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Abstract:

 Unmanned combat air vehicle (UCAV) path planning aims to calculate the optimal or suboptimal flight path considering the different threats and constraints under the complex battlefield environment. This flight path can help the UCAV avoid enemy threats and improve the efficiency of the investigation. This paper presents a new quantum wind driven optimization (QWDO) for the path planning of UCAV. QWDO algorithm uses quantum rotation gate strategy on population evolution and the quantum non-gate strategy to realize the individual variation of population. These operations improve the diversity of population and avoid premature convergence. This paper tests this optimization in two instances. The experimental results show that the proposed algorithm is feasible in these two cases. Compared to quantum bat algorithm (QBA), quantum particle swarm optimization (QPSO), wind driven optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and differential evolution (DE), the QWDO algorithm exhibited better performance. The simulation results demonstrate that the QWDO algorithm is an effective and feasible method for solving UCAV path planning.
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1. Introduction

In recent years, with the rapid development of science and technology, modern battlefield military equipment has shown a clear trend toward unmanned operation. As an important means of airborne reconnaissance, surveillance and combat, the aircraft is increasingly a primary concerned of militaries around the world. However, with the increasing complexity of the modern battlefield environment and the continuous expansion of the scope of operation, UCAV not only need to avoid or reduce the probability of detection, but also avoid many adverse factors that may affect the flight in no-fly zones and barrier regions, which have brought serious challenges to the implementation of aerial reconnaissance, surveillance, combat and other missions to the UCAV. Therefore, in order to improve the operational efficiency and the survival probability, path planning must take into account the requirements of the task, the threat distribution, the fuel restriction and other constraints, when producing a global optimal or sub-optimal route that can effectively avoid the threat of an enemy and protect the UCAV. Furthermore, a path-planning algorithm must be able to adjust and modify the route according to changes in the battlefield.

At present, in military and civilian fields, the UCAV path-planning problem has been widely studied. Many heuristic authors have proposed algorithms have been used to solve the problem, which have achieved good results Ma et al. proposed a particle swarm optimization based on second-order oscillating (SOPSO) to solve the problem [1]. Ma et al. proposed the path planning method based on artificial fish school algorithm (AFSA) to solve UCAV path-planning problem [2]. Duan et al. applied differential evolution (DE) to solve the problem [3]. Wang et al. proposed a bat algorithm with mutation (BAM) for solving the UCAV path-planning problem [4]. Wang et al. proposed a new modified firefly algorithm (MFA) based on a modification in exchange information to solve the UCAV path planning problem [5]. Li et al. proposed a novel artificial bee colony algorithm (ABC) improved by a balance-evolution strategy to solve the problem [6]. Zhou et al. proposed a wolf colony search algorithm (WCA) based on the complex method to solve the UCAV path planning problem [7]. Zhu et al. proposed a novel Chaotic Predator-Prey Biogeography-Based Optimization (CPPBBO) approach based on the chaos theory and the concept of predator–prey for solving UCAV path planning problem [8].

The wind driven optimization (WDO) is a novel nature-inspired technique that was proposed by Bayraktar et al. in 2010 [9,10]. In the atmosphere, wind balances atmospheric pressure through flow. Wind flows from high pressure to low pressure at a certain speed until a balance point is reached. Because the WDO algorithm has only a few parameters that need to be controlled, and it is very easy to implement, it has received much attention by various scholars since it was put forward. In recent years, the WDO algorithm has also been applied in many fields, for instance, in satellite image segmentation for multilevel thresholding [11], cloud resource allocation scheme [12], collision avoidance for dynamic environments [13], design of two-channel filter bank [14], synthesis of linear array antenna [15], and so on.

In the classical natural heuristic algorithm, the population an individual uses is the real number encoding or the binary encoding [16]. In the quantum-inspired algorithm, the individual is represented by a quantum bit. The probability amplitude of the qubit should be used for the individual, so that each individual can be represented by a superposition of multiple states [17]. As a result, quantum-inspired algorithms have better population diversity, faster convergence speed, and better global optimization ability than traditional heuristic algorithms.

It is easy for the WDO algorithm to fall into a local optimal solution in the early stage of solving an optimization problem, which will lead to the loss of diversity of population [10]. In order to overcome this shortcoming, we apply the quantum encoding theory to the WDO algorithm, and propose a new algorithm called quantum wind driven optimization (QWDO).

To verify the feasibility and effectiveness of the QWDO algorithm, this paper uses the proposed algorithm to solve the problem of UCAV path planning. In this paper, two sets of test cases are utilized to test the performance of the algorithm, and a comparative analysis of the WDO algorithm and several common intelligent algorithms is carried out. The experimental results demonstrate that the QWDO algorithm is an effective and stable method for solving the UCAV path-planning problem, and has a better search performance than other algorithms.



2. Mathematical Modeling for UCAV Path Planning


2.1. Threat Resource Model in UCAV Path Planning

Modeling of threat resources is key for solving the UCAV path-planning problem. In this model, S is defined as the starting point, and T is the target point (Figure 1) [18,19]. There are some threat resources in UCAV battlefield, for example, radars, missiles, and artillery, the effects of which all are shown in the form of a circle. The extent to which UCAV is threatened is proportional to the fourth power of the distance from the threat center. The flight task is to generate an optimal or suboptimal path, so that the UCAV can avoid the threat area from starting point S to the destination T.

Figure 1. Typical Unmanned combat air vehicle (UCAV) Battle Field Model.
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There are three main steps in the path planning. First, connect the starting point S and the target point T into a line segment ST. Second, divide the line segment ST into D + 1 equal parts. At each segment point, draw the vertical line of ST, denoted as L1, L2,…,Lk,…LD. Third, take a discrete point in each vertical section Lk, these points constitute a collection of discrete points [19,20] [image: there is no content]. Fourth, connect these discrete points in order to form a path. In this way, the path-planning problem is transformed into the optimal orthogonal coordinate system to achieve the optimization of the objective function.

In order to speed up the search speed of the algorithm, we can take line segment ST as the x-axis and carry on the coordinate transformation on each discrete point (x(k),y(k)) according to Equation (1), where θ is the angle between the original x-axis and the line segment ST, while (xs,ys) represents the coordinates of the original coordinate system.
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(1)




Thus, the x coordinates of each discrete point can be calculated by a simple formula [image: there is no content]. The set of discrete points C can be simplified to C′ = {0,L1(y)′(1)),L2(y′(2)),…,Lk(y′(k)),…LD(y′(D)),0}, which can greatly reduce the cost of computation.



2.2. Evaluation Function

Evaluation of path planning for UCAV mainly consists of the threat cost Jt and the fuel cost Jf, the formula for calculation is as follows:



[image: there is no content]



(2)
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(3)




where wt is the threat cost of each point on the flight path, wf is the fuel cost for each point on the route, and L is the total length of the route.
In order to improve the computational efficiency, a more accurate approximation strategy can be used. In this work, the threat cost of the route between two discrete points was calculated. It is approximately equal to the sum of the threat cost of five points, as shown in Figure 2 [18,19].

Figure 2. Computation for Threat Cost.
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If the i th edge is within the effect range, the calculation formula of the threat cost is as follows:



[image: there is no content]



(4)




where, Nt is the number of threatening areas, Li is the i th sub-path length, d0.1,i,k is the distance from the 1/10 point on the i th edge to the k th threat, and tk is the threat level of k th threat.
Assuming the speed of a UCAV is a constant, the fuel cost Jf can be equivalent to the total length L of the flight path.

Therefore, the total cost comes from a weighted sum of the threat and fuel cost. It can be defined as Equation (5).
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(5)




where λ is a variable between 0 and 1, which is the balance between safety and fuel performance. If flight security is highly important to this task, we will select a larger λ, while if the speed is vital to the flight task, we will choose a smaller λ. In this paper, λ is equal to 0.5.



3. The Basic Wind Driven Optimization

The inspiration of the proposed WDO derives from the atmosphere. In the atmosphere, wind blows from high-pressure areas to low-pressure areas until the air pressure is balanced. The beginning of WDO algorithm is Newton’s second law of motion [21,22].
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(6)




where, [image: there is no content] is the acceleration, ρ is the air density for an infinitesimal air parcel, and [image: there is no content] are all the forces acting on the air parcel.
The cause of the air movement is due to the combination of many forces, mainly including gravitational force ([image: there is no content]), pressure gradient force ([image: there is no content]), Coriolis force ([image: there is no content]) and friction force ([image: there is no content]). The physical equations of the abovementioned forces are as follows:
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(7)
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(8)
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(9)
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(10)




where δV is finite volume of the air, [image: there is no content] represents the gravitational acceleration, [image: there is no content] represents the pressure gradient, Ω is rotation of the earth, [image: there is no content] represents the velocity vector of the wind and α is the friction coefficient.
The forces mentioned above can be added to the Equation (6). The equation can be described as Equation (11):
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(11)




where the acceleration [image: there is no content] in Equation (11) is rewritten as [image: there is no content]. For simplicity, set Δt = 1, for an infinitesimal air parcel and set δV = 1, which simplifies Equation (11) to


[image: there is no content]



(12)




On the basis of the ideal gas law, Equation (13), the density ρ can be written in terms of the pressure, thus Equation (12) can be rewritten as
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(13)






[image: there is no content]



(14)




where, P is the pressure, R is the universal gas constant, T is the temperature, and Pcur is the pressure of current location. It is assumed in the WDO algorithm that velocity and position of the air parcel are changing at each iteration. Thus, [image: there is no content] can be written as [image: there is no content], where [image: there is no content] represents the velocity in next iteration and [image: there is no content] is the velocity at the current iteration. [image: there is no content] and [image: there is no content] are vectors, they can be broken down in direction and magnitude as [image: there is no content], [image: there is no content], Popt is the optimum pressure point that has been found so far, xopt is the optimum location that has been found so far, and xcur is the current location, thus updating Equation (14) with the new equations, so that Equation (14) can be rewritten as:


[image: there is no content]



(15)




Finally, there are three additional substitutions needed. First, the influence of the Coriolis force [image: there is no content] is replaced by the velocity influence from another dimension [image: there is no content]; second, all the coefficients are combined together, i.e., c = −2RT; and third, in some cases where the pressure is extremely large, the updated velocities are too large to become meaningless, the efficiency of the WDO algorithm will be reduced. Thus, the actual pressure value is replaced by rank among all air parcels based on their pressure values, the resulting equation of updating the velocity can be described as in Equation (16), and the equation of updating the location can be described as in Equation (17).
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(16)






[image: there is no content]



(17)




where i is the ranking among all air parcels, [image: there is no content] represents the new location for the next iteration.
WDO is similar to other nature-inspired optimization algorithms, but compared to other optimization algorithms, the code of WDO is more simple and easy to implement, as it has less control variables that need to be adjusted.



4. Quantum Computing

In quantum computing, the smallest information unit is a quantum bit, also called a qubit. It uses “0” and “1” to represent the two basic states. The difference between qubit and classical bit is that the qubit not only can be in a state of “0” or “1”, qubit can also be in a state between “0” and “1”. That is, “0” and “1” states exist in a certain probability. The state of a qubit can be described as [23].
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(18)




where, α and β are a pair of complex numbers. They are called the probability amplitude of qubit. α2 and β2 represent the probability that the quantum bits are in “0” and “1”, respectively, and satisfy the equation [image: there is no content]. [image: there is no content] represents a quantum state.
An n-qubits representation can be defined as
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(19)






5. Quantum Wind Driven Optimization

This paper proposed a new quantum-inspired meta-heuristic algorithm, namely quantum wind driven optimization (QWDO). The QWDO uses probability amplitude of qubit to represent the particle’s position. The movement of position can be realized by the quantum rotation gate strategy. Position realizes the mutation using quantum non-gate strategy. This operation can improve the population diversity and avoid premature convergence. Because each qubit has two probability amplitudes, each particle can also represent the two positions of the optimization space. In the case of the same number of particles, the search process can be accelerated.


5.1. Generate Initial Population

Because the probability amplitude satisfies the equation [image: there is no content], we let [image: there is no content], and [image: there is no content] [17]. Where, □ is a rotation angle. The coding scheme is as following:
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(20)




where, □ij = 2π × rand, rand is a random number between 0 and 1, i = 1,2,…,m; j = 1,2,…,n; m is the size of the population, and n is the space dimension. Each individual corresponds to the two position of the problem space. That is, the probability amplitude of quantum state [image: there is no content] and [image: there is no content]:
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(21)
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(22)




where Pic is a cosine position and Pis is a sinusoidal position.


5.2. Transformation of the Solution Space

In order to calculate the current position of the particle, there is a need to carry out the transformation of the space. We need to map the two positions of the particles from the unit space [image: there is no content] to the solution space of the optimization problem. The variables of solution space are as follows:
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(23)
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(24)




where, [image: there is no content] is calculated by the probability amplitude [image: there is no content] of quantum state [image: there is no content] and [image: there is no content] is calculated by the probability amplitude [image: there is no content] of quantum state [image: there is no content].


5.3. Updating Process

In order to prevent the algorithm from falling into local optimum, in this paper, two quantum gate strategies are applied. The movement of position can be realized by the quantum rotation gate strategy, and position realizes the mutation using quantum non-gate strategy.


5.3.1. Updating Formulas of Phase Angle Increment and Phase Angle

In quantum wind driven optimization (QWDO), updating formulas of phase angle increment and phase angle are as following:
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(25)
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(26)




where, Δθij and θij are the j th dimension of the i th phase angle increment and phase angle, respectively.


5.3.2. Quantum Rotation Gate Strategy

This paper uses quantum rotation gate strategy to update the probability amplitude.
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(27)




Two updated positions are as follows:
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(28)
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(29)






5.3.3. Quantum Non-Gate Strategy

This paper uses quantum non-gate strategy to make the position mutation. This operation can increase the population diversity and avoid premature convergence. randi is a random number between 0 and 1. If randi < Pm, where Pm is the mutation rate, it will exchange two probability amplitudes. The exchange formula is as follows:



[image: there is no content]



(30)







5.4. The Flow Chart of QWDO







	Algorithm 1. Quantum Wind Driven Optimization (QWDO) Algorithm.



	Step 1. Initialize parameters.

N (Population size); G (Max number of generations); RT (RT coefficient);

α (The friction coefficient); g (Gravitational constant); c (Constant in the update equation);

max V (Maximum allowed speed); Pm (Mutation scale factor).

Step 2. Generate Initial Population.

Step 3. Transform the solution space according to Equations (23) and (24).

Step 4. Evaluate fitness of each air parcel.

Step 5. Identify the best solution among all air parcels.

Step 6. While stopping criterion is not satisfied

	Step 6.1. Update phase angle increment and phase angle by Equations (25) and (26)


	Step 6.2. Update the probability amplitude by using quantum rotation gate strategy according to Equation (27).


	Step 6.3. If rand Pm then

Implement quantum non-gate strategy by Equation (30).

End if


	Step 6.4. Transform the solution space according to Equations (23) and (24).


	Step 6.5. Evaluate fitness of each air parcel.


	Step 6.6.Identify the best solution among all air parcels.


	Step 6.7.Increment the generation count G = G + 1.






Step 7. End while







5.5. The Flow Chart of QWDO for UCAV Path Planning







	Algorithm 2. QWDO for UCAV Path Planning Algorithm.



	Step 1. Initialize parameters.

N (Population size); G (Max number of generations); RT (RT coefficient);

α (The friction coefficient); g (Gravitational constant); c (Constant in the update equation);

Pm (Mutation scale factor).

Step 2. Build the UCAV battlefield model.

Step 3. Transform coordinate system according to Equation (1).

Step 4. Generate Initial Population according to Equation (20).

Step 5. Transform the solution space according to Equations (23) and (24).

Step 6. Evaluate the cost of each flight path by Equation (5).

Step 7. Get the best path.

Step 8. While stopping criterion is not satisfied



	Step 8.1. Update phase angle increment and phase angle by Equation (25) and (26).


	Step 8.2. Update the probability amplitude by using quantum rotation gate strategy according to Equation (27).


	Step 8.3. If rand < Pm then

Implement quantum non-gate strategy by Equation (30).

End if


	Step 8.4. Transform the solution space according to Equations (23) and (24).


	Step 8.5. Evaluate the cost of each flight path by Equation (5).


	Step 8.6. Get the best path.


	Step 8.7. Increment the generation count G = G + 1.






Step 9. End while








6. Experimental Results


6.1. Experimental Setup

All algorithms are implemented in MATLAB R2012a (MathWorks, New York, USA, 2012), and experiments are performed on a Pentium 3.00 GHz Processor (Intel, New York, NY, USA, 2004), with 4.0 GB of memory, Windows 7 operating system.



6.2. Parameters Setting

In this section, the parameters setting are presented. Table 1, Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7 represent the necessary parameters used for QWDO, QBA, QPSO, WDO, BA, PSO and DE algorithms, respectively. Bayraktar et al. did a lot of research for the parameters setting of WDO algorithm [10]. The parameters for the set of quantum algorithms are the same as the original algorithm. The parameters set for some algorithms are based on the practical experience to take the appropriate value. In all trials, the population size is 30 (Popsize = 30).

Table 1. The parameters setting of quantum wind driven optimization (QWDO).


	Parameters
	Value





	RT coefficient
	1



	Constants in the update equation
	0.8



	Maximum allowed speed
	0.3



	Gravitational constant
	0.6



	Coriolis effect
	0.7



	The range of phase angle
	[−π,π]








Table 2. The parameters setting of quantum bat algorithm (QBA).


	Parameters
	Value





	Pulse frequency range
	[0,2]



	Maximum pulse emission
	0.5



	The maximum loudness
	0.5



	Attenuation coefficient of loudness
	0.95



	Increasing coefficient of pulse emission
	0.05



	The range of phase angle
	[−π,π]








Table 3. The parameters setting of quantum particle swarm optimization (QPSO).


	Parameters
	Value





	Constant inertia
	0.7298



	The first acceleration coefficients
	1.4962



	The second Acceleration coefficients
	1.4962



	The range of phase angle
	[−π,π]








Table 4. The parameters setting of wind driven optimization (WDO).


	Parameters
	Value





	RT coefficient
	1



	Constants in the update equation
	0.8



	Maximum allowed speed
	0.3



	Gravitational constant
	0.6



	Coriolis effect
	0.7








Table 5. The parameters setting of bat algorithm (BA).


	Parameters
	Value





	Pulse frequency range
	[0,2]



	Maximum pulse emission
	0.5



	The maximum loudness
	0.5



	Attenuation coefficient of loudness
	0.95



	Increasing coefficient of pulse emission
	0.05








Table 6. The parameters setting of particle swarm optimization (PSO).


	Parameters
	Value





	Constant inertia
	0.7298



	The first acceleration coefficients
	1.4962



	The second Acceleration coefficients
	1.4962








Table 7. The parameters setting of difference evolution (DE).


	Parameters
	Value





	Mutation scale factor
	0.2



	Crossover probability
	0.03
























6.3. Experimental Results

This section is mainly to test the performance of the QWDO algorithm for solving the problem of UCAV path planning. In this section, a total of two test instances were carried out. In the simulation experiment, the dimension D and the maximum number of iterations Maxgen are used as the two control variables. We look at the performance of QWDO algorithm as compared with other optimization algorithms, for instance, quantum bat algorithm (QBA) [24], quantum particle swarm optimization (QPSO) [25], wind driven optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and differential evolution (DE). All of the test cases are carried out with 50 independent experiments.

We use the battlefield environment parameters described in [5]. UCAV starts at (10,10) and the destination is (55,100). In this battlefield environment, there are five threat centers. Table 8 presents information about known threats for the first test instance.

Table 8. Information about known threats for the first test instance.


	Threat Center (km)
	(45,50)
	(12,40)
	(32,68)
	(36,26)
	(55,80)





	Threat radius (km)
	10
	10
	8
	12
	9



	Threat grade
	2
	10
	1
	2
	3










Unmanned combat air vehicle (UCAV) path planning aims to calculate the optimal or suboptimal flight path. When the dimension of the algorithm is not the same, the results will be different. Table 9 shows the mean results, the best fitness value and the worst fitness value between the algorithms of 50 independent runs. In the following tables, bold results indicate that the algorithm performed the best.


Table 9. Experimental results for the first test instance in different D.



	
Popsize

	
Maxgen

	
D

	
Result

	
DE

	
PSO

	
BA

	
WDO

	
QPSO

	
QBA

	
QWDO






	
30

	
200

	
5

	
Mean

	
59.47631887

	
69.69789792

	
79.69109684

	
71.34530853

	
63.43087561

	
68.98614459

	
68.96129066




	
Best

	
53.50706462

	
53.78972474

	
53.65716479

	
69.87539134

	
53.51528812

	
53.71340066

	
57.98320586




	
Worst

	
69.41083451

	
122.5251479

	
153.561503

	
74.74310818

	
69.65781726

	
69.70146844

	
69.34914343




	
30

	
200

	
10

	
Mean

	
51.65071551

	
51.46197291

	
51.63995084

	
52.22163684

	
51.09958359

	
51.09603877

	
50.7143172




	
Best

	
50.71342237

	
50.76572646

	
50.75929951

	
51.70051826

	
50.73093318

	
50.74767855

	
50.7133255




	
Worst

	
56.58333938

	
54.59093708

	
63.46628192

	
52.82754363

	
53.39086949

	
53.84706658

	
50.7210475




	
30

	
200

	
15

	
Mean

	
50.66037482

	
51.5051898

	
51.87380989

	
52.44224824

	
50.76853918

	
50.89080424

	
50.58231653




	
Best

	
50.44414089

	
50.71382405

	
50.50789696

	
51.60523312

	
50.48866711

	
50.49293993

	
50.44266169




	
Worst

	
53.13768683

	
55.0444921

	
60.46255447

	
53.11065178

	
53.31076469

	
53.69423022

	
54.54535767




	
30

	
200

	
20

	
Mean

	
50.72261529

	
51.45672198

	
53.35967758

	
52.97445056

	
51.07754398

	
51.0110708

	
50.99002665




	
Best

	
50.44379211

	
50.80930764

	
50.63331206

	
52.06541936

	
50.48490215

	
50.54761522

	
50.39488366




	
Worst

	
53.01708277

	
53.35679952

	
62.1522776

	
54.06882944

	
53.41618848

	
53.19280513

	
52.87373122




	
30

	
200

	
25

	
Mean

	
51.28794992

	
51.7891286

	
53.92302186

	
53.73746145

	
52.16273619

	
52.02298198

	
50.91502774




	
Best

	
50.48966734

	
50.99255379

	
50.80805259

	
51.49756894

	
50.92275235

	
50.67574917

	
50.38774681




	
Worst

	
57.87611595

	
54.01746732

	
58.78868887

	
54.84758084

	
54.91448413

	
54.12956224

	
55.70310267






DE: difference evolution; PSO: particle swarm optimization; BA: bat algorithm; WDO: wind driven optimization; QPSO: quantum particle swarm optimization; QBA: quantum bat algorithm; QWDO: quantum wind driven optimization.




From Table 9, we see that the mean normalized optimization results of DE algorithm performed the best in D = 5 and D = 10. In the rest of the cases, the mean normalized optimization results of QWDO algorithm performed best. We can see that the best-normalized optimization results of DE algorithm performed the best in D = 5, and in the rest of the cases, the best normalized optimization results of QWDO algorithm performed best. As can be seen in Table 9, the worst normalized optimization results of QWDO algorithm is the best, except in D = 15 and D = 25. In summary, the performance of QWDO algorithm is better than other optimization algorithms.



Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7 show the UCAV flight path obtained by the QWDO algorithm testing the first test instance on different D. We can find that the flight path is composed of D equal parts. For all cases in the first instance, the QWDO algorithm can find the flight path that avoids the threat areas with the smallest threat cost.

Figure 3. Result of the first instance for D = 5.
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Figure 4. Result of the first instance for D = 10.
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Figure 5. Result of the first instance for D = 15.
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Figure 6. Result of the first instance for D = 20.
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Figure 7. Result of the first instance for D = 25.
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Meanwhile, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12 have shown evolutionary process of fitness value on different D. In Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12, we can see that QWDO algorithm has a faster global convergence speed and higher convergence precision, except D = 5 and D = 20.

Figure 8. Fitness of the first instance for D = 5.



[image: Applsci 05 01457 g008 1024]





Figure 9. Fitness of the first instance for D = 10.
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Figure 10. Fitness of the first instance for D = 15.



[image: Applsci 05 01457 g010 1024]





Figure 11. Fitness of the first instance for D = 20.
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Figure 12. Fitness of the first instance for D = 25.
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When the maximum number of iterations is not the same, the results will also be different. Table 10 shows the mean results, the best fitness value and the worst fitness value between the algorithms of 50 independent runs. In the following tables, bold results indicate that the algorithm performed the best.


Table 10. Experimental results for the first test instance in different Maxgen.



	
Popsize

	
Maxgen

	
D

	
Result

	
DE

	
PSO

	
BA

	
WDO

	
QPSO

	
QBA

	
QWDO






	
30

	
50

	
20

	
Mean

	
51.55066072

	
57.49611763

	
55.52925757

	
53.37244656

	
55.06247744

	
53.26816353

	
51.0384824




	
Best

	
50.86230831

	
52.4021891

	
50.8335776

	
51.63208235

	
52.87505334

	
51.2628276

	
50.56417883




	
Worst

	
52.97970342

	
67.05488964

	
63.29522516

	
54.20131962

	
61.773734

	
58.6281585

	
53.31025066




	
30

	
100

	
20

	
Mean

	
51.51743739

	
52.44222368

	
53.18924498

	
53.40007277

	
52.13986363

	
51.53347574

	
51.04911419




	
Best

	
50.98301911

	
50.68878829

	
51.00545315

	
51.88063479

	
51.22499096

	
50.67123961

	
50.39932388




	
Worst

	
52.51570068

	
59.61227827

	
58.92518468

	
54.23101102

	
54.12993175

	
55.38455421

	
52.93418088




	
30

	
150

	
20

	
Mean

	
51.93773208

	
50.91881032

	
53.00666682

	
53.14375161

	
51.37913337

	
51.48087993

	
50.76428055




	
Best

	
50.76460097

	
50.41768377

	
50.6384468

	
51.90565475

	
50.63851986

	
50.61691071

	
50.39664491




	
Worst

	
59.1205155

	
53.27343125

	
61.22625354

	
54.01364469

	
55.1714668

	
54.98546674

	
52.91230338




	
30

	
200

	
20

	
Mean

	
50.73461503

	
51.67395413

	
53.26005394

	
53.15550115

	
51.39219052

	
51.02583378

	
50.58751325




	
Best

	
50.4160651

	
50.91067104

	
50.62680554

	
52.15259159

	
50.51985597

	
50.5578439

	
50.39570371




	
Worst

	
53.33085477

	
54.17616743

	
61.10842324

	
54.17028213

	
53.93215589

	
53.50379863

	
52.86341706




	
30

	
250

	
20

	
Mean

	
51.46928513

	
50.7031705

	
52.63088516

	
52.89985245

	
50.88980761

	
51.34376512

	
50.91479454




	
Best

	
50.78648292

	
50.42161575

	
50.5392192

	
51.96380792

	
50.49328732

	
50.49715669

	
50.39447178




	
Worst

	
54.08790265

	
53.06705989

	
60.68415725

	
53.67059243

	
53.42973728

	
57.02850459

	
52.8744808















In Table 10, we can see that the mean normalized optimization results of QWDO algorithm on UCAV path planning problem performs the best, except in Maxgen = 250. We can see in Table 10, in all different Maxgen, the best-normalized optimization results of QWDO algorithm on UCAV path planning problem are the best. As can be seen in the Table 10, although the worst normalized optimization results of QWDO algorithm in Maxgen = 50 and Maxgen = 100 is not the best, in the rest of the cases, QWDO algorithm performed best. Through the above data we can find QWDO algorithm is very efficient in solving the UCAV path-planning problem. The performance of QWDO is better than other optimization algorithms.

The experimental results of the first test instance show that the QWDO algorithm has fast convergence rate, high convergence precision, and it is an effective and feasible solution in solving the UCAV path-planning problem.





In order to verify the performance of the QWDO algorithm for solving the problem of UCAV path planning more fully, in this section, all the algorithms are applied to the second test instance. Similarly, the dimension D and the maximum number of iterations Maxgen are used as the two control variables. We look at the performance of QWDO algorithm as compared with other optimization algorithms, such as, quantum bat algorithm (QBA), quantum particle swarm optimization (QPSO), wind driven optimization (WDO), bat algorithm (BA), particle swarm optimization (PSO), and differential evolution (DE).

In the second test instance, UCAV starts at (10,15) and finishes at (80,75). In this battlefield environment, there are eight threat centers. Table 11 shows information about known threats for the second test instance.

Table 11. Information about known threats for the second test instance.


	Threat Center
	(59,52)
	(55,80)
	(27,58)
	(24,33)
	(12,48)
	(70,65)
	(70,34)
	(30,70)





	Threat radius
	10
	9
	9
	9
	12
	7
	12
	10



	Threat level
	9
	7
	3
	12
	1
	5
	13
	2












First, the performance of each algorithm is tested in different D. The mean results, the best fitness value and the worst fitness value between the algorithms of 50 independent runs are shown in Table 12. In the following table, bold results indicate that the algorithm performed the best.


Table 12. Experimental results for the second test instance in different D.



	
Popsize

	
Maxgen

	
D

	
Result

	
DE

	
PSO

	
BA

	
WDO

	
QPSO

	
QBA

	
QWDO






	
30

	
200

	
5

	
Mean

	
108.4500391

	
76.32274731

	
217.8576809

	
158.6365421

	
58.55026343

	
224.8713213

	
86.06651884




	
Best

	
51.51154424

	
51.51285958

	
51.62725599

	
53.3969487

	
51.52283974

	
51.56102341

	
51.51142514




	
Worst

	
257.7693771

	
259.3727002

	
262.6262155

	
779.1292284

	
258.96214051

	
263.0166854

	
257.7692998




	
30

	
200

	
10

	
Mean

	
51.69531753

	
59.62698855

	
56.56107653

	
66.95686144

	
51.28710941

	
56.49182092

	
52.58309128




	
Best

	
48.21839521

	
48.60012275

	
48.31096493

	
51.14078655

	
48.2522368

	
48.30357221

	
48.21752061




	
Worst

	
60.65282489

	
71.23964789

	
63.92306031

	
102.9043651

	
61.60174489

	
66.80983521

	
60.56959953




	
30

	
200

	
15

	
Mean

	
50.073766

	
53.86901522

	
50.86134423

	
66.95568288

	
49.52489924

	
50.95870139

	
49.50373784




	
Best

	
47.93535622

	
50.43482837

	
48.06959155

	
57.01360885

	
48.01888001

	
48.13432924

	
47.86853465




	
Worst

	
51.57555205

	
59.96256435

	
52.76505672

	
74.82060029

	
51.6348462

	
56.00698594

	
50.82801702




	
30

	
200

	
20

	
Mean

	
49.84233544

	
51.48149235

	
50.90193378

	
66.66824246

	
49.67928022

	
50.07122862

	
48.81483482




	
Best

	
48.12672661

	
49.24653359

	
48.16350755

	
58.430756

	
48.39737111

	
48.33316163

	
47.80715661




	
Worst

	
52.11021304

	
54.24689277

	
67.44172011

	
75.96794054

	
51.30798995

	
53.42378109

	
49.74939729




	
30

	
200

	
25

	
Mean

	
50.66805474

	
50.95517305

	
51.34776811

	
71.70637996

	
50.83847029

	
50.60934221

	
48.59295541




	
Best

	
48.70720514

	
49.54338148

	
48.79658763

	
59.14948465

	
48.75545861

	
48.39299019

	
47.83424938




	
Worst

	
55.79533973

	
53.49953637

	
64.50598736

	
80.26246808

	
53.58558572

	
53.91518696

	
49.45543938









According to Table 12, we can see that the mean normalized optimization results of QPSO algorithm on UCAV path planning problem is the best in D = 5 and D = 10. However, in the rest of the cases, QWDO algorithm performed best. We can see that the best-normalized optimization results of QWDO algorithm on UCAV path planning problem are all the best. What is more, the worst normalized optimization results of QWDO algorithm are all the best. As we can see from Table 12, in all cases, the presented global optimization algorithm QWDO algorithm is better than the original WDO algorithm. It shows that the QWDO algorithm is effective in improving the WDO algorithm.

When the maximum number of iterations is different, the results will also be different. Second, the performance of each algorithm is tested in different Maxgen, and the results of the simulation experiment are shown in Table 13. In the following table, bold results indicate that the algorithm performed the best.


Table 13. Experimental results for the second test instance in different Maxgen.



	
Popsize

	
Maxgen

	
D

	
Result

	
DE

	
PSO

	
BA

	
WDO

	
QPSO

	
QBA

	
QWDO






	
30

	
50

	
20

	
Mean

	
60.11210553

	
52.10944247

	
54.69506882

	
75.33956531

	
54.98617763

	
53.48694368

	
50.04535423




	
Best

	
54.63302708

	
49.63615429

	
49.15087344

	
64.96697732

	
51.63957205

	
49.77944089

	
48.06638554




	
Worst

	
68.85463056

	
55.49586702

	
68.94866149

	
96.58202587

	
61.59178853

	
57.49410513

	
54.18169722




	
30

	
100

	
20

	
Mean

	
53.83836816

	
51.36653616

	
53.14143773

	
70.57187552

	
51.38397481

	
50.46414355

	
49.02122905




	
Best

	
48.33976811

	
49.07513681

	
48.69510082

	
57.67068514

	
48.99505905

	
48.42088512

	
47.86003025




	
Worst

	
60.13601866

	
53.46121189

	
75.25004292

	
83.08842351

	
55.59578695

	
54.24391665

	
50.15146747




	
30

	
150

	
20

	
Mean

	
51.05336892

	
51.57677078

	
50.84575891

	
70.54479972

	
50.45391734

	
50.39693696

	
48.72957492




	
Best

	
49.40096571

	
49.67670378

	
48.62648502

	
62.80958025

	
48.41389406

	
48.52347097

	
47.82128972




	
Worst

	
55.88497818

	
54.28141398

	
61.23851396

	
76.00858334

	
52.69768873

	
53.3014373

	
49.54581499




	
30

	
200

	
20

	
Mean

	
49.9035051

	
51.5013683

	
50.16504165

	
69.76739786

	
49.73289806

	
49.82207652

	
48.67284272




	
Best

	
48.39387138

	
49.74179751

	
48.44930632

	
62.87834457

	
48.17837129

	
48.31338872

	
47.80987825




	
Worst

	
50.94635705

	
54.31102253

	
61.2292916

	
76.48909998

	
51.56006612

	
52.70993366

	
49.85033671




	
30

	
250

	
20

	
Mean

	
49.6679397

	
51.96561739

	
50.3002217

	
67.90792328

	
49.25710679

	
49.76274007

	
48.78279719




	
Best

	
47.94541607

	
50.42009286

	
48.23889332

	
60.92844125

	
48.12683235

	
48.16417909

	
47.80721825




	
Worst

	
52.17249675

	
55.53271834

	
61.53309025

	
77.23621705

	
50.74799695

	
52.16236524

	
49.51742143









From Table 13, we can see that the mean normalized optimization results of QWDO algorithm on the UCAV path-planning problem is always the best. In all different Maxgen cases, the best-normalized optimization results of QWDO algorithm on the UCAV path-planning problem are also the best. As can be seen in Table 13, the worst normalized optimization results of QWDO algorithm also performed best. Through the above data we can find QWDO algorithm is better than other intelligent algorithms in global search and local search. QWDO algorithm is very efficient in solving the UCAV path-planning problem.

Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17 show the UCAV flight path obtained by the QWDO algorithm testing the second test instance on different Maxgen. For all cases in the second test instance, the QWDO algorithm can find the flight path that avoids the threat areas with the smallest threat cost.

Figure 13. Result of the second instance for Maxgen = 50.
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Figure 14. Result of the second instance for Maxgen = 100.
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Figure 15. Result of the second instance for Maxgen = 150.
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Figure 16. Result of the second instance for Maxgen = 200.



[image: Applsci 05 01457 g016 1024]





Figure 17. Result of the second instance for Maxgen = 250.
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Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22 show the evolutionary process of fitness value on different Maxgen. As can be seen in Figure 18, Figure 19, Figure 20, Figure 21 and Figure 22, QWDO algorithm has the fastest convergence speed and the highest convergence precision in all of these tests. It shows the QWDO algorithm has a strong ability to find the optimal solutions.

Figure 18. Fitness of the second instance for Maxgen = 50.
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Figure 19. Fitness of the second instance for Maxgen = 100.
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Figure 20. Fitness of the second instance for Maxgen = 150.
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Figure 21. Fitness of the second instance for Maxgen = 200.
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Figure 22. Fitness of the second instance for Maxgen = 250.
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7. Conclusion and Future Research

In this paper, we present a new global optimization algorithm called quantum wind driven optimization (QWDO), which is based on the wind driven optimization (WDO) and quantum behavior for solving optimization problems. In order to evaluate the performance of the QWDO algorithm for solving the UCAV path-planning problem, we choose two test instances for testing. The simulation results show that the QWDO algorithm has a faster convergence rate and higher convergence precision in most cases. In comparison with QBA, QPSO, WDO, BA, PSO and DE algorithms, the QWDO algorithm is more effective in finding better solutions. QWDO is a reliable and feasible solution in solving the UCAV path-planning problem.

In this paper, the proposed QWDO algorithm was only implemented for the UCAV path-planning problem in two-dimensional space. Thus, our future work will concentrate on applying the QWDO algorithm in solving the UCAV path-planning problem in three-dimensional space. In the field of optimization, there are still many aspects worthy of study. In the future, we want to apply this algorithm to practical applications in other fields.
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