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Abstract: Accidents involving electric wheelchairs are a growing concern, with users fre-
quently encountering obstacles that lead to collisions, tipping, or loss of balance. These 
incidents underscore the need for advanced safety technologies tailored to electric wheel-
chair users. This research addresses this need by developing a driving assistance system 
to prevent accidents and enhance user safety. The system incorporates ultrasonic sensors 
and a front-facing camera to detect obstacles and provide real-time warnings. The pro-
posed system operates independently of stable server communication and employs em-
bedded hardware for fast object detection and environmental recognition, ensuring im-
mediate guidance in various scenarios. In this research, we utilized the existing yolov8 
model as is. But we attempted to improve performance by hardware acceleration of con-
volutional neural networks, supporting various layers such as convolution, deconvolu-
tion, pooling, batch normalization, and others. Thus, the YOLO model was accelerated 
during inference on the specialized hardware in our experiments. Performance was eval-
uated in diverse environments to assess its usability. Results demonstrated high accuracy 
in detecting obstacles and providing timely warnings. Leveraging hardware acceleration 
for YOLOv8 delivers faster, scalable, and robust object detection, making it a great plat-
form for enhancing driving safety on edge and embedded devices. These findings provide 
a strong foundation for future advancements in safety assistance systems for electric 
wheelchairs and other mobility devices. Future research will focus on enhancing system 
performance and integrating additional features to create a safer environment for electric 
wheelchair users. 

Keywords: personal mobility vehicle; obstacle detection; embedded system; driving as-
sistance; ultrasonic sensors 
 

1. Introduction 
The demand for electric wheelchairs has steadily increased in response to the aging 

population. According to a report from the Korea Consumer Agency (Figure 1), 35.5% of 
users of motorized assistive devices (including electric wheelchairs and scooters) have 
experienced accidents [1,2]. These accidents stem from a variety of causes, including 
catching on curbs or obstacles (42.2%), collisions with external obstacles (36.3%), unex-
pected halting during operation (32.4%), collisions with vehicles (24.5%), collisions with 
pedestrians (22.5%), loss of balance due to wheelchair tilt (12.7%), entrapment in device 
components (10.8%), and mechanical malfunctions or fires (8.8%). Such accidents can lead 
to severe injury and inconvenience to users. In fact, the most recent statistics on assistive 
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device accidents from researchers indicate the comparatively low level of attention paid 
to the issue compared to other safety equipment [2,3]. 

 

Figure 1. Types of accidents experienced by motorized assistive device users [1]. 

Personal mobility devices can have various sensors and components, including ultra-
small front/rear/side cameras, impact sensors, communication modules, and microcon-
trollers. When applied, this system enables an electric kickboard to detect its surroundings 
autonomously, identify abnormal signs, adjust driving speed, or report damage or acci-
dents to a control center in real time. To improve personal mobility safety, this study in-
corporates a vision recognition function that detects and recognizes the surroundings us-
ing an ultra-small camera. This feature can be enhanced to recognize pedestrians ahead, 
execute an emergency stop, or detect and reduce speed when operating on sidewalks ra-
ther than dedicated roads. In addition, integrating a GPS receiver can enable automatic 
speed adjustments when entering child and elderly protection zones through more pre-
cise location tracking. Furthermore, combining the vision recognition function with im-
pact sensors allows comprehensive road condition assessment and automatic speed ad-
justments when necessary. 

As shown in Figure 2 below, the steady increase in the use of personal mobility de-
vices has led to a rise in accident rates. Users of electric wheelchairs are more prone to 
accidents due to low postural stability and greater exposure to external impacts, which 
increases their physical and psychological burdens. However, institutional measures re-
garding support policies for electric mobility aids, accident prevention strategies, and pro-
tective equipment remain insufficient. 
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Figure 2. Supply trends of electric and manual wheelchairs (2017–2023). 

To prevent these accidents and ensure the safety of electric wheelchair users, obstacle 
recognition-based warning and sensing-based emergency stop play key roles in this pa-
per. So, our research aims to develop a system to enhance the safety of electric wheelchairs 
using those two key technologies: obstacle recognition-based warning and sensing-based 
emergency stop. 

In particular, the reason why this study can achieve fast performance without relying 
on high-performance computation support and API calls through existing large servers is 
as follows. First, this study is implemented by utilizing an embedded board with on-de-
vice AI technology that implements AI applications with a GPU. In addition, this study 
utilizes a hardware accelerator for deep-learning inference to perform computationally 
intensive deep-learning tasks, such as convolution, much more efficiently than CPUs. 

The contribution of this paper to safety-enhancing techniques of personal mobile ve-
hicles (PMVs) is that the driving safety enhancement device we have developed performs 
object detection on the embedded board itself using hardware acceleration. It is also 
equipped with control logic for emergency stops. With the recent trend of increasing ac-
cidents involving personal mobile device users, we believe that the results of this research 
and development will be of interest and competitiveness. Moreover, we also make use of 
techniques for increasing performance by a specialized hardware component optimized 
for deep-learning inference. This accelerates the processing in various layers, such as con-
volution, deconvolution, pooling, ReLU, comparison, etc., that a neural network performs 
during inference. 

The remainder of this paper is structured as follows. Section 2 introduces related re-
search, and Section 3 explains the proposed system architecture, design, and implemen-
tation. Section 4 covers experimental results and analysis. Finally, Section 5 presents the 
conclusion of this paper. 

2. Related Works 
Previous research in the field of object detection can be broadly categorized into two 

main areas. The first category focuses on fundamental obstacle detection technologies, 
while the second category encompasses real-time situational awareness and warning sys-
tems that use on-device AI and object detection. This study reviews previous research 
with an emphasis on these two areas. 
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2.1. Driving Safety Enhancement Techniques by Obstacle Detection 

Various studies have investigated obstacle detection technology to enhance the safety 
of electric wheelchairs and personal mobility devices. Kim, Y.-P. designed and evaluated 
controllers and drive mechanisms to improve safe navigation while considering user body 
types and achieving performance goals such as continuous driving time, turning radius, 
and maximum load capacity during driving tests [4]. Despite these achievements, the au-
thors noted that further testing is required to verify the stability of the system in outdoor 
environments. Additionally, Seo and Kim developed an obstacle detection system for 
electric wheelchair operation using a 3D depth camera [5]. Their system employs a KI-
NECT depth camera, enabling real-time obstacle detection and avoidance. However, sys-
tem performance can be affected by the environmental limitations of camera sensors, such 
as lighting conditions. 

Recent studies have concentrated on enhancing the safety and performance of electric 
wheelchairs through advanced detection technologies employing various approaches. 
Several investigations have examined the development and improvement of electric 
wheelchair systems, including user posture change functionalities and requirements anal-
ysis [6–8]. Innovations in specialized detection systems for electric wheelchairs encompass 
the development of management applications [9], torque ripple reduction in BLDC trac-
tion motors for improved ride comfort [10], and independent safety measures for wheel-
chair users in automated vehicles [11]. Ji et al. developed an intelligent wheelchair system 
utilizing situation awareness and obstacle detection [12], while other studies have ex-
plored safety enhancements for wheelchair users within autonomous vehicle environ-
ments [13]. 

Furthermore, previous research [14,15] has focused on developing obstacle avoid-
ance systems, incorporating depth cameras, fuzzy logic control, and SLAM-based naviga-
tion techniques. Additional efforts have explored hybrid approaches that integrate multi-
ple technologies, such as the implementation of electric wheelchairs using hybrid energy 
storage devices [16] and the development of weakly supervised object detection models 
for smart city applications [17], as well as deep-learning-based 3D multi-object tracking 
using multi-modal fusion in smart cities [18]. 

2.2. Driving Safety Enhancement Techniques by On-Device AI 

Research on the application of on-device AI and object detection technology is also 
an active area of investigation. The development of solar-powered electric wheelchairs 
with foldable panels [19] has been explored. Recent developments include the SPPT: Sia-
mese Pyramid Pooling Transformer for visual object tracking [20] and the impact of noise 
on YOLO-based object detection systems [21]. Kim and Cho developed a smart integrated 
control board to improve the safe driving of personal electric wheelchairs [22], while Lin 
et al. proposed a lightweight method for automatic road damage detection based on deep 
learning [23]. Additionally, Alam et al. introduced a smart electric wheelchair with a mul-
tipurpose health monitoring system [24]. 

Significant advancements have been made in wheelchair-specific technologies. Yang 
et al. introduced the Siamese Pyramid Pooling Transformer approach for visual object 
tracking [20], while Oh et al. focused on safety improvements by developing standard 
specifications [25]. The integration of AI has also been advanced through research on an 
electric wheelchair-driving robotic module [26] and obstacle detection and unmanned 
driving management systems [27]. 

Advanced control systems have also been developed, including EEG-based control 
[28] and health monitoring systems [24]. Research has further explored specialized fea-
tures such as moving obstacle avoidance [29] and smart-integrated control boards [22]. 
Recent studies have focused on high-performance electric wheelchairs with postural 
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adjustment functions [30] and tailored systems designed for users with upper limb disa-
bilities [28]. Zhang et al. proposed a multi-scale key-points-feature fusion network for 3D 
object detection from point clouds, further contributing to advancements in object detec-
tion technology [31]. 

2.3. Situational Awareness and Warning System 

Significant developments have been made in fast monitoring and safety systems for 
electric wheelchairs. Several studies have focused on improving autonomous navigation 
and incorporating robust safety features [32–37]. Recent research efforts include the de-
velopment of solar-powered solutions [38] and robotic modules for standardized circuits 
[39]. For example, Heo developed a management application for powered wheelchairs 
[40], while other studies have focused on improving ride comfort by reducing the torque 
ripple [41–44]. Additional challenges addressed in recent studies include step detection 
and ascent capabilities [8], as well as the integration of SSVEP-BCI systems [32]. 

Current research trends indicate a growing focus on integrating multiple technolo-
gies, as demonstrated by studies that combine various detection methods [28,35]. These 
technological advancements are crucial for improving the accessibility and safety of elec-
tric wheelchairs while maintaining cost-effectiveness for users. The integration of these 
solutions aims to develop third-party devices that can be retrofitted to existing electric 
wheelchairs, thus providing advanced safety features without requiring new systems. 

2.4. Additional Considerations for Electric Wheelchair Safety and Performance 

Recent studies further highlight the importance of advanced design strategies and 
integrated solutions to enhance the safety and ride quality of personal mobility vehicles. 
For instance, Haraguchi and Kaneko [42] proposed a PMV design with an inward tilt 
mechanism to reduce steering disturbances caused by uneven road surfaces, effectively 
improving vehicle stability and reducing user fatigue. Similarly, Omori et al. [43] devel-
oped an autonomous navigation approach for PMVs that accounts for passenger tolerance 
to approaching pedestrians, ensuring both safety and comfort in congested environments. 

Jian et al. [44] introduced a concept of federated personal mobility services in auton-
omous transportation systems, enabling real-time communication between vehicles, in-
frastructure, and control modules. This framework could facilitate safer, more efficient 
journeys by optimizing the interaction between users and transportation networks. 

Beyond navigation and control, energy management also plays a critical role in ensuring 
consistent performance and safety. Kim et al. [16] presented an electric wheelchair that utilized 
hybrid energy storage devices. It was designed to maintain reliable power output under var-
ious operating conditions. By integrating these advanced technologies, future personal mobil-
ity vehicles can significantly improve both accessibility and safety while remaining cost-effec-
tive. In this way, recent developments—from tilt-based stabilization to hybrid power sys-
tems—illustrate a growing emphasis on holistic, user-centered design in electric wheelchair 
research. Through such innovations, the next generation of electric wheelchairs is poised to 
offer enhanced safety, stability, and convenience for a wide range of users. 

3. System Architecture, Design, and Implementation 
Building on the recognized need for enhanced safety measures and the limitations of 

current support policies, this study aims to develop a fast obstacle detection and warning 
system for electric wheelchairs. The proposed system incorporates multiple sensors and a 
front-facing camera to detect obstacles and provide timely warnings, thereby enhancing 
user safety in diverse environments. Furthermore, employing on-device processing min-
imizes reliance on external server communication, ensuring stable operation even in con-
nectivity-limited scenarios. 
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Figure 3 illustrates the architecture of a web application developed using the Spring 
Framework, incorporating key components such as Spring Boot, Spring Security, Spring 
Data JPA, Thymeleaf, Stomp, and REST API. Spring Boot provides the foundational struc-
ture, and Spring Security manages authentication and authorization. The Spring Control-
ler processes user requests, and Thymeleaf and HTML5 render the user interface. Data 
management is performed via JPA and supported by technologies such as MariaDB, Hi-
bernate, and QueryDSL. The Stomp protocol manages fast communication with devices 
such as cameras and PLCs, thereby enabling efficient data processing between web clients 
and the server and enhancing the system’s scalability and maintainability. 

 

Figure 3. Server and client (device) architecture. 

To improve the driving safety of personal mobility devices, we designed the algo-
rithm depicted in Figure 4. The personal mobility device has a front camera and an ultra-
sonic sensor to recognize obstacles. A computing unit onboard the device processes the 
recognition and executes the algorithm. Although the user operates the device, the front 
camera first identifies distant obstacles, and the ultrasonic sensor recognizes nearby ob-
stacles. The main computer relays recognition results to the user via TTS. Additionally, if 
the user does not stop despite obstacle detection, the system activates an automatic brake 
function to stop the device, ensuring safety. 

 

Figure 4. Enhancing safety of personal mobility vehicle strategy. 
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3.1. Enhancing Driving Safety by Forward Obstacle Detection 

Object detection models can be broadly categorized into one-stage and two-stage de-
tection methods. Two-stage methods, such as Faster Region-Based Convolutional Neural 
Network (Faster R-CNN), first propose regions where objects are likely located and then 
perform detailed detection within those regions. Although this approach achieves high 
accuracy, its computational complexity and multi-step processing make it unsuitable for 
real-time applications. 

In contrast, one-stage detection methods process an entire image in a single compu-
tational step while simultaneously predicting object locations and classifications, provid-
ing a significant speed advantage. Prominent one-stage models include the Single Shot 
Multibox Detector (SSD), EfficientDet, RetinaNet, and You Only Look Once (YOLO) mod-
els. However, its limitations in detecting small objects pose challenges for forward obsta-
cle detection, where identifying small and dynamic objects is essential. 

EfficientDet employs a Bi-directional Feature Pyramid Network (BiFPN) to enhance 
multi-scale information transfer and balance computational efficiency and detection per-
formance. Although EfficientDet performs effectively in general-purpose applications, its 
capability in detecting small objects is inferior to that of YOLOv8, particularly in environ-
ments requiring high accuracy under diverse conditions. RetinaNet, equipped with Focal 
Loss to address class imbalance, excels in detecting objects of varying sizes. However, its 
slower processing speeds relative to other one-stage models make it less suitable for real-
time applications, such as obstacle detection for electric wheelchairs, where rapid re-
sponses are crucial. 

In this paper, we utilized the existing YOLOv8 version as is. However, we exploited 
hardware acceleration techniques to boost performance. Therefore, we reduced the over-
head of inference operations by hardware acceleration of convolutional neural networks, 
supporting various layers such as convolution, deconvolution, pooling, batch normaliza-
tion, and others. So, some components in the YOLO model, especially the colored compo-
nents in Figure 5, were accelerated through the hardware in our experiment. 

 

Figure 5. YOLOv8 and its accelerating architecture exploited on this research. 



Appl. Sci. 2025, 15, 1534 8 of 31 
 

As shown in Figures 5 and 6, the YOLOv8 architecture is composed of three key com-
ponents: the backbone, neck, and detection layers, each optimized for efficient and accu-
rate object detection. The backbone employs CSPDarknet53 as its backbone, incorporating 
the C2F module with dense and residual connections to enhance gradient flow and feature 
representation while maintaining a lightweight design. It downsamples the input image 
to retain the essential features and prepares it for subsequent stages. The Neck module 
employs a Feature Pyramid Network (FPN) to apply upsampling to enhance small object 
detection by creating a multi-scale feature pyramid, resulting in hierarchical feature fu-
sion, enabling robust detection across objects of varying scales. Finally, the detection head 
replaces traditional anchors with a task-aligned assigner, improving accuracy and robust-
ness by better aligning predictions with ground truths. It outputs bounding boxes, class 
probabilities, and confidence scores, refining accuracy through loss functions. The Back-
bone–Neck–Head structure enables YOLOv8 to achieve multi-scale detection at high 
speeds, making it suitable for real-time applications such as obstacle detection in electric 
wheelchairs. 

YOLOv8 was selected as the optimal model for this study due to its exceptional com-
bination of speed and accuracy. The innovative architecture of YOLOv8—comprising 
Backbone, Neck, and Head modules—enables rapid and precise detection by simultane-
ously predicting bounding boxes and class probabilities. Optimized with TensorRT on 
AGX Orin hardware, YOLOv8 demonstrated exceptional performance in small object de-
tection and inference speed, meeting the stringent requirements of forward obstacle de-
tection in real-world scenarios. The experimental results confirmed YOLOv8’s superiority 
over other models, making it a highly effective solution for enhancing situational aware-
ness in electric wheelchairs. 

 

Figure 6. One-stage object detection algorithm exploited on our platform. 

Various object detection models were evaluated to optimize the performance of the 
forward situational awareness system. Due to the need for high processing speed and 
accuracy in real-time awareness, the assessment focused on one-stage models, including 
YOLOv8, SSD, EfficientDet, RetinaNet, and the two-stage model Faster R-CNN. As shown 
in Figure 7, the object detection models were evaluated in an experimental setup using a 
camera and an embedded board. 

The efficiency and accuracy of object detection are important. An object detector is 
an object detection that performs image recognition tasks by taking an image as input and 
then predicting bounding boxes and class probabilities for each object in the image. This 
is because, today, object detection technology plays a key role in enhancing driving safety 
in our research. Currently, state-of-the-art real-time object detectors are mainly based on 
YOLO-like convolutional one-stage object detection algorithms. For this reason, in this 
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study, we also pursued near-real-time fast performance in the process of performing the 
object detection algorithm using YOLO, a one-stage algorithm. 

 

Figure 7. Experimental setup for object detection using a camera and embedded board. 

After evaluating the performance and efficiency of the real-time object detection 
models, we selected YOLOv8 as the final model. As discussed earlier, two-stage models, 
such as Faster R-CNN, offer high accuracy through a refined multi-step process. However, 
their computational complexity makes them unsuitable for real-time applications. In con-
trast, one-stage models, such as YOLO, process an entire image in a single step, providing 
the speed required for real-time environments while maintaining a balance between ac-
curacy and efficiency. Models such as SSD, EfficientDet, and RetinaNet were also consid-
ered. However, they did not meet the requirements of this study. Despite its speed ad-
vantages, SSD was excluded due to its low accuracy in detecting small objects. Although 
EfficientDet offers exceptional computational efficiency, its speed and small object detec-
tion performance are inferior to that of YOLOv8. Similarly, while RetinaNet effectively 
detects objects of various sizes, its slower processing speed makes it unsuitable for real-
time applications. 

To ensure an informed decision, we reviewed the performance data from Ultralytics 
and conducted comparative experiments with YOLOv5, a widely used model in various 
applications. The experimental results indicate that YOLOv8 significantly outperformed 
YOLOv5 in terms of both accuracy and inference speed. YOLOv8 excels at small object 
detection and offers faster processing, making it suitable for real-time applications such 
as forward obstacle detection for electric wheelchairs. 

Additionally, YOLOv8 is highly compatible with modern hardware and operates ef-
ficiently on low-spec embedded systems, making it versatile across various environments. 
These advantages led to the selection of YOLOv8 as the optimal model for this study. A 
comprehensive analysis of YOLOv8’s performance, including a comparative evaluation 
with YOLOv5, is provided in the performance evaluation section. 

3.2. Enhancing Driving Safety by Ultrasonic Sensors and Emergency Stop 

Personal mobility devices have low posture stability, and the rider is exposed to the out-
side, so there is a risk of overturning or falling accidents. As shown in Figure 8, the device 
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developed in this research can be manufactured in a form that can be attached to a personal 
mobility device. In addition, this device analyzes the information acquired through the front 
camera and front and rear sensors in the on-device controller and provides text-to-speech ser-
vice to the driver. Therefore, by utilizing this device, the driver of the personal mobility device 
can receive additional voice guidance while keeping an eye on the situation ahead. The fol-
lowing sensor and emergency stop technology were applied to help passengers of personal 
mobility devices recognize dangerous situations and to notify them of obstacle detection to 
prevent accidents. 

 

Figure 8. Schematics for sensing forward obstacles, and for automatic brake system. 

As a specific implementation method, some sensors (such as ultrasonic wave) mod-
ules are connected to a microprocessor and are used to generate an emergency stop of the 
personal mobility device when an obstacle is detected. 

The sensors recognize obstacles in front through ultrasonic sensors and process the 
signal from the sensors. The controller board notifies the forward collision warning if the 
vehicle is within a predetermined range. It can stop by itself when approaching an obsta-
cle by recognizing objects and can ask for help from people around it in various ways 
through smartphone applications. 

As shown in Figure 9, we designed and implemented a system to enhance the safety 
of personal mobility devices, such as electric wheelchairs, by integrating a camera with 
various sensors. The main components of the proposed system include an ultrasonic sen-
sor, a front camera, an embedded platform (NVIDIA Orin board), Arduino, and multiple 
sensor modules. The system detects objects, predicts potential hazards using sensor data 
and front camera images, and alerts users with visual impairment. 
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Figure 9. Hardware components and control interface of the motorized wheelchair system. 

An emergency stop is a safety mechanism that shuts down machinery in an emer-
gency when other methods are inadequate. It is also known as a kill switch, emergency 
brake, emergency off, or emergency power off. This is a kind of emergency technique that 
can allow an attendant to stop a powerchair via a controller depending on the situation. 
It is great for carers and parents of young children and the elderly, or in situations where 
a carer needs to step in to prevent an accident or injury. This provides carers and attend-
ants greater peace of mind when out and about with a wheelchair user. 

When an emergency stop is generated, the emergency stop control device latches in 
and must be manually released. The emergency stop function should take precedence 
over all other functions and should shut off the energy supply to hazardous drives as 
quickly as possible. 

The server system architecture facilitates universal execution. As shown in Figure 10, 
the smartphone application was built using Progressive Web App (PWA) technology on a 
React and Vite framework and provides a native app-like experience with offline func-
tionality. 
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Figure 10. Front-end operation screen. 

The on-device object recognition device (see Figure 11) was mounted on an electric 
wheelchair to detect forward obstacles and provide voice guidance. This setup enhances 
the safe mobility of visually impaired users and improves the quality of life of various 
vulnerable social groups. 

To perform object detection on embedded devices, we perform learning on an exist-
ing server rather than learning the model on the embedded board, and then we deploy it 
to the edge of hardware with limited computing resources. In conventional embedded 
boards, it is advantageous to use 8-bit integer computation for the weights reflected in the 
neural network. If the weights are simply rounded up in the process of converting from 
floating point to integer, it may decrease in terms of accuracy and performance when the 
dynamic range of the weights is wide. 

  

Figure 11. Embedded evaluation board and front camera mounted on electric wheelchair. 

In this paper, we also make use of YOLOv8 to implement forward obstacle detection 
in near-real time. Moreover, we also focused on enhancing performance with a specialized 
hardware component optimized for deep-learning inference. This accelerates the pro-
cessing in various layers, such as convolution, deconvolution, pooling, ReLU, comparison, 
etc., that a neural network performs during inference. 

Figure 12 is a prototype of an electric wheelchair equipped with a forward situational 
awareness function developed in this study. As shown in Figure 12, the electric wheelchair 
is equipped with a processing board with computing capabilities, a sensor, and a camera 
that captures the forward situation. In addition, the monitor located at the top of Figure 
12 was installed for debugging purposes to confirm whether the situational awareness is 
working properly in the experimental environment. Therefore, it is not necessarily needed 
in real situations. 
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Figure 12. A prototype of an electric wheelchair equipped with a forward situational awareness 
function was developed in this study. 

Figure 13 shows a scene where object recognition is performed in real time on the 
processing board through images coming from the front camera to perform forward situ-
ation recognition. In the experimental environment, it can be confirmed that a person lo-
cated in front is normally recognized and a bounding box is processed at an accurate lo-
cation on the monitor screen. At the same time, the speaker connected to the processing 
board informs the electric wheelchair rider that there is a person in front. 

  

Figure 13. Forward situational awareness operation situation by object recognition technique. 

3.3. Data Acquisition and Statistics 

For this study, the KITTI Dataset and a fusion sensor dataset from an autonomous 
wheelchair guidance system for individuals with disabilities were selected after reviewing 
several options. These datasets were deemed most appropriate for aligning with the 
study’s objectives and environment. 
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As shown in Table 1, the KITTI Dataset, which is widely used in autonomous driving 
research, provides high-resolution video and LiDAR data across diverse road environ-
ments for obstacle recognition, thereby enhancing the model’s generalizability in the com-
plex road conditions encountered by electric wheelchairs. Additionally, the autonomous 
wheelchair fusion sensor dataset, which reflects real-world operational data, provides 
critical validation for obstacle recognition technology performance. 

Table 1. System components for evaluation. 

Sensor Class 
Dataset 

Training Validation Test 

Image 
Left 115,200 14,400 14,400 

Right 115,200 14,400 14,400 
Total Image 230,400 28,800 28,800 

Sensor Class Dataset 
Training Validation Test 

LiDAR LiDAR 115,200 14,400 14,400 
Total LiDAR 115,200 14,400 14,400 

Large datasets, such as Cityscapes, BDD100K, and A2D2, were reviewed for broader 
testing. The Cityscapes dataset supports urban scene understanding and obstacle detec-
tion, while BDD100K enhances the model’s adaptability with its diverse weather and road 
conditions. A2D2, developed by Audi, supports improved obstacle detection near road-
ways. Finally, the KITTI and autonomous wheelchair datasets were selected to align with 
the requirements of this study, ensuring robust performance evaluation in real-world set-
tings for electric wheelchair applications. 

4. Experimental Results 
As shown above, we designed and implemented the forward situational detection and 

awareness system using object detection. In this experiment, we ran the inference on a Jetson 
AGX Orin board with 2048 cores of 1.3 GHz CPU, 64 Tensor cores, 12 cores of 2.2 GHz Arm 
Cortex-A78, 64 GB LPDDR5 memory with a throughput of 204.8 GB/s. With this environment, 
we conducted the experiment using the YOLOv8 model with the TensorRT and measured the 
performance so we could leverage the ability to perform computations for accelerating deep-
learning workloads by some fixed-function hardware that accelerates deep-learning work-
loads on our embedded platform. We made use of a sort of hardware acceleration technique, 
Deep-Learning Accelerator (DLA) [45], to optimize the yolov8m’s performance on Jetson AGX 
Orin. We trained the model, exported it to the ONNX format, and converted it into a TensorRT 
engine optimized for the hardware. When the TensorRT engine was loaded in the YOLO 
framework, tasks, especially convolution and relu, are automatically assigned to DLA for sup-
ported operations, significantly accelerating the inference process. It works seamlessly with 
TensorRT for additional model optimization, including quantization and layer fusion, further 
improving the speed of YOLOv8. 

4.1. Confusion Matrix 

In this section, we present a confusion matrix to analyze the forward situational 
awareness performance of the system in detail through Figure 14. The figure shows the 
correlation between the predicted value and the actual value for all classes as a ratio. This 
allows us to quantitatively evaluate the prediction accuracy of the model for each class. In 
addition, we can check the reliability and consistency of the model for a specific class. For 
example, the dark color on the diagonal indicates that the model achieved high accuracy 
in the corresponding class. This means that the system developed in this study has a high 
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rate of correctly identifying forward obstacles and objects. On the other hand, the values 
outside the diagonal showcases where confusion occurred, suggesting which inter-class 
correlations/confusions occurred when the prediction was incorrect. 

 

Figure 14. Correlation between the predicted value and the actual value for all classes as a ratio. 

Figure 15 is an unnormalized confusion matrix, which shows the prediction perfor-
mance for each class in terms of absolute values. This is useful for detecting the presence 
of data imbalance and model performance degradation in a specific class. For example, if 
there are few data samples for a specific class, the prediction frequency may appear rela-
tively low. These visualizations help us evaluate whether the model is relatively better 
trained in a class or whether additional data acquisition or training optimization is 
needed. These two visualizations serve as important tools to evaluate the strengths and 
weaknesses of the YOLOv8 model in detecting and classifying various objects. In partic-
ular, they provide meaningful information for diagnosing the model’s suitability and po-
tential for improvement in real-time applications where reliability and accuracy are es-
sential, such as obstacle detection. 
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Figure 15. Unnormalized confusion matrix. 

4.2. System Implementation and Experiments for Auto-Stop and TTS 

The techniques used in this research to improve the driving safety of personal mobil-
ity devices include forward obstacle recognition using a vision camera, TTS technology 
that provides voice guidance based on the forward recognition results, and an automatic 
stop function using an ultrasonic sensor when a forward collision is imminent. 

First, our system was developed to analyze image data collected from personal mo-
bility devices via an Object Detection service. This application recognizes target objects 
and integrates with electric wheelchairs and personal mobility devices, offering Text-to-
Speech (TTS)-based voice guidance and warnings. 

// Define the options for the fetch request 

const options = { 

    headers: { 

        "content-type": "application/json; charset=UTF-8", 

    }, 

    body: JSON.stringify(data), 

    method: "POST" 

}; 

fetch(api_url, options) 

    .then((response) => { 

        if (!response.ok) { 

            throw new Error("Error with Text to Speech conversion"); 

        }  

        response.json().then((data) => { 

            const audioContent = data.audioContent; // base64 encoded audio 

            const audioBuffer = Buffer.from(audioContent, "base64"); 

            res.send(audioBuffer); 
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        }); 

    }) 

    .catch((error) => { 

        res.status(500).send({ error: error.message }); 

    }); 

// Function to perform Text-to-Speech (TTS) API call and play the resulting audio. 

function ttsApi() { 

    fetch('/tts') 

        .then(response => { 

            if (!response.ok) { 

                throw new Error(response.statusText); 

            } 

            return response.arrayBuffer(); 

        }) 

        .then(arrayBuffer => { 

            const audioContent = arrayBufferToString(arrayBuffer);  

            const audioContext = new (window.AudioContext || 

window.webkitAudioContext)();  

            const source = audioContext.createBufferSource(); 

            const audioData = base64ToArrayBuffer(audioContent);  

            audioContext.decodeAudioData(audioData, function (buffer) { 

                source.buffer = buffer;  

                source.connect(audioContext.destination);  

                source.start(0); 

            }); 

        }) 

        .catch(error => { 

            console.error('Error:', error); 

        }); 

} 

Although the TTS service was not implemented entirely in this study, a typical TTS 
library API was used. However, considering that the user of a personal mobile device 
cannot continuously watch the monitor while driving, a user guidance function utilizing 
the TTS service is necessary. As shown in Figure 16, a demonstration of the text-to-speech 
implementation highlights its potential benefits for user guidance while driving. 
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Figure 16. Text-to-speech implementation and demonstration. 

Likewise, the implementation and demonstration of the user guidance function using 
TTS service through forward obstacle recognition can be found at the following URL link: 
https://youtu.be/ObcSwF8kDp8 (accessed on 15 January 2025). 

Next, in Figure 17, we describe feature that automatically stops the personal mobility 
device when it approaches an obstacle ahead. In the case of a user driving a personal mo-
bility device, the field of vision must be focused on the front and rear, and both hands 
must be held on the steering wheel. Therefore, the method of conveying the input image 
information to the user is limited. Therefore, in this study, the method of notifying the 
user of the results obtained through the object recognition process was adopted as the 
method of alarm sound and TTS guidance. In other words, the results of the forward sit-
uation recognition processed through the vision camera and embedded board are pro-
vided to the user while driving through methods such as warning sound and voice guid-
ance. 

  
Ultrasonic sensor for long-term distance Ultrasonic sensor for short-term distance 

  
Vision camera for forward obstacle detection Overall integration 
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Moving forward Auto-stop while moving forward 

Figure 17. Motorized wheelchair with integrated obstacle detection system. 

However, if the vehicle does not stop despite the warning sound and voice guidance, it 
can be determined that the user has neglected to look forward and rearward, or that the user 
is in a situation where it is difficult to operate quickly. Therefore, in such cases, the controller 
operates an automatic stop to ensure the safety of the user of the personal mobility device. As 
shown in Figure 18, after the auto-stop function is activated, the vehicle comes to a halt in front 
of an obstacle. A demonstration of the automatic stop function in the event of a front obstacle 
approach can be found at the following URL link: https://youtu.be/Qn0PP426HS4 (accessed 
on 15 January 2025). 

The ultrasonic sensor, specifically the HC-SR04 model, detects obstacles within a 
close range (less than 20 cm) and issues an alert when objects approach this distance. The 
performance of the HC-SR04 model was evaluated in both indoor and outdoor environ-
ments, including simulated rainy conditions. In the indoor setting, plastic objects within 
150 cm were detected with an average error of 3 mm, whereas metal objects were detected 
with slightly higher accuracy, with an average error of 2 mm. An average error of approx-
imately 4 mm was observed within a 120 cm range for irregularly shaped objects such as 
wood. In outdoor environments, the performances varied under different weather condi-
tions. Detection errors increased by approximately 20% in humid conditions due to signal 
interference, while stable detection up to 200 cm was maintained in clear weather. 

However, obstacles with soft surfaces, such as fabric or rubber, posed challenges be-
cause these materials absorbed or distorted the ultrasonic signal, resulting in over 50% 
detection failure. To address these limitations, the proposed system integrates both a cam-
era and an ultrasonic sensor, leveraging the visual data from the camera to enhance over-
all reliability. The HC-SR04 sensor’s effective range was limited to 200 cm due to increased 
error rates beyond this distance, making it most suitable for close-range detection. Within 
this range, the sensor exhibited high reliability in indoor and outdoor environments, 
achieving an average accuracy of approximately 3 mm. 

 

Figure 18. After auto-stop is activated in front of obstacles. 

4.3. Forward Obstacle Detection Performance 
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We chose forward situational awareness as the object detection technique due to its ex-
ceptional balance between speed and accuracy. A detailed performance evaluation using met-
rics such as mAP50, mAP50-95, precision, and recall confirmed YOLOv8 suitability for for-
ward situational awareness. The experimental results demonstrated that YOLOv8 achieved a 
mAP50 score of 74%, which indicates reliability in detecting small objects. In addition, with a 
mAP50-95 score of 50.6%, YOLOv8 exhibited consistent performance across objects of varying 
sizes and positions. The model achieved a precision of 80.8%, indicating an excellent ability to 
reduce false detections, and a recall of 63.3%, ensuring adequate sensitivity for real-time de-
tection. 

The train/box_loss graph represents the loss incurred by the model when predicting 
the object locations during training. As training progressed, the loss decreased, indicating 
that the model’s ability to accurately predict object positions was improved. 

The train/box_loss graph in Figure 19 shows a consistent decrease in loss as training 
progressed. The sharp decline in loss during the initial epochs indicates the rapid learning 
of the basics of predicting object locations, while the gradual reduction in later stages in-
dicates continued refinement of the model’s localization accuracy. This stable training 
progression highlights YOLOv8’s effectiveness in achieving precise obstacle detection, 
which meets the objectives of this study. 

 

Figure 19. Train/box loss (bounding box loss for training data). 

The train/cls_loss graph in Figure 20 illustrates the model’s consistent improvement 
in object classification during training. The sharp decline in the initial loss, followed by a 
steady reduction, indicates effective learning and refinement. This trend highlights 
YOLOv8’s capability to distinguish between various obstacle types, making it well-suited 
for real-time applications, such as electric wheelchair navigation, where accurately cate-
gorizing different obstacle types is essential. 
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Figure 20. Train/Cls loss (class loss for training data). 

As shown in Figure 21, Distribution Focal Loss (DFL) evaluates the model’s accuracy 
in predicting object locations and sizes. The consistent decrease in loss during training 
indicates improved accuracy in predicting object boundaries. This capability is particu-
larly critical for detecting small obstacles or objects in complex backgrounds, thereby en-
suring safer navigation in scenarios where such obstacles pose safety risks. 

 

Figure 21. Train/DFL loss (DFL loss for training data). 

The Metrics/Precision graph in Figure 22 demonstrates YOLOv8’s effectiveness in 
identifying true positives while minimizing false positives. The consistently high preci-
sion throughout the training process demonstrates the model’s reliability in accurately 
detecting obstacles without generating excessive false alerts. This capability is essential 
for providing reliable obstacle warnings to users. 

 

Figure 22. Metrics/Precision. 

The Metrics/Recall graph in Figure 23 evaluates the model’s sensitivity in detecting 
obstacles. Although recall remained high throughout the training process, minor fluctua-
tions indicated potential areas for optimization, particularly for detecting small or par-
tially occluded objects. Future work could focus on enhancing recall to improve the de-
tection of such challenging obstacles. 

The Val/Box Loss graph in Figure 24 indicates the model’s effectiveness in generaliz-
ing bounding box predictions on unseen data. The reduction in the loss in the validation 
data highlights YOLOv8’s strong generalizability, ensuring reliable performance in real-
world scenarios. This robustness is critical for reliable obstacle detection in different envi-
ronments. 
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Figure 23. Metrics/Recall. 

 

Figure 24. Val/Box Loss (bounding box loss for validation data). 

The Val/Cls Loss graph in Figure 25 illustrates the model’s accuracy in classifying 
objects in the validation dataset. The stabilization of loss at a low value indicates reliable 
identification of various obstacle types, demonstrating the proposed model’s ability to 
maintain accurate classification even with new data, which is essential for reliable real-
world performance. 

 

Figure 25. Val/Cls loss (class loss for validation data). 

The Val/DFL Loss graph in Figure 26 shows the model’s consistency in predicting 
precise object boundaries within the validation data. The downward trend in loss con-
firms that the model effectively applies knowledge from training to unseen data, which 
ensures stable performance and detection of small obstacles. 
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Figure 26. Val/DFL loss (DFL loss for validation data). 

The mAP@50 metric in Figure 27 measures the average precision at an IoU threshold of 
0.5. YOLOv8 achieved a performance score of 74%, indicating high reliability, particularly in 
detecting small objects. The high mAP50 score underscores the accuracy of the YOLOv8, 
which makes it suitable for obstacle-detection applications that require precise object detec-
tion. 

 

Figure 27. Metrics/mAP50 (mean average precision at IoU 0.5). 

The mAP@50-95 metric in Figure 28 evaluates precision over a range of IoU thresh-
olds from 0.5 to 0.95. YOLOv8 achieved a score of 50.6%, and it exhibited consistent per-
formance across different object sizes and positions. This result highlights the model’s 
ability to maintain accurate detection despite differences in size and location, which is an 
essential factor for reliable performance in diverse environments. 

 

Figure 28. Metrics/mAP50-95 (mean average precision from IoU 0.5 to 0.95). 
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In summary, YOLOv8 exhibited exceptional performance in both precision and 
mAP50, confirming its suitability for real-time forward situational awareness in electric 
wheelchairs. Although recall can benefit from further optimization, the high accuracy and 
inference speed of YOLOv8 make it a strong candidate for the proposed real-time obstacle 
detection system. 

4.4. Situational Obstacle Detection Performance Analysis 

To evaluate the real-time obstacle detection performance of the system in electric 
wheelchair driving environments, experiments were conducted using images captured in 
various road and intersection scenarios. The analysis evaluated the proposed system’s 
ability to recognize obstacles, pedestrians, vehicles, and stationary objects commonly en-
countered during driving. This assessment measured the proposed system’s object recog-
nition accuracy in real-world situations faced by electric wheelchair users. 

Figure 29 shows the obstacles detected on the road ahead, including a cyclist, a bench, 
and parked vehicles. The YOLOv8 model accurately identified various obstacles, includ-
ing pedestrians, stationary objects (e.g., a bench), and vehicles, with confidence levels 
ranging from 0.26 to 0.44, although vehicles were detected at a slightly lower confidence 
level. These results highlight the model’s ability to identify critical objects, such as station-
ary obstacles or vehicles that electric wheelchair users must avoid on sidewalks or path-
ways. Promptly detecting obstacles on the driving path and alerting users enhances nav-
igation safety. However, further research is required to improve the reliability of detecting 
dynamic objects, such as moving vehicles. 

 

Figure 29. Obstacle detection on a roadway. 

Figure 30 illustrates the results from an intersection crowded with pedestrians and 
vehicles, a common scenario for electric wheelchair users. The model detected pedestrians 
with high confidence (0.61 to 0.77), successfully identifying most individuals despite their 
large number and varied positions. This capability enables wheelchair users to anticipate 
pedestrian movements for safe navigation. 
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Figure 30. Obstacle detection in a crowded pedestrian road. 

Vehicles at the intersection were detected with a lower confidence level of 0.26 than 
pedestrians, which varied depending on road conditions, vehicle size, and position. For 
wheelchair users near roads, prompt vehicle identification and appropriate responses are 
essential for maintaining safety, particularly in assessing vehicle positions and maintain-
ing a safe distance when crossing roads. 

Since intersections are the environments where pedestrians and vehicles coexist, as-
sessing the model’s performance in such scenarios is vital. The results indicate that the 
proposed model effectively detected multiple objects even in crowded situations, demon-
strating its potential to enhance the safe navigation of electric wheelchairs in complex ur-
ban environments. 

Figure 31 shows the detection results for vehicles, pedestrians, and traffic lights on 
the highway. Vehicles were detected with confidence levels up to 0.89, while pedestrians 
and traffic lights were also identified appropriately. The high confidence level in vehicle 
detection emphasizes the system’s ability to prevent collisions on roadways, especially 
near intersections or adjacent areas where electric wheelchairs may operate. Rapid and 
accurate vehicle detection ensures safe navigation, and traffic light detection improves 
safety when crossing intersections. Pedestrians, which represent a crucial detection target 
on roads and intersections, may require additional training to improve detection perfor-
mance under diverse conditions. 

 

Figure 31. Obstacle detection on a highway. 
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4.5. Experimental Tests Under Weather Conditions, Lighting Conditions, and Road Types 

The experimental results demonstrate that the model effectively recognizes obstacles 
encountered in electric wheelchair-driving environments. The proposed model detected 
key objects, including pedestrians, vehicles, and stationary items (e.g., benches and bicy-
cles), on both roads and sidewalks, thereby underscoring its ability to provide swift and 
accurate obstacle detection. 

However, certain cases exhibited slightly lower confidence levels, especially for es-
sential objects, such as pedestrians and stationary obstacles on sidewalks. This issue was 
more pronounced in environments in which multiple objects were present simultane-
ously. Improving pedestrian detection, which is a critical aspect of wheelchair safety, and 
increasing the recognition accuracy of stationary obstacles, such as benches and street-
lights, remain key areas for improvement. 

To this end, we conducted additional experiments according to various weather con-
ditions, lighting conditions, and road types, and they reflected the results in the paper as 
follows. 
(1) Additional Experiments Based on Lighting Conditions 

Looking at Figure 32, it can be observed that under nighttime lighting conditions, 
unlike during the daytime, the following characteristics are evident. In both the first and 
second images, vehicles were clearly detected, with confidence levels reaching up to 0.93. 
In particular, the second image demonstrates that vehicles in various angles and positions 
were accurately identified. 

As such, the system’s high detection confidence even in low-light environments high-
lights its ability to prevent collisions in nighttime traffic conditions. This is particularly 
significant in areas prone to accidents, such as intersections or adjacent areas where elec-
tric wheelchairs may operate. 

  

Figure 32. Object detection performance under nighttime lighting conditions. 

(2) Additional Experiments Based on Road Type 
As shown in Figure 33, differences in the performance of the object detection system 

are observed depending on the road type, whether it is a sidewalk or a roadway. In the 
first image, vehicles and trucks located on the sidewalk were detected with confidence 
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levels of 0.65 and 0.46, respectively. This demonstrates that even smaller objects can be 
detected in environments like sidewalks. 

In the second image, a vehicle on the roadway was detected with a high confidence 
level of 0.92, indicating that object detection tends to perform more clearly in roadway 
environments. In the third image, vehicles were accurately detected with a confidence 
level of 0.83, even in an alleyway with mixed shadows and bright sunlight. 

In conclusion, when the road type is a sidewalk, the relatively simple surroundings 
allow for the detection of various objects. On the other hand, on roadways, larger objects 
such as vehicles can be detected with high confidence. These results demonstrate the sys-
tem’s ability to perform effectively regardless of road type. 

   

Figure 33. Additional experiments based on road type. 

(3) Additional Experiments Based on Weather Conditions 
As shown in Figure 34, differences in the object detection system’s performance are 

observed under varying weather conditions, such as clear and snowy weather. In the first 
and second images, taken during nighttime with no precipitation, vehicles and trucks 
were detected with confidence levels of up to 0.86 and 0.71, respectively. These results 
indicate that the system performs well even in low-light environments when the weather 
is clear. 

In the third image, captured during a cloudy day, multiple objects, such as persons, 
skateboards, and benches, were detected. Although the confidence levels varied (e.g., peo-
ple detected with confidence levels up to 0.69), the system successfully recognized a wide 
range of objects in an urban environment with diffused lighting conditions. 

Overall, the system demonstrated higher accuracy under clear weather conditions, 
where visibility is better. While object detection is still possible under adverse weather 
conditions like snow, the accuracy and confidence levels may decrease slightly due to oc-
clusions and reflections caused by the snow. These findings highlight the need for further 
optimization to improve detection performance under challenging weather conditions. 
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Figure 34. Additional experiments based on weather conditions. 

As a result, the following conclusions can be drawn: First, the detection performance 
is better on clear days compared to rainy or snowy conditions, as the system demonstrates 
higher accuracy and confidence under favorable weather conditions with improved visi-
bility. Second, there is no significant difference in obstacle detection performance based 
on road type. However, the system shows slightly better results on roadways than on 
sidewalks. Lastly, the detection system performs more effectively during the daytime 
compared to nighttime, where improved lighting conditions naturally enhance the sys-
tem’s accuracy. 

The experimental results demonstrate that the model effectively recognizes obstacles 
encountered in electric wheelchair-driving environments. The proposed model detected 
key objects, including pedestrians, vehicles, and stationary items (e.g., benches and bicy-
cles), on both roads and sidewalks, thereby underscoring its ability to provide swift and 
accurate obstacle detection. 

5. Conclusions 

This study integrates information and communication technologies (ICT) into per-
sonal mobility devices, such as electric wheelchairs, to enhance the quality of life of vul-
nerable populations, including the elderly, visually impaired, and youth. The proposed 
object recognition system employs sensors and cameras to enhance navigation safety by 
detecting obstacles in real time and providing immediate Text-to-Speech (TTS) guidance. 
The YOLOv8 model demonstrated robust performance in recognizing various obstacles 
in diverse driving environments, including pedestrians, vehicles, and stationary objects. 
However, our experiments revealed limitations in terms of detecting essential objects, 
such as pedestrians and stationary obstacles (e.g., benches and streetlights). These limita-
tions were more pronounced in environments with multiple overlapping objects, which 
reduced the confidence levels. Addressing these issues is critical for improving the safety 
and usability of the proposed system for wheelchair users. 

To enhance system performance, future research will optimize pedestrian detection 
algorithms and improve the accuracy of stationary obstacle recognition. Combining da-
tasets, such as the KITTI Dataset and AI HUB’s autonomous wheelchair sensor data, will 
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further refine the detection capabilities under diverse conditions. Additionally, integrat-
ing a multi-ultrasonic sensor array and infrared sensors will address the challenges of 
detecting soft or irregular objects such as fabrics or rubber. Future research will also en-
hance inference speed and accuracy under adverse weather and nighttime conditions to 
ensure practical usability. These enhancements deliver safer and more reliable navigation 
for personal mobility devices, ultimately improving the quality of life of diverse social 
groups. Future work includes extending the system’s applicability to other equipment, 
such as agricultural machinery. 
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