1B + i1C)/3 = i0.

This zero-sequence current i0 may vary according to any complex principle and should
not be confused with the alternating zero-sequence space vector current

.
I.
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The concept of zero-sequence current is introduced as part of the coordinate trans-
formation methodology to provide a complete theoretical framework. However, in the
context of the four models developed and analyzed in this study, zero-sequence current
is not present due to the assumption of a balanced three-phase system. Under balanced
conditions, the sum of the phase currents is zero, and no zero-sequence current flows.
This assumption simplifies the analysis and allows the focus to remain on the primary
components of transient and starting dynamics.

The coordinate axis 0 is perpendicular to the plane of the figure. In this case, the
space vector

.
I in the ABC coordinate system can be expressed as follows: i′1A = i1A − i0,

i′1B = i1B − i0, i′1C = i1C − i0, such that i′1A + i′1B + i′1C = 0.
Transforming the vector projections onto the phase axes provides the phase winding

currents i1A, i1B, i1C, while projections onto the rotor axes yield the currents id and iq. In the
general case, when the stator windings are connected in wye with a neutral wire, it is possi-
ble for i1A + i1B + i1C ̸= 0. In this situation, we account for the zero-sequence component
as: (i1A + i1B + i1C)/3 = i0, where i0 is the stator current’s zero-sequence component.

i1A = i′1A + i0 (1)

i1B = i′1B + i0 (2)

i1C = i′1C + i0. (3)

It should be noted that the currents marked with “prime” (e.g., i
′
1A) no longer contain

the zero-sequence component. Therefore, the currents i′1A = i1A − i0, i′1B = i1B − i0,
i′1C = i1C − i0 can be represented as the projections of

.
I onto the 1A, 1B, 1C ensuring that

i′1A + i′1B + i′1C = 0, as shown in Figure 2.
The relationship between the space vector components and the phase currents can be

expressed as follows:
i′1A + i′1B + i′1C = 0 (4)
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i′1B = Icos
(

γ +
π

2
− θ0el +

2π

3

)
= −Isin

(
γ − θ0el +

2π

3

)
, (5)

i′1C = Icos
(

γ +
π

2
− θ0el −

2π

3

)
= −Isin

(
γ − θ0el −

2π

3

)
(6)

In the longitudinal axis d, and transverse axis q, the currents are given as:

id = Icos
(

γ +
π

2

)
= −Isinγ, (7)

id = Icos
(

γ +
π

2

)
= −Isinγ. (8)

Substituting Equations (4)–(6) in Equations (1)–(3) and using (7) and (8), the phase
current can be expressed as:

i1A = −Isinγcosθ0el + Icosγsinθ0el + i0 = idcosθ0el − iqsinθ0el + i0 (9)

i1B = −Isinγcos
(
θ0el − 2π

3
)
+ Icosγsin

(
θ0el − 2π

3
)
+ i0

= idcos
(
θ0el − 2π

3
)
−−iqsin

(
θ0el − 2π

3
)
+ i0;

(10)

i1C = −Isinγcos
(
θ0el +

2π
3
)
+ Icosγsin

(
θ0el +

2π
3
)
+ i0

= idcos
(
θ0el +

2π
3
)
−−iqsin

(
θ0el +

2π
3
)
+ i0.

(11)

Equations (9)–(11) can be written in matrix form as:i1A

i1B

i1C

 =

 cosθ0el −sinθ0el 1
cos
(
θ0el − 2π

3
)

−sin
(
θ0el − 2π

3
)

1
cos
(
θ0el +

2π
3
)

−sin
(
θ0el +

2π
3
)

1

. (12)

Here, the transformation matrix is:

[A−1
1 ] =

 cosθ0el −sinθ0el 1
cos
(
θ0el − 2π

3
)

−sin
(
θ0el − 2π

3
)

1
cos
(
θ0el +

2π
3
)

−sin
(
θ0el +

2π
3
)

1

 (13)

The Park transformation matrix A1, is given as:

[A1] =
2
3

 cosθ0el −cos
(
θ0el − 2π

3
)

cos
(
θ0el +

2π
3
)

−sinθ0el −sin
(
θ0el − 2π

3
)

−sin
(
θ0el +

2π
3
)

1
2

1
2

1
2

 (14)

Using this matrix, phase currents i1A, i1B, i1C can be transformed into d, q, 0 coordinates:

id =
2
3

[
i1Acosθ0el + i1Bcos

(
θ0el −

2π

3

)
+ i1Ccos

(
θ0el +

2π

3

)]
, (15)

iq =
2
3

[
−i1Asinθ0el − i1Bsin

(
θ0el −

2π

3

)
− i1Ccos

(
θ0el +

2π

3

)]
(16)

i0 =
1
3
(i1A + i1B + i1C). (17)

Formula (17) corresponds to i0 expression, which was received in the beginning of
chapter. Equations (15)–(17) we can obtain directly, projecting phase currents i1A, i1B, i1C

on the coordinate axes d,q. Then, received expressions should be multiplied to two out
of three.
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The matrices A−1
1 and A1 establish the relationship between the actual stator wind-

ing currents and the transformed variables in the d, q, and 0 axes. Similarly, analogous
expressions can be derived for voltages:ud

uq

u0

 = [A1] ·

u1A

u1B

u1C

 (18)

The same transformation applies to the electromotive forces (EMFs) and flux linkages
in the stator windings: ψd

ψq

ψ0

 = [A1] ·

ψ1A

ψ1B

ψ1C

. (19)

2.2. Generalized Electric Machine

The theory of electric machines traditionally examines different types of electrome-
chanical transformations separately. This approach stems from historical developments
in the field, where scientists in electromechanics established distinct theories for various
machine types [70,71]. While these theories emphasize the unique features of each machine,
they also highlight significant similarities in design principles and calculation methods [72].

One key similarity is the presence of a sinusoidal magnetic field in the motor air
gap. To develop a generalized theory of electric machines, we consider an idealized two-
pole, two-phase symmetrical electric machine. This idealized machine features mutually
perpendicular windings on both the rotor and stator, as illustrated in Figure 3 [67].
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A two-pole machine was selected because the processes in two-pole and multi-pole
machines are analogous. In a two-pole machine, electrical radians align with geometric
radians, simplifying the comparison of the rotor position relative to the stator phases,
especially during transient processes. In a two-phase machine, spatially displacing the
windings by π/2 generates a circular magnetic field. This configuration combined with a
uniform air gap eliminates mutual inductive coupling between windings and simplifies
the machine equations. For this reason, three-phase machines are frequently converted into
two-phase machines for analytical purposes [73,74].

The generalized electric machine assumes a uniform air gap, with no slots on the
stator or rotor. They are modeled as current layers with a sinusoidal magnetomotive force
distribution. Feeding the windings with alternating current produces a sinusoidal magnetic
field in the air gap, given the uniform magnetic circuit and the absence of saturation. This
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generalized model represents a pair of intermoving windings and serves as a mathematical
framework to analyze the processes in various electric machines. By reducing real machines
to this model, operating and transient processes can be studied more effectively [75].

The mathematical model of the generalized electric machine consists of a system of
differential equations. These include equilibrium equations for the winding voltages and a
torque balance equation describing the machine’s motion. For simplicity, rotor winding
parameters are reduced to the stator side, with the reduction factors omitted for clarity.

In the 1α, 1β and 2α, 2β coordinate systems, the following equations govern the
system [22]:

U1α = R1i1α +
d
dt

ψ1α, (20)

U1β = R1i1β +
d
dt

ψ1β, (21)

U2α = R2i2α +
d
dt

ψ2α, (22)

U2β = R2i2β +
d
dt

ψ2β. (23)

Here:
U1α, U1β, U2α, U2β are the applied voltages in the stator and rotor windings;
i1α, i1β, i2α, i2β represent the winding currents;
R1, R2 are the stator and rotor winding resistances, respectively.
The rotor’s motion is described by the equation:

Te = Tl + J
dΩ
dt

, (24)

where
Te is the electromagnetic torque generated by the machine;
Tl is the applied load torque;
J dΩ

dt is the dynamic torque;
J represents the combined inertia of the rotor and any connected equipment (reduced

to the rotor shaft);
Ω is the angular velocity. For a generalized electric machine, when 2p = 2, Ω = ω.
These equations comprehensively describe both dynamic and static behaviors of a

generalized electric machine. Given the stator voltage
.

U1 and rotor voltage
.

U2:

.
U1 = U1m · ej(ω1t+α0) = U1m[ cos(ω1t + α0)+jsin(ω1t + α0)] (25)

.
U2 = U2m · ej(ω2t+α2) = U2m[ cos(ω2t + α2)+jsin(ω2t + α2)] (26)

where
ω1—is the angular frequency of the supply network;
ω2—is the angular frequency of

.
U2 relative to the rotor axes;

α0—is the initial phase angle of
.

U1 relative to the 1α axis at t = 0;
α2—is the initial phase angle of

.
U2 relative to the 2α axis at t = 0.

It is evident that the system of differential Equations (20)–(24) generally does not
have a straightforward solution, as the coefficients in the flux linkage equations are time-
dependent. The coordinate system 1α, 1β is fixed, while the 2α, 2β coordinate system rotates
at the angular speed ω of the rotor.
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2.3. Generalized Machine in a Common Coordinate System Rotating at Arbitrary Speed

The mutual immobility of the stator and rotor magnetic fields can be achieved under
the following conditions:

• The rotor’s rotating windings are conceptually treated as stationary (braked); or
• The stator’s stationary windings are assumed to rotate at the same speed as the rotor.

Additionally, the frequencies of the currents must be adjusted to align with these
conditions. To preserve power invariance and operate with actual amplitudes of voltages
and currents, an electromotive rotational force is introduced into the voltage and current
balance equations.

To generalize, we transform the equations of an electric machine into the x,y coordinate
system. This system is common to both the stator and rotor and rotates at an arbitrary
angular speed (see Figure 4).
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The stator voltage balance equation, expressed in terms of space vectors
.

U1,
.
ψ1,

.
I1, is

given by:
.

U1 = R1
.
I1 +

d
.
ψ1
dt

(27)

To account for the rotational difference between the stationary 1α, 1β coordinate system
and the rotating x, y coordinate system, the equation is multiplied by e−j(ωxt+γx0).

.
ψ1(x, y) =

.
ψ1e−j(ωxt+γx0) = ψ1mej((ω1−ωx)t+α0−γx0−ϕ); (28)

.
U1(x, y) =

.
U1 · e−j(ωxt+γx0) = U1m · ej(ω1t+α0) · e−j(ωxt+γx0) =

= U1m · ej((ω1−ωx)t+α0−γx0);
(29)

.
I1(x, y) =

.
I1e−j(ωxt+γx0) = I1m · ej((ω1−ωx)t+α0−γx0−ϕ). (30)

where φ represents the displacement angle between the vectors
.
ψ1 and

.
I1 relative to

.
U1 at

t = 0.
The time derivative of the flux linkage is expressed as:

d
.
ψ1(x, y)

dt
=

d
dt

{ .
ψ1 · e−j(ωxt+γx0)

}
=

(
d

.
ψ1
dt

)
· e−j(ωxt+γx0) −−jωx

.
ψ1e−j(ωxt+γx0). (31)
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Substituting, the stator voltage balance in the x, y coordinate system becomes:

.
U1(x, y) = R1

.
I1(x, y) +

d
.
ψ1(x, y)

dt
+ jωx

.
ψ1(x, y). (32)

Separating real and imaginary parts, the voltage balance equations in the x,y coordinate
axes are:

U1x = dψ1x
dt − ωxψ1y + R1y + R1i1x

U1y =
dψ1y

dt − ωxψ1x + R1y + R1i1y

 (33)

For the rotor windings, the voltage balance equation is:

.
U2 =

d
.
ψ2
dt

+ R2
.
I2 . (34)

Multiplying by e−j((ω−ωk)t+γ0−γx0) to account for the rotational difference between
the 2α, 2β and x, y systems, and applying similar transformations, we obtain:

.
U2(x, y) =

d
.
ψ2(x, y)

dt
+ j(ω − ω2)

.
ψ2(x, y) + R2

.
I2(x, y). (35)

Breaking this into components yields:

U2x = dψ2x
dt − (ω − ωx)ψ2y + R2i2x

U2y =
dψ2y

dt − (ω − ωx)ψ2x + R2i2y

. (36)

By appropriately selecting the angular frequencies ω1, ω2, ω, ωx, the induction ma-
chine can be analyzed in any coordinate system.

A key feature of this model is the inclusion of rotational electromotive forces: ωxψ1y,
ωxψ1x, (ω − ωx)ψ2y, (ω − ωx)ψ2x. In the x,y coordinate system (common to both stator
and rotor), the machine windings behave as semi-fixed, resulting in flux linkages without
alternating coefficients:

ψ1x = L1xi1x + Lmi2xψ1y = L1yi1y + Lmi2yψ2x = Lmi1x + L2xi2xψ1y = Lmi1y + L2yi2y

3. Models of Induction Motors
3.1. Induction Motor Model in the αβ Coordinate System

For α,β (ωx = 0) fixed coordinate system with axes linked to the stator,
Equations (33) and (36) solving relative to flux linkages derivatives take the following form:

dψ1α
dt = Umcos (τ)− R1i1a

dψ1β

dt = Umcos (τ)− R1i1β

dψ2α
dt = −R2i2α + ωψ2β

dψ2β

dt = −R2i2β + ωψ2α


(37)

The rotor speed variation is described by the following equation:

dω

dt
= (Te − Tl)/TM (38)

where Te is the electromagnetic torque, Tl is the load torque, and TM represents the motor’s
moment of inertia.
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The current components are determined using the flux linkage expressions:

i1α = (X2ψ1α−Xadψ2α)
∆

i1α =
(X2ψ1β−Xadψ2β)

∆

i2α = (X1ψ2α−Xadψ1α)
∆

i2β =
(X1ψ2β−Xadψ1β)

∆


(39)

where
∆ = X1X2 − XadXad

The electromagnetic torque is given by:

Te = Xad
(
i1αi2β − i1βi2α

)
(40)

and the load torque is the following:

Tl = SMω2
2 + SMC (41)

where
ψ1β, ψ1α, ψ2β, ψ1α are the stator and rotor flux linkage components in the αβ

coordinate system,
i1x, i1y, i2x, i2y are the stator and rotor current components in the αβ coordinate system,
ω is the rotor angular speed,
Umcos(τ) ,−Umsin(τ) are the stator applied voltage,
R1, R2, X1, X2, Xad are the induction motor parameters in per-unit values,
Te, Tl are the electromagnetic and load torques, respectively,
SM, SMC are the motor’s variable and constant torques coefficients.
The developed induction motor model in the αβ coordinate system provides a frame-

work for simulating various dynamic operating modes, including direct starting and direct
starting with current displacement in the slots. This model (model I) enables direct com-
parisons between the single-phase simulation results and the experimental data, without
additional transformations.

3.2. The Model of the Induction Motor in the d,q Coordinate System

Using Equations (33) and (36), we can express the induction motor model in matrix
form as follows:

u1d

u1q

0
0

 =


Ra 0 0 0
0 Ra 0 0
0 0 R2 0
0 0 0 R2

 ·


i1d

i1q

i2d

i2q

+


−ω0elψ1q

ω0elψ1d

−(ωx − ω)ψ2q

(ωx − ω)ψ2d

+
d
dt


ψ1d

ψ1q

ψ2d

ψ2q

, (42)

dω

dt
=
[
Xad
(
i2di1q − i2qi1d

)
− Tl

]
, (43)
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where flux linkages derivatives can be expressed as:

d
dt

∣∣∣∣∣∣∣∣∣
i1d

ii1q

i2d

i2q

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
−C1R1 +C1 f1 +C1Xad +C1Xadω

−C1 f1 −C1R1 −C1Xadω +C2Xad

C3R1 −X1 f2 −C2X1 − f3

X1 f2 +C3R1 + f3 −C2X1

∣∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
i1d

i1q

i2d

i2q

∣∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣∣
C1 0 0 0
0 C1 0 0
0 0 C1 0
0 0 0 C1

∣∣∣∣∣∣∣∣∣ ∗
∣∣∣∣∣∣∣∣∣
U1d

U1q

U2d

U2q

∣∣∣∣∣∣∣∣∣,
(44)

where u1d, u1q stator applied voltages;
i1d, i1q, i2d, i2q stator and rotor currents components in the d, q coordinate system;
ψ1d, ψ1q, ψ2d, ψ2q stator and rotor flux linkages component in d, q coordinate system;
The constants are defined as:

C1 = 1
X′

d
= 1

X1−
X2

ad
X2

, C2 = R2
X2

· C1, C3 = Xad
X2

· C1, f1 =

(
X1 −

X2
ad

X2

)
ωx +

X2
ad

X2

f2 = ω · C3, f3 = (C1X1(ω − ωx)).

Thus, this model provides a framework for solving the induction motor (IM) equations
in terms of currents. The IM model in the d,q coordinate system (referred to as model II)
is expressed using current variables, enabling its integration into studies analyzing the
motor’s impact on power supply systems.

3.3. The Model of the Induction Motor in the d,q Coordinate System in Flux Linkages

If Equations (33) and (36) are rewritten in terms of flux linkage derivatives, the system
of equations takes the following form:

dψ1d
dt = U1d − R1id + ωψ1q

dψ1q
dt = U1q − R1iq − ωψ1d

dψ2d
dt = −R2i2d + (ωx − ω)ψ2d

dψ2q
dt = −R2i2q − (ωx − ω)ψ2d


, (45)

The torque balance equation is given by:

TM
dω

dt
= [Te − Tl ] , (46)

where the electromagnetic torque is expressed as:

Te = Xad
(
i2di1q − i2qi1d

)
.

The stator and rotor currents can be expressed in terms of flux linkages as:

i1d = (X2 · ψ1d − Xad · ψ2d)/∆

i1q =
(
X2 · ψ1q − Xad · ψ2q

)
/∆

i2d = (X1 · ψ2d − Xad · ψ1d)/∆

i2q =
(
X1 · ψ2q − Xad · ψ1q

)
/∆


, (47)
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where ∆ = X1X2 − XadXad.
Equations (45)–(47) represent the mathematical model of the induction motor (IM) in

terms of flux linkages. This IM model, expressed in the d,q coordinate system (referred to
as model III) enables the analysis of motor operation in autonomous regimes, including
scenarios where the motor operates independently or is connected to a power supply
network with an infinitely large capacity.

3.4. Induction Motor Model in Flux Linkages with Rotor Windings Electromagnetic Time Constant
in d,q Coordinate System

If Equations (33) and (36) are reformulated to include flux linkages with rotor windings’
electromagnetic time constant derivatives, the system of equations is as follows:

Ud = dψ1d
dt − ωψ1q + R1id

Uq =
dψ1q

dt + ωψ1d + R1iq

0 = − dψ2d
dt − ψ1d

TR
− Xad

TR
id + ψ2q(ω0el − ω)

0 = − dψ2q
dt − ψ1q

TR
+ Xad

TR
iq − ψ2d(ω0el − ω)


, (48)

where Te the electromagnetic torque, is calculated as:

Te = Xad
(
i2di1q − i2qi1d

)
.

The currents can be expressed in terms of flux linkages:

i1d = (X2 · ψ1d − Xad · ψ2d)/∆

i1q =
(
X2 · ψ1q − Xad · ψ2q

)
/∆

i2d = (X1 · ψ2d − Xad · ψ1d)/∆

i2q =
(
X1 · ψ2q − Xad · ψ1q

)
/∆


, (49)

where ∆ = X1X2 − XadXad.
Model IV incorporates the rotor winding electromagnetic time constant, a critical

parameter governing the evolution of flux linkages and currents within the rotor circuit
during transient events. This time constant directly influences the motor’s response to
rapid changes in voltage, load, or other external conditions. For example, during starting
or voltage dips, it determines the decay rate of transient components and the stabilization
of steady-state performance. By accounting for this parameter, Model IV enables accurate
analysis of motor parameter variations during rundown regimes and transient phenomena,
such as torque oscillations and current peaks. This detailed modeling is essential for motor
protection and optimizing system performance, offering insights beyond those achievable
with simpler models.

4. Induction Motor Starting Mode Modeling
To calculate the starting mode of an induction motor (IM), including current, rota-

tional frequency, and electromagnetic torque under no-load conditions, the following IM
models were used: model I—expressed in the α,β coordinate system, model II—in the d,q
coordinate systems using currents, model III—in the d,q coordinate systems using flux
linkages and model IV—in the d,q coordinate system using flux linkages with the rotor
winding electromagnetic time constant.

For starting mode modeling, the parameters of a 3 kW induction motor with the
following per unit (pu) values were used [76]: X1 = 0.057 pu, Xad = 3.4 pu, X2 = 0.1 pu,
R1= 0.072 pu, R2 = 0.0487 pu, TM = 32.986.
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Figure 5 illustrates the rotational frequency characteristics of a 3 kW induction motor
during starting mode under no-load conditions. The graph shows the rotor’s acceleration
profile, demonstrating how the rotational frequency stabilizes as the motor reaches a
steady-state operation.
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Figure 6 illustrates the current drawn by the induction motor during direct starting
under no-load conditions. The graph highlight the initial high inrush current, which
gradually decreases as the motor transitions to steady-state operation.
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Figure 6. Current drawn during direct starting of a 3 kW induction motor under no-load conditions.

Figure 7 shows the variation in electromagnetic torque during the starting phase of
the induction motor. The torque curve emphasizes the transient behavior before stabilizing
at its no-load steady-state value.
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no-load conditions.

Mathematical modeling of the IM starting mode, based on the models presented
earlier in this paper, reveals that regardless of the coordinate system chosen (α,β or d,q)
or the mathematical basis (currents, flux linkages, or flux linkages with rotor windings’
electromagnetic time constant), the modeling results are consistent and accurately represent
real-world behavior. The results of the starting mode mathematical modeling using Model I
were compared with experimental data from a test setup described in [22], which included
measurements of current, rotational speed, and torque using specialized equipment. These
comparisons demonstrated close alignment between modeled and experimental results,
validating the model’s accuracy and reliability for analyzing IM starting dynamics.

The data tables in Appendix A show that the values of current, rotational frequency,
and electromagnetic torque are in close agreement across the four models, particularly at
later time instances. However, minor discrepancies are observed during the initial period,
which can be attributed to transient effects. Despite these variations, the models converge
to similar steady-state behavior, indicating that any of these models can be effectively used
to simulate the dynamic regimes of induction motors, provided that the transient period is
appropriately considered.

In addition to the no-load starting characteristics presented in Figures 5–7, the four
presented IM models can also simulate starting regimes for induction motors of various
capacities, with different load characteristics and torque profiles. This flexibility ensures
broad applicability of these models for analyzing and optimizing motor performance under
diverse operational conditions.

A comparative summary of the four mathematical models is presented in Table 1. The
table outlines the coordinate systems, key parameters simulated, and the strengths and
limitations of each model. This summary provides additional context for understanding
the unique features and applications of the models, helping to identify their suitability for
different dynamic regimes of induction motor operation.
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Table 1. Comparative summary of the four mathematical models for induction motor analysis.

Model Coordinate System Type Key Parameters Simulated Key Features Applications

I ∝, β
Rotational frequency,

current, torque
Simple implementation, direct

experimental comparison

Suitable for basic dynamic
studies and starting

scenarios under no-load

II d, q (Current) Rotational frequency,
current, torque

Enables integration of the
motor’s mathematical model
to evaluate its impact on the

power supply system

Suitable for analyzing
voltage unbalance, grid
interaction, and power

system effects
during starting

III d, q (Flux linkage)
Rotational frequency,
current, torque, flux

linkages

Supports the analysis of
autonomous operation

regimes for motors fed by a
power supply system with

infinite capacity

Effective for stand-alone
motor analysis and
advanced control

strategy development

IV d, q (Flux linkages with
rotor constant)

Parameter variations
during rundown

Analyzes motor parameter
changes during rundown,

emphasizing the rotor
windings’ electromagnetic

time constant.

Useful for studying
transient torque

oscillations and motor
response during

rundown scenarios

The choice of modeling approach affects both the computational complexity and the
focus of the analysis. Current-based models are simpler and often preferred for analyzing
motor impacts on power systems, as they directly relate to electrical network interactions.
On the other hand, flux linkage-based models offer deeper insights into the internal electro-
magnetic behavior of the motor, making them more suitable for advanced control strategies
and detailed transient analyses. Both approaches provide consistent results under equiva-
lent conditions, but their selection depends on the specific objectives of the analysis, such
as whether the focus is on external power supply interactions or intrinsic motor dynamics.

Before concluding, it is worth noting that the results of this study may be relevant for
the development of other types of electric machines, as well as for applications involving ad-
vanced signal processing techniques, such as adaptive step-size forward–backward pursuit
and acoustic emission-based health state assessment of high-speed train bearings [77].

5. Conclusions
This study developed and evaluated four distinct mathematical models for analyzing

the dynamic behavior of induction motors during starting and transient processes. The
models, based on the α,β and d,q coordinate systems with variations in current and flux
linkage representation, produced consistent results regardless of the chosen modeling
approach. This consistency was validated through numerical simulations and comparison
with experimental data, confirming the accuracy and reliability of the models.

The implementation of the models in Fortran provided enhanced computational
flexibility, allowing precise simulation of key parameters, such as rotational frequency,
electromagnetic torque, and current profiles. Additionally, the models facilitate the analysis
of motor operation under various conditions, including voltage unbalance, starting modes,
and rundown scenarios.

A significant finding is that any of the four models can be effectively used to study
induction motor dynamics without compromising accuracy. For instance, the rotational
frequency results for the 3 kW induction motor during starting mode stabilized at approxi-
mately 0.998 pu across all models, demonstrating their consistency. The maximum inrush
current during startup reached around 5.6 pu, gradually decreasing to steady-state values
close to 0.292 pu. The electromagnetic torque exhibited transient peaks of about 2.46 pu
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before stabilizing near 0.05 pu. These values closely align with experimental results, further
validating the accuracy and reliability of the proposed mathematical models for induction
motor dynamics.

The choice of the appropriate model depends on the specific application. Model I
is the simplest and is well-suited for basic analysis and direct experimental comparisons
under no-load conditions. Model II is ideal for grid interaction studies, including voltage
unbalance and power system analysis. For more detailed transient analyses and advanced
control strategy development, Models III and IV are recommended, with Model IV be-
ing particularly effective for scenarios involving the rotor winding electromagnetic time
constant, such as rundown and transient torque oscillations.

Future work will focus on utilizing the developed models to investigate induction
motor operating modes under various conditions, including unbalanced voltages, asym-
metry, rundown mode, switching mode, and other dynamic scenarios. This continued
investigation aims to enhance the understanding of specific transient behaviors and refine
the models for studying a broader range of dynamic regimes, providing valuable insights
into the operational characteristics of induction motors.
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Appendix A
Tables A1–A3 present the calculated values for rotational frequency, current, and

electromagnetic torque during the starting mode of a 3 kW induction motor. The results
were obtained using four mathematical models:

Model I: Induction motor (IM) model in the α,β coordinate axes.
Model II: IM model in the d,q coordinate axes using currents,
Model III: IM model in the d,q coordinate axes using flux linkages,
Model IV: IM model in the d,q coordinate axes using flux linkages with the rotor

time constant.
The tables highlight the motor’s transient and steady-state performance, with particu-

lar attention to how each model handles initial conditions and stabilization.

Table A1. IM rotation frequency n (pu).

t (s) Model I Model II Model III Model IV

0.01 0.069 0.069 0.07 0.067

0.05 0.643 0.643 0.65 0.625

0.1 1.005 1.005 1.003 1.011

0.15 1.001 1.001 1.00 1.004

0.2 0.999 0.999 0.998 1.00
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Table A1. Cont.

t (s) Model I Model II Model III Model IV

0.25 0.998 0.998 0.998 0.998

0.3 0.998 0.998 0.998 0.998

0.35 0.998 0.998 0.998 0.998

0.4 0.998 0.998 0.998 0.998

0.45 0.998 0.998 0.998 0.998

0.5 0.998 0.998 0.998 0.998

0.55 0.998 0.998 0.998 0.998

0.6 0.998 0.998 0.998 0.998

Table A2. IM current I (pu).

t (s) Model I Model II Model III Model IV

0.01 5.585 5.585 5.557 5.647

0.05 4.977 4.977 4.925 5.087

0.1 0.788 0.789 0.739 0.707

0.15 0.401 0.402 0.385 0.405

0.2 0.32 0321 0315 0341

0.25 0.3 0.301 0.299 0.312

0.3 0.295 0.296 0.296 0.303

0.35 0.293 0.294 0.294 0.3

0.4 0.293 0.293 0.293 0.303

0.45 0.292 0.293 0.293 0.298

0.5 0.292 0.293 0.293 0.298

0.55 0.292 0.293 0.293 0.298

0.6 0.292 0.293 0.293 0.298

Table A3. IM electromagnetic torque Te (pu).

t (s) Model I Model II Model III Model IV

0.01 2.461 2.460 2.491 2.392

0.05 1.424 1.424 1.459 1.34

0.1 −0.421 −0.421 −0.391 −0.481

0.15 −0.127 −0.127 −0.111 −0.161

0.2 −0.14 −0.14 −0.006 −0.031

0.25 0.027 0.027 0.03 0.019

0.3 0.041 0.042 0.043 0.038

0.35 0.047 0.047 0.048 0.045

0.4 0.049 0.049 0.049 0.048

0.45 0.049 0.05 0.05 0.049

0.5 0.05 0.05 0.05 0.05

0.55 0.05 0.05 0.05 0.05

0.6 0.05 0.05 0.05 0.05
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