Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monodisperse Polymer Microspheres
2.3. Co-Assembly of Polymer Microspheres and CA-ZA into Monolayer Film
2.4. Fabrication of 2D ZnO Inverse Opal and Photo-Detecting Device
2.5. Characterization
3. Results and Discussion
3.1. Fabrication of Monolayer Polymer/CA-ZA Film
3.2. Fabrication and Characterization of 2D ZnO IO Films
3.3. Photo-Detecting Properties of 2D ZnO IO Film Devices
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Cai, W.P.; Duan, G.T. Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 2008, 20, 615–624. [Google Scholar] [CrossRef]
- Ye, X.Z.; Li, Y.; Dong, J.Y.; Xiao, J.Y.; Ma, Y.R.; Qi, L.M. Facile synthesis of ZnS Nanobowl arrays and their applications as 2D photonic crystal sensors. J. Mater. Chem. C 2013, 1, 6112–6119. [Google Scholar] [CrossRef]
- Hyun, W.J.; Lee, H.K.; Oh, S.S.; Hess, O.; Choi, C.G.; Im, S.H.; Park, O.O. Two-Dimensional TiO2 Inverse Opal with a closed top surface structure for enhanced light extraction from polymer light-emitting diodes. Adv. Mater. 2011, 23, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Theriault, J.; Rousselle, B.; Subramanian, B.; Robichaud, J.; Djaoued, Y. Facile fabrication of crack-free large-area 2D WO3 Inverse Opal films by a ‘dynamic hard-template’ strategy on ITO substrates. Chem. Commun. 2014, 50, 2184–2186. [Google Scholar] [CrossRef] [PubMed]
- He, L.F.; Huang, J.A.; Xu, T.T.; Chen, L.M.; Zhang, K.; Han, S.T.; He, Y.; Lee, S.T. Silver nanosheet-coated Inverse Opal film as a highly active and uniform SERS substrate. J. Mater. Chem. 2012, 22, 1370–1374. [Google Scholar] [CrossRef]
- Vogel, N.; Retsch, M.; Fustin, C.A.; Jonas, U. Advances in colloidal assembly: The design of structure and hierarchy in two and three dimensions. Chem. Rev. 2015, 115, 6265–6631. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Z.; Qi, L.M. Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas. Sci. China Chem. 2014, 57, 58–69. [Google Scholar] [CrossRef]
- Retsch, M.; Zhou, Z.C.; Rivera, C.; Kappl, M.; Zhao, X.S.; Jonas, U.; Li, Q. Fabrication of large-area, transferable colloidal monolayers utilizing self-assembly at the air/water interface. Macromol. Chem. Phys. 2009, 210, 230–241. [Google Scholar] [CrossRef]
- Vogel, N.; Viguerie, L.; Jonas, U.; Weiss, C.K.; Landfester, K. Wafer-Scale fabrication of ordered binary colloidal monolayers with adjustable stoichiometries. Adv. Funct. Mater. 2011, 21, 3064–3073. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Zhang, C.; Yuan, Y.; Wang, Z.W.; Shao, W.J.; Wang, H.J.; Xu, X.L. Fabrication of wafer-size monolayer close-packed colloidal crystals via slope self-assembly and thermal treatment. Langmuir 2013, 29, 14017–14023. [Google Scholar] [CrossRef] [PubMed]
- Moon, G.D.; Lee, T.I.; Kim, B.; Chae, G.S.; Kim, J.; Kim, S.H.; Myoung, J.M.; Jeong, U. Assembled monolayers of hydrophilic particles on water surfaces. ACS Nano 2011, 5, 8600–8612. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.S.; Dunphy, D.R.; Wilkinson, D.C.; Jiang, Z.; Strzalka, J.; Wang, J.; Su, Y.; de Pablo, J.J.; Brinker, C.J. Revealing the interfacial self-assembly pathway of large-scale, highly-ordered, nanoparticle/polymer monolayer arrays at an air/water interface. Nano Lett. 2013, 13, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Duan, G.T.; Cai, W.P. Controllable fabrication and tunable magnetism of nickel nanostructured ordered porous arrays. J. Phys. Chem. C 2009, 113, 3973–3977. [Google Scholar] [CrossRef]
- Duan, G.T.; Cai, W.P.; Li, Y.; Li, Z.G.; Cao, B.Q.; Luo, Y.Y. Transferable ordered Ni hollow sphere arrays induced by electrodeposition on colloidal monolayer. J. Phys. Chem. B 2006, 110, 7184–7188. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, W.P.; Duan, G.T.; Cao, B.Q.; Sun, F.Q.; Lu, F. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J. Colloid Interface Sci. 2005, 287, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, W.P.; Duan, G.T.; Sun, F.Q.; Cao, B.Q.; Lu, F. 2D nanoparticle arrays by partial dissolution of ordered pore films. Mater. Lett. 2005, 59, 276–279. [Google Scholar] [CrossRef]
- Sun, F.Q.; Cai, W.P.; Li, Y.; Cao, B.Q.; Lei, Y.; Zhang, L.D. Morphology-controlled growth of large-area two-dimensional ordered pore arrays. Adv. Funct. Mater. 2004, 14, 283–288. [Google Scholar] [CrossRef]
- Li, H.; Vienneau, G.; Jones, M.; Subramanian, B.; Robichaud, J.; Djaoued, Y. Crack-Free 2D-Inverse Opal anatase TiO2 films on rigid and flexible transparent conducting substrates: Low temperature large area fabrication and electrochromic properties. J. Mater. Chem. C 2014, 2, 7804–7810. [Google Scholar] [CrossRef]
- Zhen, H.Y.; Li, K. A Surfactant-Free Co-Assembly route to fabricate 2D TiO2-WO3 composite Inverse Opal films for photochromic applications. New J. Chem. 2014, 38, 4041–4044. [Google Scholar] [CrossRef]
- Li, C.; Hong, G.S.; Qi, L. Nanosphere Lithography at the Gas/Liquid Interface: A General approach toward free-standing high-quality nanonets. Chem. Mater. 2010, 22, 476–481. [Google Scholar] [CrossRef]
- Chen, H.; Hu, L.F.; Fang, X.S.; Wu, L.M. General fabrication of monolayer SnO2 nanonets for high-performance ultraviolet photodetectors. Adv. Funct. Mater. 2012, 22, 1229–1235. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, L.F.; Gao, S.P.; Liao, M.Y.; Sang, L.W.; Wu, L.M. One-step self-assembly fabrication of high quality NixMg1-xO bowl-shaped array film and its enhanced photocurrent by Mg2+ doping. Adv. Funct. Mater. 2015, 25, 3256–3263. [Google Scholar] [CrossRef]
- Hu, L.F.; Chen, M.; Fang, X.S.; Wu, L.M. Oil-water interfacial self-assembly: A novel strategy for nanofilm and nanodevice fabrication. Chem. Soc. Rev. 2012, 41, 1350–1362. [Google Scholar] [CrossRef] [PubMed]
- Mondelaers, D.; Vanhoyland, G.; van den Rul, H.; D’Haen, J.; van Bael, M.K.; Mullens, J.; van Poucke, L.C. Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method. Mater. Res. Bull. 2002, 37, 901–914. [Google Scholar] [CrossRef]
- Hatton, B.; Mishchenko, L.; Davis, S.; Sandhage, K.H.; Aizenberg, J. Assembly of large-area, highly ordered, Crack-Free Inverse Opal films. Proc. Natl. Acad. Sci. USA 2010, 107, 10354–10359. [Google Scholar] [CrossRef] [PubMed]
- Khanlary, M.R.; Isazadeh, S. Structural and optical properties of ZnO thin films prepared by Sol-Gel method. Micro Nano Lett. 2011, 6, 767–769. [Google Scholar] [CrossRef]
- Chen, M.; Hu, L.F.; Xu, J.X.; Liao, M.Y.; Wu, L.M.; Fang, X.S. ZnO hollow-sphere nanofilm-based high-performance and low-cost photodetector. Small 2011, 7, 2449–2453. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Mallik, B.; Basak, D. Dependence of photoconductivity on the crystallite orientations and porosity of polycrystalline ZnO films. Appl. Phys. A 2005, 81, 1281–1284. [Google Scholar] [CrossRef]
- Kung, S.C.; Xing, W.D.; van der Veer, W.E.; Yang, F.; Donavan, K.C.; Cheng, M.; Hemminger, J.C.; Penner, R.M. Tunable photoconduction sensitivity and bandwidth for lithographically patterned nanocrystalline cadmium selenide nanowires. ACS Nano 2011, 5, 7627–7639. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.H.; Seong, H.J.; Cho, K.; Moon, B.M.; Kim, S. Ultraviolet photodetectors based on ZnO nanoparticles. Ceram. Int. 2009, 35, 2797–2801. [Google Scholar] [CrossRef]
CA/ZA c Molar Ratio | Id a (μA) | Ip b (μA) | Ip/Id |
---|---|---|---|
0:1 | 9.7 × 10−4 | 0.46 | 474 |
0.2:1 | 1.7 × 10−3 | 1.1 | 647 |
1:1 | 2.4 × 10−3 | 4.6 | 1917 |
Nanostructures | Light of Detection | Bias (V) | Dark Current | Photo Current | Reference |
---|---|---|---|---|---|
NPs | 325 nm | 1 | ~0.4 pA | 0.3 μA | [30] |
HS | 350 nm, 1.32 mW·cm2 | 5 | 0.05 μA | 2.62 μA | [27] |
IO | 370 nm, 2.12 mW·cm−2 | 1 | 2.4 × 10−3 μA | 4.6 μA | This work |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Chen, M. Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films. Appl. Sci. 2016, 6, 259. https://doi.org/10.3390/app6100259
Lin X, Chen M. Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films. Applied Sciences. 2016; 6(10):259. https://doi.org/10.3390/app6100259
Chicago/Turabian StyleLin, Xin, and Min Chen. 2016. "Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films" Applied Sciences 6, no. 10: 259. https://doi.org/10.3390/app6100259
APA StyleLin, X., & Chen, M. (2016). Fabrication and Photo-Detecting Performance of 2D ZnO Inverse Opal Films. Applied Sciences, 6(10), 259. https://doi.org/10.3390/app6100259