Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. FWM Process
2.2. CFWM Process
3. Experimental Characteristics of Multicolored Pulses
3.1. Experimental Setups
3.2. Spectra and Wavelength Tuning of Multicolored Sidebands
3.2.1. Tuning the Wavelength of Sidebands by Changing Cross-Angle
3.2.2. Tuning the Wavelength of Sidebands by Changing Nonlinear Media
3.3. Temporal Characteristics of Multicolored Pulses
3.4. Output Power/Energy of Multicolored Pulses
μW | CaF2 | Fused Silica | BK7 | Sapphire Plate | BBO | |
---|---|---|---|---|---|---|
AS1 | 480 | 700 | 715 | 750 | 780 | |
AS2 | 210 | 315 | 295 | 210 | 135 | |
AS3 | 125 | 90 | 60 | 40 | 10 |
3.5. Multicolored Sidebands Generated with Low Threshold
Sidebands | AS1 | AS2 | AS3 | AS4 | AS5 | S1 |
---|---|---|---|---|---|---|
Power (μW) | 34.0 | 6.1 | 2.5 | 1.3 | 0.8 | 31.4 |
4. 2-D Multicolored Sidebands Arrays
5. Conclusions and Prospects
- (1)
- Tunability in a wide spectral region.Fifteen spectral up-shifted pulses and two spectral down-shifted emissions were obtained simultaneously in a spectra domain that spanned more than 1.8 octaves. The wavelengths of the sidebands could be tuned from near-ultraviolet to near-infrared by adjusting the crossing angle between the two input beams or by replacing the nonlinear bulk medium.
- (2)
- Ultrashort pulse width.The pulse width of the sidebands remained nearly unchanged for the Stokes and anti-Stokes pulses. Nearly transform-limited compressed pulses as short as 15 fs could be obtained when one of the two input beams was properly negatively chirped and the other was positively chirped.
- (3)
- High output energy.The pulse energy of the sideband could be increased to 1 μJ, a power stability better than 1% RMS. We expect that an even higher output power could be generated by increasing the pump energy and expanding the spot sizes of the two pump beams on the optical medium to avoid saturation.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dantus, M.; Rosker, M.J.; Zewail, A.H. Real-time femtosecond probing of “transition states” in chemical reactions. J. Chem. Phys. 1987, 87, 2395. [Google Scholar] [CrossRef]
- Bowman, R.M.; Dantus, M.; Zewail, A.H. Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics. Chem. Phys. Lett. 1989, 161, 297–302. [Google Scholar] [CrossRef]
- Douhal, A.; Kim, S.K.; Zewail, A.H. Femtosecond molecular dynamics of tautomerization in modelbase pairs. Nature 1995, 378, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Hertel, V.; Raldoff, W. Ultrafast dynamics in isolated molecules and molecular clusters. Rep. Prog. Phys. 2006, 69, 1897. [Google Scholar] [CrossRef]
- Kobayashi, T.; Saito, T.; Ohtani, H. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 2001, 414, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kida, Y. Ultrafast spectroscopy with sub-10fs deep-ultraviolet pulses. Phys. Chem. Chem. Phys. 2012, 14, 6200–6210. [Google Scholar] [CrossRef] [PubMed]
- Middleton, C.T.; Harpe, K.L.; Su, C.; Law, Y.K.; Hernandez, C.E.C.; Kohler, B. DNA excited-state dynamics: From single bases to double Helix. Annu. Rev. Phys. Chem. 2009, 60, 217–239. [Google Scholar] [CrossRef] [PubMed]
- Denk, W.; Strickler, J.H.; Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Horton, N.G.; Wang, K.; Kobat, D.; Clark, C.W.; Wise, F.W.; Schaffer, C.B.; Xu, C. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photon. 2013, 7, 205–209. [Google Scholar] [CrossRef]
- Campagnola, P.J.; Loew, L.M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 2003, 21, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Campagnola, P.J.; Clark, H.A.; Mohler, W.A. Second-harmonic imaging microscopy of living cells. J. Biomed. Opt. 2001, 6, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Débarre, D.; Supatto, W.; Pena, A.M.; Fabre, A.; Tordjmann, T.; Combettes, L.; Schanne-Klein, M.C.; Beaurepair, E. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat. Methods 2006, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Barad, Y.; Eisenberg, H.; Horowitz, M.; Silberger, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 1997, 70, 922. [Google Scholar] [CrossRef]
- Gattass, R.R.; Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photon. 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Liu, X.; Du, D.; Mourou, G. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quant. Electron. 1997, 33, 1706–1716. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Garcia, J.F.; Mazur, E. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule enrgy. Opt. Lett. 2001, 26, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhao, F.L.; Cheng, Y.; Xu, N.S.; Xu, Z.Z. Origin of laser-induced near-subwavelength ripples: Interference between surface plasmons and incident laser. ACS Nano 2009, 3, 4062–4070. [Google Scholar] [PubMed]
- Zgadzaj, R.; Gaul, E.; Matlis, N.H.; Shvets, G.; Downer, M.C. Femtosecond pump-probe study of preformed plasma channels. J. Opt. Soc. Am. B 2004, 21, 1559–1567. [Google Scholar] [CrossRef]
- Hochstrasser, R.M. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl. Acad. Sci. USA 2007, 104, 14190–14196. [Google Scholar] [CrossRef] [PubMed]
- Dunn, K.W.; Sandoval, R.M.; Kelly, K.J.; Dagher, P.C.; Tanner, G.A.; Atkinson, S.J.; Bacallao, R.L.; Molitoris, B.A. Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am. J. Physiol. Cell Physiol. 2002, 283, 905–916. [Google Scholar] [CrossRef]
- Sahai, E.; Wyckoff, J.; Philippar, U.; Segall, J.E.; Gertler, F.; Condeelis, J. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 2005, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahou, P.; Zimmerley, M.; Loulier, K.; Matho, K.S.; Labroille, G.; Morin, X.; Supatto, W.; Livet, J.; Débarre, D.; Beaurepaire, E. Multicolor two-photon tissue imaging by wavelength mixing. Nat. Methods 2012, 9, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118–120. [Google Scholar] [CrossRef]
- Seifert, F.; Ringling, J.; Noack, F.; Petrov, V.; Kittelmann, O. Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate. Opt. Lett. 1994, 19, 1538–1540. [Google Scholar]
- Liu, J.; Kida, Y.; Teramoto, T.; Kobayashi, T. Generation of stable sub-10fs pulses at 400 nm in a hollow fiber for UV pump-probe experiment. Opt. Express 2010, 18, 4664–4672. [Google Scholar] [CrossRef] [PubMed]
- Baum, P.; Lochbrunner, S.; Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Opt. Lett. 2004, 68, 2793–2795. [Google Scholar]
- Zhao, B.; Jiang, Y.; Sueda, K.; Miyanaga, N.; Kobayashi, T. Sub-15fs ultraviolet pulses generated by achromatic phase-matching sum-frequency mixing. Opt. Express 2009, 17, 17711–17714. [Google Scholar] [CrossRef] [PubMed]
- Aközbek, N.; Iwasaki, A.; Becker, A.; Chin, S.L.; Bowden, C.M. Third-harmonic generation and self-channeling in air using high-power femtosecond laser pulses. Phys. Rev. Lett. 2002, 89, 143901. [Google Scholar] [CrossRef] [PubMed]
- Tzankov, P.; Steinkellner, O.; Zheng, J.; Mero, M.; Freyer, W.; Husakou, A.; Babushkin, I.; Herrmann, J.; Noack, F. High-power fifth-harmonic generation of femtosecond pulses in vacuum ultraviolet using a Ti: Sapphire laser. Opt. Express 2007, 15, 6389–6395. [Google Scholar] [CrossRef] [PubMed]
- Macklin, J.J.; Kmetec, J.D.; Gordon, C.L. High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 1993, 70, 766. [Google Scholar] [CrossRef] [PubMed]
- Giordmaine, J.A.; Miller, R.C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies. Phys. Rev. Lett. 1965, 14, 973–976. [Google Scholar] [CrossRef]
- Edelstein, D.C.; Wachman, E.S.; Tang, C.L. Broadly tunable high repetition rate femtosecond parametric oscillator. Appl. Phys. Lett. 1989, 54, 1728. [Google Scholar] [CrossRef]
- Gale, G.M.; Cavallari, M.; Driscoll, T.J.; Hasche, F. Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator. Opt. Lett. 1995, 20, 1562–1564. [Google Scholar] [CrossRef] [PubMed]
- Burr, K.C.; Tang, C.L.; Arbore, M.A.; Fejer, M.M. Broadly tunable mid-inrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate. Opt. Lett. 1997, 22, 1458–1460. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, T.; Piel, J.; Riedle, E. Sub-20fs tunable across the visible from blue-pumped single-pass nonlinear parametric converter. Opt. Lett. 1997, 22, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, G.; Nisoli, M.; Stagira, S.; de Silvestri, S. Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt. Lett. 1998, 23, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, A.; Sakane, I.; Kobayashi, T. Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. Opt. Lett. 1998, 23, 1292–1294. [Google Scholar] [CrossRef] [PubMed]
- Okamura, K.; Kobayashi, T. Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration. Opt. Lett. 2011, 36, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, A.; Sakane, I.; Takasaka, M.; Kobayashi, T. Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification. Appl. Phys. Lett. 1999, 74, 2268–2270. [Google Scholar] [CrossRef]
- Corkum, P.B.; Rolland, C.; Srinivasan-Rao, T. Supercontinuum generation in gases. Phys. Rev. Lett. 1986, 57, 2268. [Google Scholar] [CrossRef] [PubMed]
- Kasparian, J.; Sauerbrey, R.; Mondelain, D.; Niedermeier, S.; Yu, J.; Wolf, J.P.; André, Y.B.; Franco, M.; Prade, B.; Tzortzakis, S.; et al. Infrared extension of super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 2000, 25, 1397–1399. [Google Scholar] [CrossRef] [PubMed]
- Kandidov, V.P.; Kosareva, O.G.; Golubtsov, I.S.; Liu, W.; Becker, A.; Akozbek, N.; Bowden, C.M.; Chin, S.L. Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media(or supercontinuum generation). Appl. Phys. B 2003, 77, 149–165. [Google Scholar] [CrossRef]
- Wadsworth, W.J.; Blanch, A.O.; Knight, J.C.; Birks, T.A.; Martin Man, T.P.; Russell, P.S.J. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: A novel light source. JOSA B 2002, 19, 2148–2155. [Google Scholar] [CrossRef]
- Xia, C.; Kumar, M.; Kulkarni, O.P.; Islam, M.N.; Terry, F.L.; Freeman, J.M.J.; Poulain, M.; Mazé, G. Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping. Opt. Lett. 2006, 31, 2553–2555. [Google Scholar]
- Dunsby, C.; Lanigan, P.M.P.; McGinty, J.; Elson, D.S.; Isidro, J.R.; Munro, I.; Galletly, N.; McCann, F.; Treanor, B.; Önfelt, B.; et al. An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy. J. Phys. D 2004, 37, 3296–3303. [Google Scholar]
- Gu, X.; Xu, L.; Kimmel, M.; Zeek, E.; O’Shea, P.; Shreenath, A.P.; Trebino, R. Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. Opt. Lett. 2000, 27, 1174–1176. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Fuji, T.; Horio, T.; Suzuki, T. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas. Opt. Lett. 2007, 32, 2481–2483. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Tatsumi, M. Generation of ultrashort light pulses in the mid-infrared (3000–800 cm−1) by four-wave mixing. Opt. Commun. 1995, 121, 63–68. [Google Scholar] [CrossRef]
- Fuji, T.; Suzuki, T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Opt. Lett. 2007, 32, 3330–3332. [Google Scholar] [CrossRef] [PubMed]
- Kida, Y.; Liu, J.; Teramoto, T.; Kobayashi, T. Sub-10fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing. Opt. Lett. 2010, 35, 1807–1809. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Kobayashi, T. Generation of sub-20fs deep-ultraviolet pulses by using chirped-pulse four-wave mixing in CaF2 plate. Opt. Lett. 2013, 38, 2938–2940. [Google Scholar] [CrossRef] [PubMed]
- Crespo, H.; Mendonça, J.T.; Dos Santos, A. Cascaded highly nondegenerate four-wave-mixing phenomenon in transparent isotropic condensed media. Opt. Lett. 2000, 25, 829–831. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kobayashi, T. Cascaded four-wave mixing and multicolored arrays generation in a sapphire plate by using two crossing beams of femtosecond laser. Opt. Express 2008, 16, 22119–22125. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kobayashi, T.; Wang, Z.G. Generation of broadband two-dimensional multicolored arrays in a sapphire plate. Opt. Express 2009, 17, 9226–9234. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J.; Kobayashi, T. Broadband coherent anti-Stokes Raman scattering light generation in BBO crystal by using two crossing femtosecond laser pulses. Opt. Lett. 2008, 33, 1494–1496. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, L.; Fang, C. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulse in a 0.1 mm beta-barium-borate crystal. Opt. Lett. 2012, 37, 3783–3785. [Google Scholar]
- Liu, J.; Kobayashi, T. Wavelength-tunable multicolored femtosecond laser pulse generation in fused silica glass. Opt. Lett. 2009, 34, 1066–1068. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kobayashi, T. Cascaded four-wave mixing in transparent bulk media. Opt. Comm. 2010, 283, 1114–1123. [Google Scholar] [CrossRef]
- Zhi, M.; Wang, X.; Sokolov, A.V. Broadband coherent light generation in diamond driven by femtosecond pulses. Opt. Express 2008, 16, 12139–12147. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Du, J.; Kobayashi, T. Low-threshold and compact multicolored femtosecond laser generated by using cascaded four-wave mixing in a diamond plate. Opt. Comm. 2013, 290, 132–135. [Google Scholar] [CrossRef]
- Liu, J.; Kobayashi, T. Generation of sub-20-fs multicolor laser pulses using cascaded four-wave mixing with chirped incident pulses. Opt. Lett. 2009, 34, 2402–2404. [Google Scholar] [PubMed]
- Weigand, R.; Mendonca, J.T.; Crespo, H. Cascaded nondegenerate four-wave mixing technique for high-power single-cycle pulse synthesis in the visible and ultraviolet ranges. Phys. Rev. A 2009, 79, 063838. [Google Scholar] [CrossRef]
- Silva, J.L.; Weigand, R.; Crespo, H. Octave-spanning spectra and pulse synthesis by non-degenerate cascaded four-wave mixing. Opt. Lett. 2009, 34, 2489–2491. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kobayashi, T. Generation of μJ-level multicolored femtosecond laser pulses using cascaded four-wave mixing. Opt. Express 2009, 17, 4984–4990. [Google Scholar] [CrossRef] [PubMed]
- Nietzke, R.; Fenz, P.; Elsässer, W.; Göbel, E.O. Cascaded fourwave mixing in semiconductor laser. Appl. Phys. Lett. 1987, 51, 1298–1300. [Google Scholar] [CrossRef]
- Eckbreth, A.C.; Anderson, T.J.; Dobbs, G.M. Multi-color CARS for Hydrogen-fueled scramjet applications. Appl. Phys. B 1988, 45, 215–223. [Google Scholar] [CrossRef]
- Sokolov, A.V.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.; Harris, S.E. Raman generation by phased and antiphased molecular states. Phys. Rev. Lett. 2000, 85, 562–565. [Google Scholar] [PubMed]
- Zhang, H.; Liu, H.; Si, J.; Yi, W.; Chen, F.; Hou, X. Low threshold power density for the generation of frequency up-converted pulses in bismuth glass by two crossing chirped femtosecond pulses. Opt. Express 2011, 19, 12039–12044. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wu, J.; Xu, H.; Wu, K. Generation and weak beam control of two-dimensional multicolored arrays in a quadratic nonlinear medium. Phys. Rev. Lett. 2006, 96, 083902. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhu, L.; Fang, C. In-situ weak-beam and polarization control of multidimensional laser sidebands for ultrafast optical switching. Appl. Phys. Lett. 2014, 104, 111114. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier: Singapore, 2010. [Google Scholar]
- Liu, J.; Kida, Y.; Teramoto, T.; Kobayashi, T. Simultaneous compression and amplification of a laser pulse in a glass plate. Opt. Express 2010, 18, 2495–2502. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kobayashi, T. Generation and amplification of tunable multicolored femtosecond laser pulses by using cascaded four-wave mixing in transparent bulk media. Sensors 2010, 10, 4296–4341. [Google Scholar] [CrossRef] [PubMed]
- Majus, D.; Jukna, V.; Valiulis, G.; Dubietis, A. Generation of periodic filament arrays by self-focusing of highly elliptical ultrashort pulsed laser beams. Phys. Rev. A 2009, 79, 033843. [Google Scholar] [CrossRef]
- Dubietis, A.; Tamosauskas, G.; Fibich, G.; Ilan, B. Multiple filamentation induced by input beam elliticity. Opt. Lett. 2004, 29, 1451–1453. [Google Scholar]
- Dergachev, A.A.; Kadan, V.N.; Shlenov, S.A. Interaction of noncolinear femtosecond laser filaments in sapphire. Quant. Electron. 2012, 42, 125–129. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
He, J.; Liu, J.; Kobayashi, T. Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials. Appl. Sci. 2014, 4, 444-467. https://doi.org/10.3390/app4030444
He J, Liu J, Kobayashi T. Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials. Applied Sciences. 2014; 4(3):444-467. https://doi.org/10.3390/app4030444
Chicago/Turabian StyleHe, Jinping, Jun Liu, and Takayoshi Kobayashi. 2014. "Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials" Applied Sciences 4, no. 3: 444-467. https://doi.org/10.3390/app4030444
APA StyleHe, J., Liu, J., & Kobayashi, T. (2014). Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials. Applied Sciences, 4(3), 444-467. https://doi.org/10.3390/app4030444