
Academic Editors: Eliza Kostyra,

Anna Piotrowska and Sylwia
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Abstract: This manuscript was prepared for the purpose of an in-depth analysis of the
development of electronic sensors in food quality assessment. In this study, the following
research question was asked: What are the arguments for the development of electronic
sensors for food assessment? The aim of this work was to comprehensively review the
current scientific literature presenting the discussed issues and their systematization, as
well as to present the prospects, threats, and applications of electronic sensors in food
quality testing. The greatest interest of researchers lies in the use of e-nose. In contrast,
fewer publications concerned e-tongue applications, and the smallest number of works
concerned e-eye application. The initial application of electronic sensors in the food industry
progressed from research on the identification of single ingredients or properties to the
creation of increasingly complex research instruments that comprehensively analyze areas
of food characteristics. Specifically, e-sensor research has focused on individual e-nose,
e-tongue, and e-eye devices and has not provided complete information about food. This is
confirmed by the high accuracy of research results regarding the combined use of sensors
in food quality assessment.
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1. Introduction
Food quality is a concept that encompasses many aspects, from sensory experience to

safety and nutritional value, making it an important factor influencing consumer choices.
The fundamental condition in this respect is food safety. Both elements are closely related
and together create the criteria by which customers evaluate food. In most cases, food qual-
ity changes dynamically [1]. The development of the economy and the growth of prosperity
have significantly increased the awareness of consumers of harmful substances in food
and have led to an increase in the demand for high-quality food. The important problems
that are currently emerging in the food industry are the authenticity and safety of food,
real-time monitoring during food processing, evaluation of organoleptic characteristics,
quality assessment, and traceability of food origin [2]. Often, there are many products on
the market that are presented as authentic or 100% natural, but are imitations or counterfeit
versions of high-quality products, causing great harm to health and destroying consumer
confidence. In this area, e-noses and e-tongues are starting to be used as tools to strengthen
quality control and to guarantee the authenticity of products in a faster but also reliable
way [3].

The shelf life of food is primarily determined by its inherent quality characteristics,
packaging, and environment factors, such as transport, storage conditions, and climate.
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They contribute to the modification of the sensory, chemical, physical, and microbiological
characteristics of the product [4]. From the moment of processing and storage to the
moment when products reach consumers, food quality and safety must be constantly
monitored and controlled. This is to protect people from food poisoning and potentially
reduce food waste [5]. Ensuring food safety is complex and requires monitoring many
variables at every stage of the food supply chain, such as freshness, authenticity, toxin
levels, and the presence of pathogenic bacteria and contaminants [5].

A reduction in quality characteristics may result in the loss of the commercial quality
of the product, but not necessarily the loss of its hygienic, sensory, or nutritional properties.
Furthermore, the shelf life of a perishable product depends mainly on environmental and
hygienic conditions at the stages of production and storage [6]. The introduction of inap-
propriate food products into the market is a huge threat to consumer health. Therefore, it is
very important to use appropriate hazard detection technology to ensure rapid, accurate,
and real-time detection of unsafe food products [7–9].

The global food industry is facing increasing challenges in ensuring food safety,
sustainability, and quality due to the increasing demands of consumers in a changing
environment. To address these challenges, industry experts and researchers are using
artificial intelligence (AI) and machine learning (ML) technologies as effective tools to
transform safety assessment and quality management [10]. These technologies use visual,
acoustic, chemical, and electronic sensors. Intermodal intelligent sensing technologies play
a key role in food science and are widely used in food assessment [11].

Food assessment methods can be divided into subjective sensory evaluation and
objective instrumental tests. Subjective sensory evaluation methods are based on personal
observations of experienced discriminators using the senses of sight, touch, and smell to
evaluate food. Objective instrumental control involves testing and analyzing food products
using various types of testing equipment [2]. Traditional instrumental analysis methods
are often complex, time-consuming, and have limited detection capabilities. As a result,
the number of studies aimed at developing intelligent, efficient, and precise techniques for
detecting food analysis has multiplied [12,13].

Appearance, odor, taste, and texture are commonly used to assess changes in food
quality and safety. The human nose has about 400 olfactory receptors and can detect at least
one trillion odors [14]. The human nose can assess odor, but individual evaluation can be
biased. The human nose cannot be used to detect toxic gases. Additionally, the human nose
has limitations regarding gas mixtures. Thus, the human nose is not a universal tool for
identifying and classifying odors [15]. Volatile organic compounds (VOCs) are chemicals
that evaporate at room temperature (vapor pressure ≥10 Pa at 20 ◦C) and are important
indicators contributing to the odor signature specific to each food product [16,17]. Volatile
compounds, which are indicators of food freshness, undergo significant changes during
processing and storage, so gas sensors are essential for their detection and the evaluation of
food [18]. Excessive food oxidation indicates degradation of fats and oils, resulting in the
overproduction of hexanal. Excess hexanal is generally not preferred by consumers and
has been identified as one of the major off-flavors in foods such as meat, soy, and dairy
products [19,20]. It can also be considered a critical oxidation indicator; therefore, rapid,
accurate, and real-time detection of hexanal is essential for food quality assessment [21].

The condition for reducing food waste and protecting consumer well-being is the
accurate assessment of food freshness. For this purpose, e-noses are becoming essential
tools, providing a multidimensional approach to monitoring the complex trajectory of odor
changes inherent to food spoilage [22].

Electrochemical sensors are therefore of fundamental importance for the development
of such devices and remain an active area of research. This is partly due to the way they
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interact and partly because advances in electronics have enabled their use to add important
functions. In this sense, both devices have found important applications as monitoring
systems. From our point of view, automatic, intelligent e-tongues and e-noses will soon
appear as intelligent devices with on-line functionality [23]. Therefore, the aim of this paper
was to comprehensively review the current scientific literature presenting the discussed
issues, to systematize them, and to present the perspectives, risks, and applications of
electronic sensors in food testing.

2. Methodology
The preparation of the work was preceded by a detailed analysis of scientific publi-

cations devoted to the development of electronic sensor technology as an alternative to
human sense organs: smell, taste, and sight. The authors present the applied solutions,
assessing their impact on food safety, the possibilities of monitoring production processes,
and their use for the needs of raw material producers or consumers for the ongoing assess-
ment of food freshness. These sensors have the potential to reduce food waste caused by
throwing away food that is fit for consumption, which has passed the expiration date set by
the manufacturer. In the context of this analysis, the possibilities and potential related to the
development and production of e-nose, e-tongue, and e-eye sensors related to increasing
the accuracy of identified substances were examined. In this study, the following research
question was asked: What arguments speak for the development of electronic sensors
for assessing food quality? The literature search from the analyzed scope was performed
between January 2024 and October 2024 using the Scopus and Web of Science databases.

To obtain many search results, a combination of keywords was used: food quality
assessment and electronic senses. To better define the search, a combination of words was
used: “food quality assessment, e-nose”, “food quality assessment, e-tongue”, and “food
quality assessment, e-eye”. The search results were checked by the researchers in terms
of the topics discussed and the objectives of the study. The initial search scope covered
the years 2024–2019. However, to more fully describe the development of individual
technologies, earlier publications were included in the review. Duplicate publications
from both databases, publications without full access, and publications not containing
the searched keywords were excluded from the group of search results. From the group
of analyzed publications, 171 were selected, which are the most important regarding the
topic and the objective of the study. The articles were selected for review based on two
main criteria. The first one was research related to the development of electronic sensory
sensors. The second criterion consisted of publications focusing on research on the use
of sensors for food assessment, the selection of data processing methods, implementation
and improvement in industrial practice, and the consideration of sensor fusion strategies
for increasing the efficiency of operation. In these studies, a synthetic approach to the
discussed issues was also taken into account.

The selection of articles for the review was based on specific criteria, such as studies
involving the use of each type of sensor for food assessment. Another group of articles
included publications on studies on the combined use of e-nose, e-tongue, and e-eye. When
reviewing the works, attention was paid to the synthetic approach to the topic regarding the
current achievements in the use of electronic sensors, which was supported by providing
practical examples of their use and the results achieved. Zotero 7.0.11 software was used to
manage references.
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3. Prospects for the Development of Electronic Sensors as an Alternative
to Traditional Instrumental Methods

There are many different methods for assessing food quality, ranging from traditional
laboratory chemical analysis to advanced instrumental methods. Accurate instrumental
tests are usually performed using gas chromatography [24–26], high-performance liq-
uid chromatography [27–29], gas chromatography–mass spectrometry [30–33], infrared
spectroscopy [34–36], nuclear magnetic resonance [37–39], DNA-based methods [40], and
immunological tests and sensory analysis [15]. These methods are widely used and have
high accuracy [41]. However, these detection methods pose many challenges. Conventional
target methods used to assess the shelf life of food are time-consuming, labor-intensive,
and expensive and can only be used for offline control [42]. Standard instrumental test-
ing techniques have problems with cost and their time-consuming nature [43–47]. These
analyses are performed by trained or specialized personnel in a laboratory infrastructure.
Sensory evaluation methods can pose problems such as the length of the training cycles
of professionals and personal subjectivity, which makes it difficult to formulate objective
assessments [48,49]. Some examples of such problems include microbiological problems
that take at least several days to assess; chemical and chromatographic methods that require
continuous expenditure of gases, consumables, and expensive equipment; and sensory anal-
ysis that involves multiple panelists to evaluate selected attributes. Another key aspect of
these methods is the destruction of samples, which makes further analysis difficult [50,51].
Traditional methods are often characterized by complex, time-consuming, and limited
detection capabilities. Furthermore, these methods usually address only one aspect of food
quality. As a result, there has been an increase in research aimed at developing efficient
and accurate quality detection techniques [2,12,13].

The ability to perform rapid, non-destructive analyses is particularly important in
today’s food market, characterized by increased international trade in fresh produce, as
well as the need to have an environmentally efficient product. As a result, the use of more
quality control technologies has become a key question that stakeholders in science and
industry must answer [52]. In contrast to traditional methods, electronic sensing techniques
aim to provide information in real time, thus overcoming the costs and time associated
with laboratory methods or with human intervention, as in the case of traditional sensory
analysis methods [42].

Compared to traditional analytical methods, electronic systems have special features:
they are fast, objective, versatile, and potentially useful for at-line or on-line applications.
In addition, these techniques are considered environmentally friendly, as they require little
or no chemical reagent for sample preparation [53]. Sensors are generally distinguished by
the type of electrochemical, thermometric, piezoelectric, magnetic, or optical transducers
used. Their main function is to report physicochemical changes of bioactive materials
interacting with the sample under study. Detectors can measure one or more sample vari-
ants, enzymatic reaction products, substrate consumption, cofactor consumption, microbial
respiration or growth, specific metabolites, antigen binding, etc. [54,55].

Electronic sensors have recently attracted much attention from scientists and many
industries, who see their advantages as alternatives to traditional sensory testing. These
electronic sensors can solve the problems associated with the use of panelists in sensory
methods, such as subjectivity, sensory fatigue, and the high cost and time consumption
of the methods [56]. Electronic sensors are used in the food industry to monitor product
quality in quality assurance and control departments. The e-tongue and e-nose are expected
to be more widely used in on-line work to detect unpleasant odors and tastes in industrial
applications. The integration of electronic sensors with product processing and production
enables their use for timely control and quality assurance. The development of biologi-
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cal sensors and the increase in the number of identified compounds give these sensory
instruments great potential in fruit/vegetable harvesting, post-harvest, and horticultural
applications. For example, they could facilitate the prediction of the harvest season of
fruits and vegetables using deep learning or machine learning algorithms and advanced
regression analysis models [57].

Of note, e-eyes, e-noses, and e-tongues, designed to mimic human senses, can be
useful for real evaluation of fresh food products, thus enabling reductions in food waste.
These approaches aim to assess quality parameters based on sensory characteristics or
quantify specific analytes [6]. The use of intelligent sensors to detect fresh food can provide
hierarchical selection and determine the parameters of quality, maturity and freshness, and
shelf life. In addition, it can also monitor the product quality in real time and respond
to the product quality at any time. At the same time, food traceability can be ensured.
Consumers can obtain relevant information on prices, production site, harvest date, variety,
authenticity, etc. In this way, the quality of fresh food is guaranteed throughout the supply
chain [58]. As these instrumental sensory technologies become the subject of engineering
research, we can expect future e-tongues and e-noses that will be portable and much
cheaper than today. The continuous development of e-sensor technologies may enable the
next generation to rapidly ensure food safety and detection in the coming era when food
will not be as abundant as it is today [57].

Although significant progress has been made in more precise and accurate applications
of electronic noses, eyes, and tongues, individual applications of electronic systems are not
complete enough to simulate humans for the purpose of evaluating meat and meat products.
It should be remembered that humans perceive the quality of meat and meat products
by combining and simultaneously processing stimuli from the eyes, nose, and tongue. In
this sense, the integration/fusion of e-nose and e-tongue data sets is a natural progression
towards automation in production and the evaluation of meat and meat products. The
benefits of data fusion are proper classification and quality prediction, but new problems
pose additional challenges in terms of data, computational time, and applicability to real
food processing [59].

Unwanted changes in the data sets that affect data quality can make it difficult to
obtain useful data from e-eye and e-tongue measurements, resulting in missing data, noise,
baseline shifts, and peak shifts [60,61].

Electronic sensors are based on different principles. The principle of operation of
electrochemical sensors is to detect changes or current caused by chemical reactions between
a sensing electrode and a reference electrode. Optical sensors detect an analyte using its
absorption, fluorescence, or reflective properties. Piezoelectric sensors, on the other hand,
use the vibrations of a crystal exposed to the analyte and the generated electric current that
can be measured [23,62].

Examples of specific sensors used in electronic sensors are pH sensors, ion electrodes,
and gas sensors. Sensors detect chemical properties of the analyte, such as acidity, ionic
strength, or gas concentration. In general, the selection of the type of sensor used in e-
tongues and e-noses depends on the specific application and the properties of the analyte
being studied. Many sensors operating on different principles can be used to provide
comprehensive analysis of the odor or composition of a sample. Much information about
the achievements in the literature on electronic sensors can be found separately for e-
tongue and e-nose applications in specific processes. However, there are increasingly
examples of using both systems to increase their efficiency [23]. Of note, e-noses and
e-tongues are effective, safe, and economical methods of food identification and are now
competing with traditional laboratory tests [63]. E-tongues and e-noses are often used in
research to assess the quality, taste, and condition of food. For example, e-tongues have
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been used to determine the umami taste of Hanwoo meat [64]; compare the tastes of Koji
mold and Camembert cheese using different strains of Koji [65]; identify the botanical
origin of honey using a potentiometric e-tongue to distinguish among single-flower, multi-
flower, and honeydew honey [66]; and differentiate between types of lager based on their
electrochemically active compounds using screen-printed electrodes [67]. Precision farming
is now important for increasing food production and optimally utilizing the cultivation
space. To achieve this, regular soil health checks are important. Regular soil condition
monitoring is essential to achieve these goals. This has led to progress in developing
a microfluidic system based on four layer-by-layer sensors placed on gold interdigital
electrodes (IDEs) in a polydimethylsiloxane microchannel. The system is designed to
identify the abundance of nutrients such as sulfur, nitrogen, phosphorus, magnesium,
calcium, and potassium in soil samples. Sensor data were extracted and analyzed using
PCA, interactive document map (IDMAP) methods, and Sammon mapping [68].

Thanks to the advantages of hardware and software important in obtaining and analyz-
ing information, these technologies are gaining importance. The advantages of e-tongues
and e-noses include accuracy, time and financial efficiency, limited human involvement,
non-invasiveness, and the possibility of various applications. However, despite numerous
advantages, limitations are also indicated, including costs, lack of standardization, the
possibility of interference, and the need to compare results with tests conducted by people,
especially in the food industry [23,69].

The use of e-nose and e-tongue data combined with chemometric techniques can
be useful in the food industry to rapidly and accurately assess the quality, safety, and
authenticity of food [70,71]. Unlike ordinary single sensors, intermodal intelligent sensor
systems use multiple sensors to collect a variety of information, facilitating accurate food
quality assessment. In addition, these systems are flexible and can be applied to a variety of
food sample types and forms, allowing for easy adaptation to different needs. In contrast,
classical single sensors may have limitations in detecting specific conditions or sample
types due to the variety and complexity of food samples [12].

4. e-Nose
In the 1980s, research on machine olfaction led to the accepted definition of e-nose as a

device with a variety of electrochemical gas sensors with partial specificity and a pattern
recognition system [7]. In order to meet practical needs, an e-nose using nanomaterials
was developed, which was inspired by the mammalian sense of smell [72], standing out
as a promising biomimetic device [73–75]. Its original design goal was to capture specific
odor molecules in the air to enable the recognition of various gases. Importantly, e-nose
technology has developed very rapidly over the last thirty years [76–80]. The e-nose concept
has gone from its original form to the development of materials and identification methods.
Activities related to the commercialization of e-noses have forced efforts to reduce their
costs and to give the expanded stationary devices smaller dimensions, which would allow
for their mobile use, e.g., in plantations or processing plant conditions. These devices are
cost-effective, portable, easy to operate, and above all, allow for rapid analysis [7,81]. The
stages of e-nose evolution are presented in Figure 1. Examples of e-nose use in food quality
assessment and the obtained results are presented in Table 1.
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Table 1. Applications and obtained effects of the e-nose system.

Device Type/Sensors Used Application Quantitative Metrics References

BME680 from Bosch, SGP30 from Sensirion,
and CCS811 and iAQ-Core from ScioSense/4

digital gas sensors with integrated
MOX sensors

Abnormal fermentations
occurring in table olives

Consistency with the results
obtained by the tasting panel [82]

MOS Moldy bread detection 100% accuracy [83]

E-nose equipped with a space automation
system above the surface and

18 MOS sensors

Longjing tea quality
classification

100% recognition rate was
achieved using the
KLDA-KNN model

[84]

8 MOS gas sensors:
(1) two types of Taguchi (Figaro Engineering

Inc., Osaka, Japan) sensors (TGS813 and
TGS822); (2) five types of MQ sensors (MQ3,
MQ4, MQ8, MQ135, and MQ136) (Hanwei

Electronics Group Corporation, China); and
(3) one FIS sensor (NISSHA FIS, Inc., Tagawa,

Yodogawa-ku, Osaka, Japan)

Olive oil classification and
fraud detection

Among the seven classification
models mentioned, GBC with

97.75% accuracy in the test result
had the highest accuracy;

linear SVM and Naive Bayes had
95.51% accuracy

[85]

10 MOS sensors with different sensitivities
Identification of instant

starch noodle spices based
on different flavor profiles

Explained 86.96%, 98.09%, and
94.38% of the total variance, and
the CA results were consistent

with the PCA results

[86]

MOS sensors: MQ4, MQ5, MQ9, and MQ135 Evaluation of the shelf life
of various edible seeds

Exceeding the threshold value on
the 120th day of storage [87]

Heracles Analyzer Neo (Alpha Mos,
Toulouse, France)

Characteristics of vinegar
quality and volatility

Rapid detection, low sample
requirement, and no

pre-treatment required;
disadvantages include difficulty

in absolute quantification of
components and inability to

determine inorganic
flavor components

[88]
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Table 1. Cont.

Device Type/Sensors Used Application Quantitative Metrics References

E-nose (PEN3, Air-sense Analytics GmbH,
Schwerin, Germany)/10 MOS sensors

Analysis of volatile
profiles of kiwifruit
experiencing soft rot

Combining e-nose and GC–MS to
differentiate intact and diseased

kiwifruit is feasible
[89]

ISE Nose 2000 (ISE, Pisa, Italy)/12
SnO2-based MOS sensors (TGS type by
Figaro Engineering Inc., Osaka, Japan)

Licorice roots (Glycyrrhiza
glabra L.) identification

Usefulness in identifying
licorice root [90]

FGC Electronic Nose Heracles II (Alpha
MOS, Toulouse, France)

Storage time of
peanut butter

A promising method for
applications in industrial food

quality control
[91]

PEN 3 MOS (Airsense Analytics, Germany) Detection of the degree of
black tea fermentation

e-Nose and computer vision
technologies proved that the

effect of the multi-source sensor
model was better than that of a

single sensor

[92]

8 MQ series tin dioxide sensors (MQ135,
MQ2, MQ3, MQ4, MQ5, MQ9,

MQ7, and MQ8)

Basic detection of various
food products

The ability to detect damaged
products has been confirmed [93]

5 MOX Taguchi gas sensors (TGS), including
two H2S and three SO2 sensors

On-line wine fermentation
monitoring

Good ability to distinguish
different phases of wine
fermentation in real time

[94]

TGS Sensors (Figaro Engineering Inc., Osaka,
Japan) for alcohol, alcohol, ammonia,

ammonia, alcohol, hydrogen, and
carbon monoxide

Rice quality assessment

Suitability for classifying and
estimating rice quality during

storage under different
temperature and

humidity conditions

[95]

Portable acoustic resonator (FBAR)
Real-time detection of

banana cold chain
storage time

Effectively distinguishes yellow
bananas with green necks from

completely yellow bananas
[96]

e-Nose (WinMuster Airsense Analytics Inc.,
Schwerin, Germany)/10 MOS sensors

Detection of volatile
components of loquat fruit

during the post-harvest
shelf life (18 days)

Loquat fruit during different
storage periods [97]

Heracles II GC-E-Nose (Alpha MOS,
Toulouse, France)

Characterization of the
different quality levels of

Congolese black tea

A 44-dimensional characterization
data set was obtained to

characterize the aroma quality
[98]

Araki Sangyo Co., Ltd. (Osaka, Japan)
Comparison with sensory

evaluation of cheese
aroma intensity

convergence with the results of
sensory evaluation [99]

PEN3 Portable Electronic Nose, Airsense
Analytics GmbH, Schwerin, Germany/10

MOS sensors

Identification of volatile
substances dependent on
the storage time of lamb

The usefulness of rapid
identification of sheep

storage stages
[100]

Ultrafast gas chromatography HERACLES
NEO e-nose

Identifying differences in
odor profiles in different

varieties of bee pollen

Usefulness of quality control of
bee pollen products [101]

e-Nose designed and manufactured by PHT
laboratory, MOS sensors

Investigation of garlic
aroma as a quality

control factor

Processing methods and
pathogen contamination make it

difficult to assess quality
[102]

e-Nose/10 MOS sensors
Evaluation of the quality

of mushrooms
during storage

The usefulness of assessing
storage conditions on the quality

of mushrooms
[103]
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Table 1. Cont.

Device Type/Sensors Used Application Quantitative Metrics References

Two sensor arrays:
(1) 4 micromachined gas sensors; the
microsensor substrates consisted of a

SiO2/Si3N4/SiO2 membrane with insulated
platinum heaters and platinum electrodes

(2) 4 SnO2 sensors: TGS 8xx (with xx = 15, 22,
24 and 42) Figaro Engineering Inc.

(Osaka, Japan)

Distinguishing between
different brands of
pasteurized milk

Combined use with an electronic
voltammeter increases the

accuracy of identification and
suitability for on-line control

[104]

6 MQ sensors (MQ-3; MQ-4; MQ-7; MQ-8;
MQ-9; MQ-135) (Hanwei Electronics Group

Corporation, Zhengzhou, China)
2 × TGS Figaro family sensors (TGS 822; TGS
2602) (Figaro Engineering Inc., Osaka, Japan)

Carrying out preliminary
and quick quality

assessments of wines

Analysis of the set of components
of the blueberry wine bouquet to

identify adulteration in the
distribution process

[105]

e-Nose (PEN2, WMA Airsense
Analysentechnik GmbH, Schwerin,

Germany)/10 MOS sensors

Quality assessment of
satsuma mandarin (Citrus
unshiu Marc.) depending

on storage conditions

In terms of identifying storage
conditions, the e-nose system

showed 100% accuracy; the e-nose
and e-tongue fusion system

achieved a performance index of
100% in the identification of

tangerines and a significantly
higher correlation with

tangerine quality

[106]

Electronic nose PEN3 (Airsense,
Analysentechnik GmbH, Schwerin,

Germany)/10 MOS sensors

Identifying the aromatic
and flavor compounds of

seven traditional
Chinese pancakes

e-Nose using PCA effectively
distinguishes the odor profiles of

seven Chinese pancakes
[107]

Abbreviations: MOX—metal oxide; MOS—metal oxide semi-conductor; GBC—gradient boosting classifier;
MQ4—detects released methane; MQ5—detects released isobutane and propane; MQ9—detects flammable gases;
MQ135—detects gases present in the environment and determines the quality of the air in the surroundings;
H2S—hydrogen sulfide; SO2—sulfur dioxide; TGS 815—detects released hydrocarbon; TGS 822—detects released
alcohol; TGS 824—detects released ammonia; TGS 842—detects released methane; TGS 2602—detects of air
contaminants; PCA—principal component analysis.

The e-nose system combines hardware and software. It uses a network of sensors to
detect released gases and convert them into signals that can be analyzed using various
statistical methods. With the introduction of artificial intelligence, automated algorithms
have been employed to assess food quality based on these signals [108]. The e-nose system
comprises four main components: a sampling system to manage samples during analysis, a
detection system that includes a set of sensors, a data collection and processing system, and
software designed for pattern recognition [15,76,109–111]. In the e-nose system, a sampling
system collects samples of volatile compounds. These samples are then transported through
a gas path to a gas chamber, where they contact a sensor array. This interaction causes a
chemical reaction. The electronic converter transforms the chemical signals into electrical
signals fed into the data acquisition system. A computer processes this information, which
is subsequently analyzed using various methods [49]. The sensors within the e-nose device
interact with the volatile substances, causing chemical reactions. The input port of the data
acquisition (DAQ) system is linked to the sensor output, and an interface circuit converts
the sensor signals into electrical signals, such as voltage and current [112].

Electronic noses, or e-noses, consist of multiple sensors coated with nanomaterials.
They can detect VOCs and respond to them in distinct ways. These responses are analyzed
using a pattern recognition algorithm that operates similarly to the human brain [113,114].
e-Noses are advanced analytical tools that mimic the human sense of smell, allowing
them to detect additives in food products. Typically equipped with multiple sensors,
these devices can identify and differentiate odors within complex samples. They are
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relatively inexpensive, making them highly useful in many fields, particularly the food
industry [115,116].

The emergence of the electronic nose (e-nose) system has made it possible to as-
sess the quality of food products in a non-destructive manner. This system provides a
rapid evaluation compared to traditional methods, which are often expensive and time-
consuming [108,116]. The e-nose is an essential tool in the food industry, offering a variety
of applications that help ensure product quality, trace origins, optimized processes, and
reduced waste. These advanced devices are designed to detect and analyze VOCs emitted
by various food products. They are crucial in enhancing food safety, maintaining freshness,
and improving overall quality management [117]. The e-nose is known for its rapid re-
sponse, effective detection capabilities, accurate assessments, and ability to reduce human
error. Furthermore, it can identify colorless and odorless gases that may harm human
health [118,119]. The e-nose system is increasingly utilized in medical auxiliary diagnostics,
public safety monitoring, and environmental pollution control, particularly within the food
industry [120–122]. Table 2 provides examples of VOC markers.

Table 2. Examples of VOC markers.

The Use of LZO Marker Accuracy References

Acinetobacter johnsonii XY27 in
cold stored stock (Thunnus obese)

Benzaldehyde
1-Hexanol

2,4-Di-tert-butylphenol
[123]

Ochratoxin A
in grape-based food from

Aspergillus carbonarius breeding

1-Octen-3-one and 2-octen-1-ol
biomarkers for detecting A. carbonarius

strains with low OTA production

Accuracy, R2, and Q2: 91.7%,
0.882, and 0.790

[124]

Ant-nose
Four VOCs: MeOH, PrOH, BuOH, and EtOH 100%

[114]Six VOCs with isomers: MeOH, PrOH, IPA,
2-BuOH, BuOH, and EtOH 96.7%

Detection of Penicillium expansum
in ‘Golden Delicious’ apples 3-Methyl butan-1-ol and methyl acetate

Diagnosis rates over 87%; 97%
for samples with early stage

fungal infection
[125]

Abbreviations: MeOH—methanol, PrOH—1-proponal, IPA—2-proponal, 2BuOH—2-butanol, BuOH—1-butanol,
EtOH—ethanol.

e-Nose technology is known for its low cost, quick response time, and efficient identifi-
cation of substances being tested [126–128]. Rapid advancements in new materials, pattern
recognition, and electronic detection technologies are driving progress in gas detection
technology within the food industry [2,82,129,130]. Furthermore, the evolution of this tech-
nology is influenced not only by the development of detection techniques and materials
but also by a deeper understanding of the processes that underpin the human sense of
smell [7].

The benefits of electronic noses (e-noses) are tied to the specific types of sensors used.
Metal oxide semiconductor sensors are highly sensitive and detect active substances as
low as 1 part per million (ppm). Polymer-based sensors, on the other hand, are effective
for identifying specific flavor compounds. Their sensitivity allows for detection at levels
around 10 ppm. Polymer-based sensors are also more energy efficient than metal oxide
semiconductor sensors. However, there are some drawbacks to using these sensors. They
require high operating temperatures, sometimes reaching 400 ◦C, and strict control of
experimental conditions, such as humidity, pressure, temperature, and gas velocity [15].
Additionally, a limited number of sensors are available compared to the human nose. Recent
research on e-noses has led to advancements in several areas, including assessing freshness,
taste, authenticity, quality control, process monitoring, traceability, and detecting pesticide
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residues [2]. A significant challenge in utilizing e-noses is the selection of appropriate
sensors and developing complex recognition algorithms, especially for implementation
on cost-effective devices. Nevertheless, the significance of e-noses in the food industry
continues to grow [7].

Electronic sensors are becoming more prevalent in food analysis. These sensors
utilize electronic noses (e-noses) equipped with neon or partially selective gas sensors,
combined with data processing and pattern recognition systems, to analyze aromas without
separating volatile components. This technology enables the identification of complex
aroma profiles, offering a more cost-effective and efficient alternative to traditional, labor-
intensive methods [115,131].

Using electronic noses (e-noses) to monitor the freshness of food products can trans-
form how we store food and manage our distribution networks. This innovative solution
could significantly impact the food industry. As these devices evolve, incorporating ad-
vanced sensing technologies and pattern recognition algorithms, their ability to detect
and analyze various volatile substances related to food spoilage will improve. Ultimately,
employing e-noses as dependable freshness monitors promotes sustainability, ensures food
safety, and provides consumers with a safe and uncontaminated experience [117].

Supervising and controlling production processes is essential for ensuring consistency
and maintaining high food quality. One significant technological advancement in this area
is the e-nose, which plays a vital role in accurately monitoring and evaluating complex
production procedures, such as roasting coffee beans [132]. By analyzing subtle changes in
aroma during the roasting process, e-noses enable continuous assessment of the roast level,
helping to ensure product uniformity.

The variety of sensors allows for accurate profiling and classification of the studied
analytes. The graphene e-nose developed by Caman et al. [133], which consists of 432
sensors and 36 different receptors, achieved an impressive 89% accuracy in recognizing six
odorants at four different concentrations. Another graphene e-nose developed by Kybert
et al. [134], featuring 56 sensors connected by 4 DNA oligomers, could visually distinguish
eight chemical vapors. Additionally, the e-nose presented by Weerakody et al. [72], which
comprises five elements, effectively distinguished four VOCs. Furthermore, the semicon-
ductor e-nose developed by Wang et al. [114,135] based on five sensors made of various
metal oxides achieved a remarkable 99% accuracy in classifying six VOCs.

The conductivity or resistivity of the sensing material changes due to charge transfer,
ion exchange, or interaction with ions when odor molecules attach to its surface. The
electrical signals generated by the sensors undergo processes such as noise reduction or
amplification and are then converted from analog to digital form using an analog-to-digital
converter (ADC). In the subsequent step, this information is further analyzed with machine
learning algorithms, including principal component analysis (PCA), linear discriminant
analysis (LDA), K-nearest neighbor (K-NN), artificial neural networks (ANNs), partial least
squares regression (PLSR), and partial least squares discrimination analysis (PLS-DA) [136].
Integrating multiple transducers and sensitive nanomaterials in electronic noses (e-noses)
increases complexity, power consumption, and overall size. To ensure diverse fingerprint
profiling patterns of analytes, sensors are often coated with different nanomaterials [137], or
the same nanomaterial undergoes various functionalization processes [133,134,138], which
can be complex and time-consuming. Additionally, sophisticated sensors may require extra
circuits and infrastructure to supply power and collect data from multiple channels [74].
The malfunction of even one component can lead to the failure of the entire system. In the
case of wireless sensor networks (WSN), installing numerous sensors can result in high
costs and added complexity [114].
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Using non-selective chemical sensors enables a comprehensive response to the volatile
compounds present in a sample, allowing for recognizing odor patterns [139]. Electronic
noses (e-noses) detect various dairy products and meats, including beef, poultry, and fish.
These odor-detecting devices electronically record the volatile substances produced during
decomposition, facilitating the accurate assessment of spoilage levels. By monitoring the
different odors emitted by meat as it deteriorates, e-noses assist in identifying early signs
of spoilage, reducing health risks, and minimizing food waste [117].

5. e-Tongue
E-tongues are analytical devices designed to recognize and classify the various flavors

of chemicals present in food liquids or samples. They operate on principles similar to the
human sense of taste, employing sensors. These devices can evaluate multi-component
mixtures regarding quality and quantity, which is why they are becoming increasingly
prominent in food analysis [116,140]. The primary objective of e-tongue technology is to
analyze food samples using a set of sensors, such as ion-selective electrodes with specific
properties, and to perform statistical analyses on the data collected. e-Tongues can describe
the taste profiles of complex liquids or food samples converted to liquid form. This
technology can provide insights into aspects like freshness and ripeness [141,142]. Examples
of e-tongue applications and the results obtained in food quality research are summarized
in Table 3.

Table 3. Application and obtained effects of the e-tongue system.

Device Type/Sensors Used Application Quantitative Metrics References

The sensor set consists of seven different
chemical sensors and a reference

electrode (Ag/AgCl)

Development of an effective
method for identifying spices

for instant noodles

In combination with the e-nose, it
provides fast, objective, highly

automated, and inexpensive food
odor analysis

[86]

SA-402B Electronic Tongue (E-tongue)
(Intelligent Sensor Technology, Inc.,
Atsugi, Japan) Sensor array: 6 taste

sensors for bitter, umami, sour,
astringent, salty, and sweet; and two

reference electrodes

Detection of flavor
characteristics of loquat fruit
during the post-harvest shelf

life (18 days)

Shows changes in sensory taste
indices typical of loquats [97]

ASTREE E-tongue (Alpha M.O.S.,
Toulouse, France); sensor array consists

of 7 sensors (AHS, ANS, SCS, CTS, NMS,
PKS, and CPS) and a standard reference

electrode (Ag/AgCl)

Characterization of the
different quality levels of

Congolese black tea

A 7-dimensional feature data set
(AHS, ANS, SCS, CTS, NMS, PKS,

and CPS) was obtained to
characterize the flavor quality of the

tea infusion

[98]

Tongue system, a 6th generation sensor
system consisting of AHS, ANS, SCS,

CTS, NMS, PKS, and CPS sensors
together with a standard reference

electrode (Ag/AgCl), giving a total of
7 sensors

Identifying differences in
flavor profiles in different

varieties of bee pollen

The basis for comprehensive
processing and quality control of

bee pollen products
[101]

The voltametric e-tongue used in this
study consisted of 4 working electrodes
(platinum, gold, crystalline carbon, and
silver), a reference electrode (Ag/AgCl),

and a platinum auxiliary electrode

Distinguishing between
different brands of
pasteurized milk

Clear differentiation of milk brands
on the first day of storage,

combined use with e-nose very
promising for monitoring milk

quality in the dairy industry, mainly
where on-line control is needed

[104]
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Table 3. Cont.

Device Type/Sensors Used Application Quantitative Metrics References

ASTREE e-tongue (Alpha MOS Co.,
Toulouse, France)/7 chemical sensors

and reference electrode (Ag/AgCl)

Identification of instant starch
noodle spices based on
different flavor profiles

e-Tongue correctly evaluates
different brands of instant noodle

seasonings; fusion with e-nose
increases the speed and accuracy of

food odor analysis, allows for its
auto-aromatization, and

reduces costs

[86]

E-tongue (α-Astree, Alpha MOS
Company, France)/7 potentiometric

chemical sensors, Ag/AgCl
reference electrode

Assessment of the quality of
satsuma mandarin (Citrus

unshiu Marc.) under different
storage conditions

Combined use with e-nose
provided 100% tangerine

identification and significantly
higher correlation with tangerine

quality compared to the
single system

[106]

ASTREE e-tongue system (Alpha MOS,
France)/7 chemical sensors including
AHS, NMS, CTS, ANS, SCS, PKS, and

CPS and one Ag/AgCl
reference electrode

Identification of aromatic and
flavor compounds of 7

traditional Chinese pancakes

Enables proper identification
of products [107]

Ultimate 3000 HPLC system coupled
with a 16-channel coularray detector

(Thermo Fisher Scientific Dionex,
Sunnyvale, CA, USA)

Quick fresh lettuce
The e-tongue sensors showed

similarity in evaluation with the
traditional analytical method

[143]

PEN3 E-nose (Airsense Analytics GmbH,
Schwerin, Germany)/10 single-layer

metal oxide thick-film sensors

Taste evaluation of traditional
Chinese fermented

soybean paste

Combining e-nose data and LDA
analysis allowed for a clearer

discrimination (with a
discrimination accuracy of 97.22%)

[144]

Astree flavor system consisting of 3 parts:
a sensor array and Ag/AgC reference
electrode; the sensors were made of

silicon transistors with an organic coating

Detecting adulteration of
ground lamb

Together with e-nose data, it is a
promising perspective for the

development of a rapid method for
meat identification

[145]

E-tongue (SA402B; Intelligent Sensor
Technology, Inc., Tokyo, Japan)

e-Tongue was used to
compare sensory differences

in coffee quality depending on
processing method

Makes it possible to identify taste
sensations that are undetectable

by humans
[146]

e-Type tongue (α Astree, Alpha MOS,
Toulouse, France), 7 potentiometric

sensors marked by the manufacturer
(Alpha MOS), Ag/AgCl reference

electrode (Metrohm, Ltd.,
Herisau, Switzerland)

Development of a simple
instrument, without the need
for sample preparation and
inexpensive analysis, which

can be performed by
manufacturers

The usefulness of the e-tongue for
the construction of a fast and
economical tool supporting

melissopalynological analysis,
which can be routinely used in

the future

[147]

Abbreviations: AHS—sour taste, ANS—sweet, SCS—bitter, CTS—salty, NMS—umami. PKS and CPS are respon-
sible for all-round taste.

The sensors that form the core of the e-tongue system can be categorized into three
main types: electrochemical (which includes voltametric, potentiometric, amperometric,
impedimetric, and conductometric), optical, and enzymatic (biosensors). Typically, e-
tongue systems consist of up to ten sensors, with potentiometric and voltametric sensors
being the most common. Voltametric e-tongues are particularly useful for multi-component
measurements, such as determining the levels of chlorides, nitrites, and nitrates in meat.
However, they are limited to samples that involve oxidation and reduction reactions [6,51].

e-Tongues utilize various sensors and data processing techniques to analyze complex
fluid systems [136]. The electrodes assess the taste or character of a substance by measuring
changes in resistance or current between them [71]. Once this information is converted
into a digital format, it is input into a mathematical model and evaluated using computer
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simulations that define the substance’s taste or character [140]. In e-cigarette applications,
potentiometric sensors are the most commonly used; they are cost-effective, easy to install,
and closely mimic natural taste recognition [148]. Among these sensors, ion-selective
electrodes (ISEs) are the most prevalent [141]. The potential can be determined by placing
two electrodes in the solution to be analyzed, ensuring no current flows. The concentration
of the component can be determined by measuring the change in potential relative to a
reference electrode [76]. The main benefits of the electronic tongue (e-tongue) include its
simplicity, especially when using impedance-based sensors; long-term stability, particularly
with optical mass sensors; and the ability to customize it for specific compounds, especially
with potentiometric sensors. Additionally, e-tongues can test foods containing harmful
substances, such as mycotoxins. In amperometric sensors, the working electrodes are
modified to either oxidize or reduce the analyte, while the counter electrode is placed in a
solution containing the analyte of interest. These sensors can detect and quantify specific
analytes in gases, liquids, or solutions, offering high sensitivity and selectivity and a wide
dynamic range [149,150].

Examples of electrode materials used in e-tongues and their applications are presented
in the Table 4.

Table 4. Examples of electrode materials used in e-tongues and their applications.

Sensor Material Detection Limit Recovery Rate Application References

β-GICNT/rGO electrochemical
sensor-based

rGO/PEI—CNTs/β-CD
0.01–100 µmol/L 94.80–112.20%

Quantitative content of
capsaicinoids in soy
sauce and roasted

meat products

[151]

FI-PAD working electrode Au,
auxiliary electrode platinum wire,

reference electrode Ag/AgCl
0.005 g/L 93.00–109.5%

Detecting the
concentration of
chlorine ions in

raw milk

[152]

PPy-based voltametric sensors
7 electrodes:

PPy/AQDS, PPy/SO4, PPy/DBS,
PPy/PC, PPy/SF, PPy/FCN, and

PPy/TSA

91.3%
Coffee quality

assessment and
adulteration detection

[153]

Hydrogel containing mucin, NaCl
as an ion-transporting electrolyte,
and chitosan/poly(acrylamide—

acrylic acid) as the main 3D
structure maintaining the

hydrogel network

Astringency
29.3 mM–0.59 µM at a

sensitivity of 0.2 wt%−1

Bitterness
63.8 mM–6.38 µM at a

sensitivity of 0.12 wt%−1

Sensing an astringent
and bitter taste [154]

T1R1-VFT biosensor

The lower limits of
detection (LOD) of IMP,

MSG, BMP, and WSA were
0.1, 0.1, 0.1, and 0.01 pM,

respectively

Over 90% first
4 days

Detecting
umami flavors [155]

Silver nanoparticles (AgNPs) in
multilayer structures (LbL)

Silhouette coefficient (SC)
91.2%

Increased ability to
distinguish between

basic tastes and
samples that have an

umami flavor

[156]

Abbreviations: rGO—reduced graphene oxide; PEI—polyethylene imine; CNTs—carbon nanotubes; β-CD—
β-cyclodextrin; β-GICNT/rGO—electrochemical sensor-based rGO/PEI—CNTs/β-CD; FI-PAD—pulsed am-
perometric detection in flow injection system; IMP—inosine-5′-monophosphate, MSG—sodium L-glutamate,
BMP—meat peptide; WSA—sodium succinate; PPy—polypyrrole; PPy/AQDS—anthraquinone-2,6-disulfonic
acid disodium salt; PPy/SO4—sodium sulfate; PPy/DBS—sodium dodecylbenzenesulfonate; PPy/PC—lithium
perchlorate; PPy/SF—ammonium persulfate; PPy/FCN—potassium ferrocyanide; PPy/TSA—p-toluenesulfonic
acid; VFT—a ligand called the Venus flytrap domain; T1R1—umami taste receptor proteins.
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The most notable disadvantages of the electronic tongue (e-tongue) include the require-
ment for sample preparation, particularly for solid foods such as meat and meat products.
Additionally, the sensors have a short lifespan due to nutrient absorption, especially in the
case of potentiometric sensors [15,157].

6. e-Eye
The appearance of food refers to how it is visually perceived, including its color, struc-

ture, surface texture, and morphological features. These aspects are influenced by physical,
chemical, microbiological, and sensory changes, which indicate product quality [6]. e-Eye
systems can analyze surface texture in ways that exceed the human eye’s capabilities,
examining characteristics such as graininess, smoothness, and roughness. Furthermore,
appearance is crucial for describing fresh food products in terms of their structure. While it
is not always feasible to cover all measurable features since they vary depending on the
specific product and the purpose of the analysis, understanding these attributes is essen-
tial [158]. e-Eye is a modern technology that offers several advantages, including sample
preservation, user-friendliness, non-invasiveness, minimal or no sample preparation, and
the capability to generate and permanently store high-quality images. However, there are
some disadvantages to consider. This tool must be operated in a controlled environment
devoid of light to prevent interference. Additionally, it can only assess one side of the sam-
ples at a time and requires careful attention to separate the background to obtain accurate
data. Regular calibration is also necessary to ensure optimal performance [159,160].

Images captured by e-eye typically result from colorimetric, spectrophotometric, or
computer vision measurements. The most commonly used color space in the food industry
is L*a*b*. Spectrophotometers measure the entire spectrum of a sample within the visible
range, and using mathematical conversions, the results are expressed as color coordinates
in the L*a*b* format. The computer vision system comprises a lighting setup, a digital RGB
camera, a sample holder, and the necessary hardware and software for image acquisition
and processing. The camera sensors convert the intensity of the incident light into an
electrical signal [161]. Examples of the use of e-eye to assess food quality, along with the
results obtained, are presented in Table 5.

Table 5. Application and obtained effects of the e-eye system.

Device Type/Sensors Used Application Quantitative Metrics References

IRIS VA400 E-eye (Alpha MOS,
Toulouse, France)

Characterization of the
different quality levels of

Congolese black tea

A total of 40 characteristic colors were
distinguished, mainly reddish-brown,
yellowish-brown, orange, and brown

[98]

A system consisting of an electronic
eyepiece (aperture: f/2.5) equipped

with a 5 million-element CMOS
(complementary metal oxide

semiconductor) sensor, a holder, a
light-emitting diode (LED) lamp, an

LED lamp switch, and image
processing software

A method for detecting the
geographical origin of black
pepper, which involves the

synergistic use of ET, EN, and
EE together with CNN and

CAM incorporated into deep
learning models

Relationships between sensory
characteristics of black pepper and

traceability of origin have
been developed

[162]

Combination of 3 intelligent
sensory techniques (e-eye, e-nose,
and e-tongue) with multivariate

statistical methods

Understanding the impact of
different processing methods

on the sensory quality
of chestnuts

Fast, non-destructive, and intelligent
sensory technology introduced in the
assessment of the sensory quality of

chestnuts showed the inhibiting effect
of N2 packaging on the browning of

chestnuts after cooking

[163]
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Table 5. Cont.

Device Type/Sensors Used Application Quantitative Metrics References

The e-eye system consists of (1) a
5 million electronic eyepiece

(RuiHoge), (2) a holder, (3) an LED
lamp, and (4) an LED lamp adapter

Combined use of VE and EE
to identify the storage time of

Pu-erh tea

The detection efficiency of the
intelligent sensor system has been

improved compared to conventional
pattern recognition methods

using CNN

[164]

W100 wine color analyzer (Hanon
Advanced Technology Group Co.,

Ltd., Jinan, China)

L*, a*, b*, C*, and h of
the samples

The results of the e-nose project showed
that the aromatic profiles of the wines
studied were mostly similar, but there
were color differences between regions

[165]

Color digital camera (Firewire Scion
1394 camera; Scion Corporation,

Frederick, MD, USA) with
maximum resolution

(1600 × 1200 pixels) in jpeg format,
illumination by two lamps

(23 W/865, Philips MASTER
PL-Electronic) placed at an angle

of 45◦

Use of electronic sensors to
assess the effect of different

thermal profiles of water
during the percolation process
on the sensory properties of

100% Arabica espresso coffees

Higher brewing temperatures resulted
in greater foaming and greater

foam stability
[166]

Aparat E-eye (IRIS VA400, Alpha
MOS, Francja)

Study of the color change of
the Saffron floral bio-residues
(SFB) sample under different

storage conditions

It has been suggested that SFB should
be stored at 25 ◦C with 23%

relative humidity
[167]

SC-80C colorimeter (Kangguang
Instrument Co. Ltd., Beijing, China)

in transmission mode under CIE
D65/10◦/observer

illumination conditions

Used to reveal sensory
characteristics of infusions of
12 representative yellow teas

Yellow large tea was significantly
different from yellow bud teas and

yellow small teas, but yellow bud teas
could not be effectively distinguished

from yellow small teas based on
chemical components and electronic

sensory characteristics

[168]

Abbreviations: L*—lightness; a*—green/red component; b*—yellow/blue component, C*—chrominance;
h—hue.

The quality of the e-eye system relies on several components, including the electronics,
camera, frame grabber, and lighting system. Depending on their application, CCDs can
vary in construction types (such as linear, interline, and frame transfer) and resolutions
(which refers to the number and size of pixels). A properly designed lighting system
is crucial as it enhances the analysis’s precision and minimizes artifact occurrence. The
lighting can be adjusted for two construction types: circular lighting works best for flat
samples, while diffuse lighting is more suitable for round and/or reflective objects [6].

Computer vision equipment utilizes sensors to mimic the human visual system. Using
advanced image acquisition devices, relevant sample data are collected and sent to a
computer to analyze and identify target areas. This technology enables the detection and
sorting of fresh food. Computer vision equipment consists of two main components: the
information processing device and the image acquisition device [169]. As computer vision
technology develops, many computer vision devices are being created. This technology
has numerous applications in food research, including quality control and classifying fruits
and vegetables [58].

The computer vision system is fast, non-invasive, and highly precise. Compared to
traditional testing equipment, this new technology significantly enhances the efficiency of
food testing. Computer vision offers several advantages, including automatic classification
and detection and economic and hygienic benefits. Additionally, it eliminates the influence
of personal biases. However, there can be challenges in practical applications. Image acqui-
sition devices, such as smart cameras, are sensitive to environmental factors like lighting,
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weather conditions, and high humidity. As a result, the images captured may vary in color
brightness, become unstable, or exhibit other issues, which can lead to misinterpretation
of the observed images [170]. Preprocessing the original image to enhance the final image
analysis is known as low-level processing. This includes adjusting brightness and colors,
cropping images to focus on the region of interest, and removing noise or digital artifacts
caused by low light levels. Mid-level processing involves image segmentation, which
separates the target object from unwanted information to improve accuracy. The most ad-
vanced stage is high-level processing, encompassing image recognition and interpretation.
Algorithms such as KNN, support vector machines (SVMs), neural networks, fuzzy logic,
and genetic algorithms help interpret the information extracted from images [171].

7. Conclusions
Artificial sense technology imitates the senses such as smell, taste, and vision using

sensors and pattern recognition technology. e-Tongue is able to reproduce the human
sense of taste using a matrix of different sensors to obtain a “taste fingerprint” from a
sample. e-Nose can imitate the human sense of smell to determine the smell of a sample
through the reaction of the device’s sensor system with the sample gas. High-quality e-eye
cameras can obtain visual data on colors, shapes, and textures. Since the beginning of
sensor research, many studies have focused mainly on individual tools, including e-nose,
e-tongue, and e-eye, which did not allow for obtaining complete data on the sensory
characteristics of samples, negatively affecting the detection accuracy and generalization
capabilities. The bibliography analysis shows that the use of e-nose is the most popular
among researchers in food quality assessment. Fewer publications were found for e-tongue,
and the smallest number of works focused on e-eye. Food quality testing using electronic
sensors has evolved from identifying specific components of a sample to using pattern
recognition analyses that provide detailed information about sample properties. Recently,
many studies have been undertaken using fusion at the output and hardware level, and
the use of various ML algorithms has been analyzed. This is evidenced by the work on the
use of e-nose fusion with e-tongue and e-eye characterized by high accuracy, which allows
for a comprehensive assessment of food quality. We should also expect the increasingly
widespread use of e-sensors in on-line production conditions for real-time quality control
and assurance.
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Abbreviations

Abbreviation Meaning
AI artificial intelligence
2BuOH 2-butanol
a* color parameter—green/red component



Appl. Sci. 2025, 15, 1530 18 of 26

ADC analog to digital converter
AHS e-tongue sensors sensitive to sour taste
ANN artificial neural network
ANS e-tongue sensors sensitive to sweet
b* color parameter—yellow/blue component
BMP meat peptide
BuOH 1-butanol
C* color parameter—chrominance
CNT carbon nanotube
CTS e-tongue sensors sensitive to salty
DAQ data acquisition
EtOH ethanol
FI-PAD pulsed amperometric detection in flow injection system
GBC gradient boosting classifier
h color parameter—hue
H2S hydrogen sulfide
IDE interdigital electrode
IDMAP interactive document map
IMP inosine-5′-monophosphate
IPA 2-proponal
K-NN K-nearest neighbor
L* color parameter—lightness
LDA linear discriminant analysis
MeOH methanol
ML machine learning
MOS metal oxide semi-conductor
MOX metal oxide
MQ135 sensor detecting gases present in the environment and determines the quality

of the air in the surroundings
MQ4 sensor detecting released methane
MQ5 sensor detecting released isobutane and propane
MQ9 sensor detecting flammable gases
MSG sodium L-glutamate
NMS e-tongue sensors sensitive to umami
PCA principal component analysis
PEI polyethylene imine
PKS and CPS e-tongue sensors responsible for all-round taste
PLS-DA partial least squares discrimination analysis
PLSR partial least squares regression
PPy polypyrrole
PPy/AQDS anthraquinone-2,6-disulfonic acid disodium salt
PPy/DBS sodium dodecylbenzenesulfonate
PPy/FCN potassium ferrocyanide
PPy/PC lithium perchlorate
PPy/SF ammonium persulfate
PPy/SO4 sodium sulfate
PPy/TSA p-toluenesulfonic acid
PrOH 1-proponal
rGO reduced graphene oxide
SCS e-tongue sensors sensitive to bitter
SO2 sulfur dioxide
SVM support vector machine
T1R1 umami taste receptor protein
TGS 2602 gas sensor detects air contaminants
TGS 815 gas sensor detects released hydrocarbon
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TGS 822 gas sensor detects released alcohol
TGS 824 gas sensor detects released ammonia
TGS 842 gas sensor detects released methane
VFT a ligand called the Venus flytrap domain
VOC volatile organic compound
WSA sodium succinate
β-CD β-cyclodextrin
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