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Abstract:



We present a method that generates passive-guaranteed stable simulations of analog audio circuits from electronic schematics for real-time issues. On one hand, this method is based on a continuous-time power-balanced state-space representation structured into its energy-storing parts, dissipative parts, and external sources. On the other hand, a numerical scheme is especially designed to preserve this structure and the power balance. These state-space structures define the class of port-Hamiltonian systems. The derivation of this structured system associated with the electronic circuit is achieved by an automated analysis of the interconnection network combined with a dictionary of models for each elementary component. The numerical scheme is based on the combination of finite differences applied on the state (with respect to the time variable) and on the total energy (with respect to the state). This combination provides a discrete-time version of the power balance. This set of algorithms is valid for both the linear and nonlinear case. Finally, three applications of increasing complexities are given: a diode clipper, a common-emitter bipolar-junction transistor amplifier, and a wah pedal. The results are compared to offline simulations obtained from a popular circuit simulator.
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1. Introduction


The characteristic input-to-output behavior of analog audio circuits (timbre, transitory) rests on the possibly highly nonlinear components appearing in such systems. These components make the stability of the simulations difficult to guarantee. The motivation of this work stems from the following observations:

	
Analog circuits combine energy-storing components, dissipative components, and sources.



	
Storage components do not produce energy, and dissipative components decrease it.








In this sense, analog circuits can be considered as passive systems with external power supply. We shall exploit this passivity property by transposing it to the digital domain, ensuring the stability of the simulations (see [1,2,3]).



The available approaches for the automated derivation of physical modeling and numerical simulation of audio circuits can be divided in two classes [4]: wave scattering methods (WS) and Kirchhoff’s variables methods (KV). Mixed WS/KV methods have also been proposed in references [5,6]. The well-established wave-digital filter (WDF) formalism [7] belongs to the class of WS methods. For linear circuits, it provides a computationally realizable system of equations: First, by defining parametric wave variables for each elementary component and multiports (serial and parallel); Second, by discretizing the corresponding constitutive laws with the bilinear transform; and Third, by choosing the wave’s parameters so as to reduce the computational complexity and to avoid instantaneous feedback loops. An extension to nonlinear circuits has been considered in [8,9] and applied to, for example, the real-time simulation of vacuum-tube guitar amplifiers in [10,11]. WDF ensures the passivity of the resulting digital system [7,12], including systems with scalar nonlinearity [13]. However, the passivity property of WDF structures is not ensured for circuits with more than one nonlinear element (e.g., [14] §3.2 and [15] §6).



The class of KV methods for audio circuits encompasses nonlinear state-space representations [16]. Several modeling techniques are available to derive the discrete-time state-space model, either from the global time-continuous model (e.g., [17]) or from the interconnection of discretized elementary components (e.g., [18]). The resulting set of nonlinear implicit equations solved at each sample can be structured so as to obtain a computationally realizable system by applying the K-method introduced in [19] with developments in [18]. However, this structure does not encode the passivity of the original circuit naturally, and it must be investigated on a case-by-case basis [20].



In this paper, we consider the port-Hamiltonian systems (PHS) approach, introduced in the 1990’s [21,22,23]. PHS are extensions of classical Hamiltonian systems [24], specifically defined to address open dynamical systems made of energy storage components, dissipative components, and some connection ports through which energy can transit. This approach leads to a state-space representation of physical systems structured according to energy flow, thus encoding the passivity property, even for nonlinear cases. This class of physical systems encompasses not only electrical circuits, but also multi-domain systems, such as loudspeakers, which involves electrical, magnetic, mechanical, acoustical, and thermodynamical phenomena.



The port-Hamiltonian structure is derived by applying the Kirchhoff’s laws to a given schematic, similarly to other existing approaches (e.g., WDF and K-method). Here, the advantage of the PHS formulation is the direct encoding of the underlying passive structure. This passivity property is transposed to the discrete-time domain by appropriate numerical methods, so as to ensure the numerical stability. For linear storage components (inductors and capacitors), the combination of the PHS structure with any of the trapezoidal rule or the mid-point rule yields the same numerical scheme that preserves the passivity in discrete-time. For nonlinear storage components, we propose the use of the discrete gradient method [25] combined with the PHS structure to achieve this goal. This result is compared to the aforementioned methods. As a second result, we provide an automated method that derives the PHS structure from a given analog circuit, based on an especially designed graph analysis.



This paper is organized as follows. Section 2 presents the class of the port-Hamiltonian systems; Section 3 is devoted to the automated derivation of algebraic-differential equations in the continuous time domain from the electronic schematics; Section 4 presents the numerical scheme which provides a discrete-time version of the power balance; Then, applications are presented in Section 5 and results are compared to LT-Spice simulations, before conclusions and perspectives.




2. Port-Hamiltonian Systems


First and foremost, we provide an introduction to the port-Hamiltonian systems (PHS) formalism. It is shown how this structure guarantees the passivity of the model in continuous time. Second, for the sake of intuition, we give an introductory example.



2.1. Formalism and Property


Denote [image: there is no content] the energy stored in an open physical system (an electronic circuit). If the system is conservative, its time variation [image: there is no content] reduces to the power [image: there is no content] received from the sources through the external ports. If the system includes dissipative phenomena, the power [image: there is no content] is dissipated, and the evolution of energy is governed by the following power balance:


[image: there is no content]



(1)







The port-Hamiltonian approach is used to decompose such open physical systems in (i) a set of components that are combined according to (ii) a conservative interconnection network. These two ingredients are detailed below in the case of electronic circuits.



2.1.1. Components


Electronic circuit components are sorted as (or can be a combination of):

	[image: there is no content]

	
internal components that store energy [image: there is no content] (capacitors or inductors),




	[image: there is no content]

	
internal components that dissipate power [image: there is no content] (resistors, diodes, transistors, etc.),




	[image: there is no content]

	
external ports that convey power S(∈R) from sources (voltage or current generators) or any external system (active, dissipative, or mixed).









The behavior of each component is described by a relation between two power variables: the current i and the voltage v, defined in receiver convention (the received power is [image: there is no content]).



The energy [image: there is no content] stored in storage component [image: there is no content] is expressed as a storage function [image: there is no content] of an appropriate state [image: there is no content]: [image: there is no content]. Typically, for a linear capacitor with capacitance C, the state can be the charge [image: there is no content] and the positive definite function is [image: there is no content]. Storage power variables [image: there is no content] are related to the variation of the state [image: there is no content] and the gradient of the storage function [image: there is no content], the product of which is precisely the received power: [image: there is no content]. For the capacitance, these constitutive laws are [image: there is no content] and [image: there is no content]. Note that these definitions apply equally for non-quadratic storage functions [image: there is no content] for which [image: there is no content] is not constant.



The power [image: there is no content] instantaneously dissipated by the dissipative component [image: there is no content] is expressed with respect to an appropriate dissipation variable [image: there is no content]: [image: there is no content]. Typically, for a linear resistance R, w can be a current [image: there is no content] and [image: there is no content]. As for storage components, a mapping of the dissipative power variables [image: there is no content] is provided, based on the factorization [image: there is no content], introducing a dissipation function [image: there is no content]. For the resistance, [image: there is no content] and [image: there is no content].



The power instantaneously provided to the system through external port [image: there is no content] is [image: there is no content], and we arrange the source variables [image: there is no content] in two vectors: one is considered as an input [image: there is no content], and the other as the associated output [image: there is no content], so that the power received from sources on port p is [image: there is no content] (receiver convention, with [image: there is no content] the power received by the sources).




2.1.2. Conservative Interconnection


The interconnection of the components is achieved by relating all the voltages and currents through the application of the Kirchhoff’s laws to the interconnection network (schematic). This defines a conservative interconnection, according to Tellegen’s theorem recalled below (see also [26] and [27] §9.4).



Theorem 1 (Tellegen).

Consider an electronic circuit made of N edges defined in same convention (here receiver), with individual voltages [image: there is no content] and currents [image: there is no content] which comply with the Kirchhoff’s laws. Then


[image: there is no content]



(2)









A direct consequence of (2) is that no power is created nor lost in the structure: [image: there is no content], with [image: there is no content] the power received by edge n, thus defining a conservative interconnection (Tellegen’s theorem is a special case of a more general interconnection structure, namely, the Dirac structure (see [23] §2.1.2 for details)). Now, denote [image: there is no content], [image: there is no content], and [image: there is no content] the sets of all the power variables associated with storage components, dissipative components, and sources (respectively), and [image: there is no content], [image: there is no content] the vectors of all the power variables. Then, Tellegen’s theorem restores the power balance (1) with


v⊺·i=vs⊺·is+vd⊺·id+vp⊺·ip=∇H⊺(x)·dxdt︸dEdt+z(w)⊺·w︸D-u⊺·y︸S,



(3)




where [image: there is no content] denotes the gradient of the total energy [image: there is no content] with respect to (w.r.t.) the vector of the states [image: there is no content], and function [image: there is no content] denotes the collection of functions [image: there is no content] w.r.t. the vector [image: there is no content] of [image: there is no content] so that [image: there is no content] is the total dissipated power.



The above description of storage components, dissipative components, and source, along with the conservative interconnection stated by the Kirchhoff’s laws, constitute the minimal definition of a port-Hamiltonian system (PHS) (see [23] §2.2). In this work, we focus on circuits that admit an explicit realization of PHS, for which the quantities [image: there is no content] (with [image: there is no content] or [image: there is no content]) can be expressed as linear combinations of the remaining N powers variables organized in the dual vector [image: there is no content] (with [image: there is no content] if [image: there is no content] or [image: there is no content] if [image: there is no content]):


[image: there is no content]



(4)







Then, [image: there is no content] from Tellegen’s theorem, so that the matrix [image: there is no content] is necessarily skew-symmetric ([image: there is no content]). More precisely, we consider the following algebraic-differential system of equations


[image: there is no content]



(5)




where matrices [image: there is no content], [image: there is no content], [image: there is no content] are skew-symmetric. The significance of the structure matrices is the following:

	[image: there is no content]

	
expresses the conservative power exchanges between storage components (this corresponds to the so-called [image: there is no content] matrix in classical Hamiltonian systems);




	[image: there is no content]

	
expresses the conservative power exchanges between dissipative components;




	[image: there is no content]

	
expresses the conservative power exchanges between ports (direct connections of inputs to outputs);




	[image: there is no content]

	
expresses the conservative power exchanges between the storage components and the dissipative components;




	[image: there is no content]

	
expresses the conservative power exchanges between ports and storage components (input gain matrix);




	[image: there is no content]

	
expresses the conservative power exchanges between ports and dissipative components (input gain matrix).









The PHS (5) fulfills the definition of passivity (e.g., [16]) according to the following property.



Property 1 (Power Balance).

The variation of the total energy [image: there is no content] of a system governed by (5) is given by (1), with [image: there is no content] the total dissipated power, and [image: there is no content] the total power incoming on external ports.





Proof. 

We have [image: there is no content]. Now [image: there is no content] since [image: there is no content] is skew-symmetric. ☐





Remark 1 (Power variables).

This work is devoted to the treatment of electronic circuits for which power variables are chosen as current and voltage. However, all the aforementioned definitions apply equally to multiphysical systems, provided an adapted set of power variables, generically denoted by flux (currents, velocities, magnetic flux variations) and efforts (voltages, forces, magnetomotive force), the product of which is a power (see [23] Table 1.1). This follows the bond-graph modeling approach [28,29], on which the PHS formalism is built (see [23] §1.6 and 2.1). The treatment of multiphysical audio systems in the PHS formalism can be found in [30] (electromechanical piano that includes mechanical, electrical, and magnetic phenomena) and [31] (§III.B) (modulated air flow for musical acoustics applications that includes mechanical and acoustical phenomena).







2.2. Example


Consider the resistor-inductor-capacitor (RLC) circuit in Figure 1, with [image: there is no content], [image: there is no content], and [image: there is no content], described as follows. For the linear inductance L, the state and the positive definite function can be the magnetic flux [image: there is no content] and [image: there is no content], so that [image: there is no content] and [image: there is no content]. For the capacitance and the resitance, quantities are defined with [image: there is no content] and [image: there is no content]. Port variables are arranged as input [image: there is no content] and output [image: there is no content] (edges receiver convention).


Figure 1. Resistor-inductor-capacitor (RLC) circuit (notations and orientations).



[image: Applsci 06 00273 g001]






Applying Kirchhoff’s laws to this simple serial circuit yields


[image: there is no content]











From the constitutive laws of components, this equation restores the form (5) exactly, block by block. It provides the algebraic-differential equations that govern the system with input [image: there is no content] and output [image: there is no content].



This work aims at simulating such passive systems by firstly generating Equation (5) associated to a given circuit, and secondly by deriving its numerical version so that a discrete power balance is satisfied.



Remark 2 (Reduction).

The system (5) can be reduced by decomposing function [image: there is no content] into its linear and nonlinear parts. See Appendix A for details.







3. Generation of Equations


This section provides a method to translate the description of a circuit (components and interconnections) from a netlist in a Spice-style [32] to the Formulation (5). Compared to standard methods that express all the currents as a function of all the voltages (see [18,27,32]), Formulation (5) expresses vector [image: there is no content] of selected power variables (voltage or current) as a function of the vector [image: there is no content] of complementary power variables (if [image: there is no content] is a voltage of a branch, [image: there is no content] is the associated current with receiver convention). To derive the matrix [image: there is no content] that relates the voltages and the currents arranged in vectors [image: there is no content] and [image: there is no content] according to Kirchhoff’s laws (as in example §2.2), we propose a two-step method:

	Step 1:

	
from a netlist ([image: there is no content]) to a graph ([image: there is no content]) that represents the Kirchhoff’s laws for a chosen orientation (convention);




	Step 2:

	
from ([image: there is no content]) to the skew-symmetric matrix [image: there is no content] in (5).









Step 1 is standard. The presentation focuses on convention choices and details our procedure. In step 2, we propose an algorithm that analyzes if Formulation (2) is available (that is, the circuit is realizable into the PHS formalism) and delivers the matrix [image: there is no content] in this case. Otherwise, the circuit corresponds to an implicit formulation that is not addressed in this paper. In practice, such cases appear for serial(/parallel) connection of voltage(/current)-controlled components. In this case, port-Hamiltonian Formulation (5) requires extension (see [22,23]).



3.1. Graph Encoding


3.1.1. Netlists


Each line of a netlist describes an element of the corresponding schematic, with: identification label, list of connection nodes, type of element, and list of parameters. We divide netlists into two blocks: internal components (dissipative and storage) and external ports (supplies and ground). In the first block (components), each line includes a reference to the appropriate entry in the dictionary and a list of the parameters for the corresponding model. Each line of the second block (external ports) provides the label of the externalized node, the type of supply (voltage or current), and the symbol∼if the supply is modulated (typically, the input signal), or a value if constant (typically, a battery).



As an example, the netlist corresponding to the circuit in Figure 2 is given in Table 1. Here, the components are given lines [image: there is no content] to [image: there is no content] (gray). The first two lines describe dipoles: a linear capacitor between [image: there is no content] and [image: there is no content] with label [image: there is no content] and capacitance value [image: there is no content] F; and a resistor between [image: there is no content] and [image: there is no content] with label [image: there is no content] and resistance value [image: there is no content] Ω. The third line describes a npn bipolar-junction transistor. From the dictionary (Appendix B), the base terminal appears to be connected to the circuit’s node [image: there is no content], the emitter terminal to [image: there is no content], and the collector terminal to [image: there is no content]. For this component, the list of parameters is: forward and reverse common emitter current gain, reverse saturation current, and thermal voltage. External ports are given lines [image: there is no content] to [image: there is no content]. Line [image: there is no content] describes a constant 9 V voltage supply (labeled [image: there is no content]) on the circuit’s node [image: there is no content]. [image: there is no content] describes a modulated voltage supply (here considered as the input signal) on [image: there is no content]. [image: there is no content] describes a constant 0 A current supply on node [image: there is no content]; this permits the recovery of the voltage on that node [image: there is no content] as an output to the circuit. [image: there is no content] describes the connection of the circuit’s node [image: there is no content] to the ground.


Figure 2. Schematic and corresponding graph of a simple bipolar-junction transistor (BJT) amplifier with feedback. The grey part corresponds to the components, and the outer elements correspond to the external ports, or sources (as in Table 1).



[image: Applsci 06 00273 g002]






Table 1. Example of a netlist corresponding to the circuit in Figure 2. The grey part corresponds to the components, and the other elements correspond to the external ports, or sources (as in Figure 2).







	
Line

	
Label

	
Node List

	
Type

	
Parameters






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
CapaLin

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Resistor

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
NPN_ Type1

	
List of parameters




	
[image: there is no content]

	
Vcc

	
[image: there is no content]

	
Voltage

	
9




	
[image: there is no content]

	
IN

	
[image: there is no content]

	
Voltage

	
∼




	
[image: there is no content]

	
OUT

	
[image: there is no content]

	
Current

	
0




	
[image: there is no content]

	
GRD

	
[image: there is no content]

	
Voltage

	
0











3.1.2. Graph


A graph [image: there is no content] is defined by two lists of nodes [image: there is no content] (also called vertices) and branches [image: there is no content] (also called edges), with [image: there is no content] (each element of [image: there is no content] is an object defined on two elements of [image: there is no content], see [33] for details). The dictionary (Appendix B) encodes the graph of each elementary component. The branches of such an elementary graph contain the constitutive laws of the corresponding component:

	
Dipoles are made of two nodes and a single branch, defining a single couple of state x and storage function [image: there is no content] (storage component), or dissipative variable w and scalar relation [image: there is no content] (dissipative components).



	
More generally, n-ports multipole are made of n nodes and at least [image: there is no content] branches, defining [image: there is no content] couples of variables and functions. Typically, the graph for the bipolar junction is made of two branches (base-emitter and base-collector).








The graph corresponding to a given circuit is derived from its netlist description in two steps:

	
build the internal graph by connecting the elementary graph of the components from the first block of the netlist,



	
introduce a reference node [image: there is no content] (or datum, see [27] §10) to define the external branches from the second block.








Typically, [image: there is no content] corresponds to the ground or any local electrostatic potential which does not impact the currents nor voltages. Then, [image: there is no content] is built from the list of nodes appearing at least once in the netlist, plus the reference node [image: there is no content]. According to Section 2, the set of branches is organized as [image: there is no content], with [image: there is no content] the [image: there is no content] energy storage branches, [image: there is no content] the [image: there is no content] dissipative branches, and [image: there is no content] the [image: there is no content] sources.



As an example, the construction of the graph in Figure 2 from its netlist 1 is as follows. Firstly, the internal graph is built. It is made of [image: there is no content] nodes [image: there is no content] and four branches [image: there is no content] and [image: there is no content]. Secondly, we introduce the (virtual) reference node [image: there is no content] to define the four branches corresponding to the external ports [image: there is no content].




3.1.3. Kirchhoff’s Laws on Graphs


We assign to each branch b both a voltage [image: there is no content] and a current [image: there is no content] in receiver convention, the direction of the branch indicating the direction of the current. Note that the power supplied to the system on port p is the power emitted by the port branch [image: there is no content]. For a circuit made of [image: there is no content] nodes and [image: there is no content] branches, we define: the set of electrostatic potentials on the nodes [image: there is no content], the set of voltages [image: there is no content], and the set of currents [image: there is no content]. The orientation of an entire graph is encoded in its incidence matrix [image: there is no content], defined below [27] (§9).


[image: there is no content]



(6)







As an example, the incidence matrix for the circuit described in Table 1 is given equation below (0 are replaced by dots). Notice the grey columns correspond to the components, and the other columns correspond to the external ports, or sources (as in Table 1 and Figure 2).


 [image: Applsci 06 00273 i010]



(7)







Since the reference potential [image: there is no content] does not influence the voltages nor the currents, it is not taken into account in the Kirchhoff’s laws, and we define the reduced incidence matrix [image: there is no content] obtained by deleting the row corresponding to the datum [image: there is no content] in Γ. This leads to the following matrix formulation of Kirchhoff’s Voltage Law (KVL) and Kirchhoff’s Current Law (KCL) [27] (§10), from which the structure (5) is derived.


[image: there is no content]



(8)









3.2. Realizability Analysis


The PHS structure (5) relies on (i) an arrangement of currents [image: there is no content] and voltages [image: there is no content] in two vectors [image: there is no content] and [image: there is no content] and (ii) a set of linear relations encoded in the skew-symmetric matrix [image: there is no content] that corresponds to the conservation laws (8) applied on (i,v). For storage and sources components, step (i) is straightforward with the constraints given in Table 2. For dissipative components, this step is achieved by selecting each component as voltage-controlled or current-controlled in order to satisfy a criterion on the matrix description of the interconnection scheme. This realizability criterion is given in Section 3.2.1, assuming the control type of every edge is known. A method of choosing the control type of dissipative edges so as to satisfy the realizability criterion is addressed in Section 3.2.2. This leads to Algorithm 1, which solves (i) and (ii).



Table 2. Sorting components according to their realizability.







	
Component type

	
Current-Controlled

	
Voltage-Controlled




	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]






	
storages

	
capacitor

	
inductor




	
resistors

	
resistance

	
conductance




	
nonlinear

	

	
diodes, transistors




	
sources

	
voltage source

	
current source










3.2.1. A Criterion for Realizability


In Section 3.1, the set of edges [image: there is no content] has been partitioned based on the differentiation between internal edges (or component edges [image: there is no content], grey) and external edges (or ports edges [image: there is no content], white), in order to build the complete graph from the netlist. In this section, we are interested in the PHS Formulation (5) associated to a given complete graph. To that end, we leave out from here the differentiation between internal and external edges in order to focus on the differentiation between voltage-controlled and current-controlled edges.



Suppose the control type of every edge is known, and the set of edges is split according to [image: there is no content], with [image: there is no content] the set of [image: there is no content]voltage-controlled edges and [image: there is no content] the set of [image: there is no content]current-controlled edges (see Table 2). Correspondingly, the sets of power variables are split as [image: there is no content] and [image: there is no content], and we define [image: there is no content] and [image: there is no content]. Since the reference potential [image: there is no content] defined on node [image: there is no content] does not influence the voltages nor the currents, it is not considered in the sequel, and the incidence matrix splits as follows:


Γ=γ0γ1γ2,withγ0∈R1×nB,γ1∈RnN×n1,γ2∈RnN×n2.











This leads to a rewrite of the Kirchhoff laws (8) as:


[image: there is no content]



(9)






γ1,γ2i=0.



(10)







Proposition 1 (Realizability).

If [image: there is no content] is invertible, then the port-Hamiltonian structure (5) provides a realization of the graph [image: there is no content].





Proof. 

From the relation on the voltages in (9), we get v1=γ1⊺e and v2=γ2⊺e. From the relation on the currents (10), we get γ2i2=-γ1i1. Now, if [image: there is no content] is invertible, we denote [image: there is no content] and


[image: there is no content]



(11)




 ☐





The PHS (5) is obtained by rearranging the edges according to their role with respect to the power balance, according to the permutation of vector elements [image: there is no content] (and correspondingly [image: there is no content]), which is also applied on rows and columns of [image: there is no content] of yield [image: there is no content].



From the invertibility condition on γ2 in Proposition 1, we state the following remark, which is used in the sequel to derive the realizability analysis algorithm.



Remark 3 (Necessary condition for realizability).

A necessary condition for the graph G to be realizable as a PHS (5) is that it includes as many current-controlled edges as nodes [image: there is no content], with [image: there is no content].






3.2.2. Algorithm


This section introduces an algorithm that selects the appropriate control type for each dissipative edge so that the partition [image: there is no content] satisfies Proposition 1. From Remark 3, the total number [image: there is no content] of current-controlled edges should be exactly equal to the number of nodes [image: there is no content]. From the special structure of the incidence matrix Γ, this in turn ensures that the potential on each node is uniquely defined by a linear combination of the voltages [image: there is no content] (elements in [image: there is no content] associated to current-controlled edges); i.e., [image: there is no content] is invertible.



Consider the current-controlled edge b from node i to node j in Figure 3. If the potential on node j is known, the remaining potential is obtained from [image: there is no content], where the sign depends on the orientation. In this case, we say edge b imposes the potential on node i. Now, the objective is to perform this analysis globally so that [image: there is no content] is a linear combination of [image: there is no content] with [image: there is no content]. To that end, we introduce the realizability matrix Λ defined element-wise as follows


[image: there is no content]



(12)






Λ=λ0λ1λ2,withλ0∈R1×nB,λ1∈RnN×n1λ2∈RnN×n2.



(13)






Figure 3. Definitions and orientations for a single current-controlled edge b from node i to node j, with nodes potentials [image: there is no content] and [image: there is no content], respectively. The knowledge of the potential [image: there is no content] is transferred to node i with [image: there is no content].



[image: Applsci 06 00273 g003]






Then, a given graph is realizable if the type of each resistor can be selected so that the following set of constraints is fulfilled.

	(C1) 

	
The potential on each node [image: there is no content] is uniquely defined so that [image: there is no content].




	(C2) 

	
Each Current-controlled edge [image: there is no content] propagates the knowledge of the potential on one node to the other, so that [image: there is no content].




	(C3) 

	
No edge imposes the reference potential [image: there is no content] so that [image: there is no content].




	(C4) 

	
No voltage-controlled edge [image: there is no content] imposes any potential so that [image: there is no content].









Constraints (C1–C2) ensure that [image: there is no content] is invertible, so that [image: there is no content]. Constraint (C3) ensures that the reference potential on datum does not contribute to the system’s dynamics. Constraint (C4) ensures that inputs of voltages-controlled edges are explicitly given by a linear combination of the nodes potentials so that v1=γ1⊺e=(γ2-1·γ1)⊺·v2. To build and analyze the matrix Λ, we start from the adjacency matrix [image: there is no content] of the graph, defined as follows:


[image: there is no content]











Then the non-zero elements in [image: there is no content] are analyzed to cope with the realizability constraints (C1–C4). This yields Algorithm 1. The PHS (5) is finally recovered as discussed in the proof of Property 1.



	Algorithm 1: Analysis of realizability. If successfully complete, the resulting PHS structure is given by the procedure in the proof of Proposition 1



	 [image: Applsci 06 00273 i001]








3.2.3. Example


As an example, the realizability analysis for the system in Figure 2 with the choice of inputs/outputs in Table 1 is as follows. In step 1, the realizability matrix Λ is initialized with the adjacency matrix [image: there is no content], which is built by taking the absolute value of incidence matrix [image: there is no content]:


 [image: Applsci 06 00273 i011]



(14)







In steps 3–7, the set of edges [image: there is no content] is split as [image: there is no content] according to the definition of components with voltage-controlled edges [image: there is no content], current-controlled edges [image: there is no content], and indeterminate edge [image: there is no content]:


 [image: Applsci 06 00273 i012]



(15)







The realizability matrix after step 11 in Algorithm 1 is


 [image: Applsci 06 00273 i013]



(16)







After step 19, the algorithm concludes that the potential on node [image: there is no content] is imposed by edge [image: there is no content] so that the potential on node [image: there is no content] is imposed by the capacitor [image: there is no content]. After step 28, the algorithm concludes that the potential on node [image: there is no content] is imposed by the edge [image: there is no content] so that the resistor is current-controlled (so as to impose the potential on node [image: there is no content]).


 [image: Applsci 06 00273 i014]



(17)







This concludes the realizability analysis. To recover the associated port-Hamiltonian structure, we return to the incidence matrix Γ. With the new edges ordering [image: there is no content] prescribed by the above analysis, it is rewritten as


 [image: Applsci 06 00273 i015]



(18)







Finally, the structure (5) is recovered by computing the matrix [image: there is no content] in (11) with


γ1=000110-10-10000-10;γ2=010-100-100010000-10-1000000-1.



(19)











4. Guaranteed-Passive Simulation


This section is devoted to the discrete-time simulation of the algebraic-differential system (5); that is, the computation of [image: there is no content] from [image: there is no content], with [image: there is no content], for the constant sampling frequency [image: there is no content].



First, we present the design of a numerical scheme that properly transposes the power balance (1) to the discrete time domain: this choice makes the passivity property preserved, from which stability issues stem. Second, a numerical method is used to solve the implicit equations due to the numerical scheme (on [image: there is no content]) and the algebraic equations (on [image: there is no content]).



4.1. Numerical Scheme


To ensure the stable simulation of stable dynamical system [image: there is no content], many numerical schemes focus on the approximation quality of the time derivative (or integration), combined with operation of the vector field [image: there is no content]. Here, we adopt an alternate point of view, by transposing the power balance (1) into the discrete time-domain to preserve passivity. This is achieved by numerical schemes that provide a discrete version of the chain rule for computing the derivative of the composite function [image: there is no content].



This is the case of the forward difference scheme, for which first order approximation of the differential applications [image: there is no content] and [image: there is no content] on the sample grid t≡kT,k∈Z are given by


[image: there is no content]



(20)






δHx(k),δx(k,T)=Hx(k)+δx(k,T)-Hx(k)=∇dHx(k),x(k)+δx(k,T)⊺·δx(k,T).



(21)




where, for mono-variate energy storing components ([image: there is no content]), the n-th coordinate is given by


[image: there is no content]



(22)







A discrete chain rule is indeed recovered


[image: there is no content]



(23)




so that the following substitution in (5)


[image: there is no content]



(24)




leads to


0=b(k)⊺·J·b(k)=b(k)⊺·a(k)=∇dH⊺·δxδt(k)︸δE(k,T)T+z(w(k))⊺·w(k)︸D(k)-u(k)⊺·y(k)︸S(k).



(25)







Remark 4 (Multi-variate components).

The case of mono-variate energy storing components covers most of the applications in electronics. Additionally, a generalization of the discrete gradient for multi-variate Hamiltonians such that Equations (20) and (21) are satisfied is given in Appendix C.





In this paper, we consider the class of the PHS composed of a collection of linear energy storing components, with quadratic Hamiltonian [image: there is no content] ([image: there is no content] is a capacitance or an inductance and we define [image: there is no content]). Then the discrete gradient (22) reads


[image: there is no content]



(26)




which restores the midpoint rule that coincides in this case with the trapezoidal rule. For nonlinear cases, (22) leads to another numerical scheme depending on the nonlinearity, still preserving passivity (see (25) and §4.3).




4.2. Solving the Implicit Equations


Injecting the numerical scheme (26) in (5) and solving for the quantity [image: there is no content] leads to the following energy-preserving numerical system:


[image: there is no content]



(27)




where matrices are related to [image: there is no content] in (5) as follows.


D=IdT-Jx·Q2,-1Aw=12K⊺·Q·(2Id+Ax),Ax=D·Jx·Q,Bw=Jw+12K⊺·Q·Bx,Bx=-D·K,Cw=-Gw+12K⊺·Q·Cx,Cx=-D·Gx,Ay=12Gx⊺·Q·(2Id+Ax),By=Gw⊺+12Gx⊺·Q·Bx,Cy=Jy+12Gx⊺·Q·Cx.











Given [image: there is no content], the solution of (27) is obtained from the solution of the static nonlinear implicit function [image: there is no content], with


[image: there is no content]



(28)







Remark 5 (Explicit mapping).

From the global inverse function theorem (see [34]), there exists an explicit mapping w(k)=f-1px(k),u(k) provided the Jacobian matrix [image: there is no content] is invertible for all [image: there is no content], connecting the proposed method to the K method [18,19]. This is true since [image: there is no content], [image: there is no content] and the Jacobian of [image: there is no content] (for the components of the dictionary in Table B1) prove positive definite, and [image: there is no content] is skew-symmetric.


Table B1. Dictionary of elementary components.







	
2-Ports




	
Storage

	
Diagram

	
[image: there is no content]

	
Stored Energy [image: there is no content]

	
Voltage [image: there is no content]

	
Current [image: there is no content]




	
Inductance

	
 [image: Applsci 06 00273 i003]

	
ϕ

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Capacitance

	
 [image: Applsci 06 00273 i004]

	
q

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Dissipative

	
Diagram

	
[image: there is no content]

	
Dissipated Power [image: there is no content]

	
Voltage [image: there is no content]

	
Current [image: there is no content]




	
Resistance

	
 [image: Applsci 06 00273 i005]

	
i

	
[image: there is no content]

	
[image: there is no content]

	
w




	
Conductance

	
 [image: Applsci 06 00273 i006]

	
v

	
[image: there is no content]

	
w

	
[image: there is no content]




	
PN Diode

	
 [image: Applsci 06 00273 i007]

	
v

	
[image: there is no content]

	
w

	
[image: there is no content]




	
3-Ports




	
Dissipative

	
Diagram

	
[image: there is no content]

	
[image: there is no content]




	
NPN Transistor

	
 [image: Applsci 06 00273 i008]

	
[image: there is no content]

	
[image: there is no content]




	
Potentiometer

	
 [image: Applsci 06 00273 i009]

	
[image: there is no content]

	
[image: there is no content]













In this paper, we use the Newton–Raphson algorithm, which iteratively approximates the nearest root of function [image: there is no content] with the following update rule: wn+1(k)=wn(k)-Jr(wn(k))-1.rwn(k), where Jr(w) is the Jacobian matrix of [image: there is no content]. Once a solution [image: there is no content] to the implicit equation is available, the output and state updates are given by:


[image: there is no content]











Finally, denoting by [image: there is no content] the number of time-steps and [image: there is no content] the number of Newton–Raphson iterations per time-step, the simulation is performed according to Algorithm 2.



	Algorithm 2: Simulation, with [image: there is no content] the number of time-steps and [image: there is no content] the (fixed) number of Newton–Raphson iterations.



	 [image: Applsci 06 00273 i002]









4.3. Comparison with Standard Methods


In this section, the proposed approach (PHS structure combined with the discrete gradient method) is compared with two standard methods: the trapezoidal rule (average of the vector field at [image: there is no content] and [image: there is no content], used in the WDF approach [7]) and the midpoint rule (evaluation of the vector field at [image: there is no content], suitable for any differential-algebraic system of equations). Both are known to preserve the passivity of linear undamped systems (see [35] for a detailed analysis). The updates associated with these three methods are given in Table 3. These methods are applied on the same conservative system [image: there is no content], the power balance of which is given by [image: there is no content] (with [image: there is no content]). The comparison measure is then the relative error on energy [image: there is no content] for [image: there is no content].



Table 3. Updates for the three methods considered in §4.3. PHS stands for port-Hamiltonian system.







	
Method

	
Update






	
Trapezoidal rule

	
[image: there is no content]




	
Midpoint rule

	
[image: there is no content]




	
PHS with discrete gradient

	
[image: there is no content]










First, notice that for quadratic Hamiltonian [image: there is no content] with linear gradient [image: there is no content], the three methods yield the same update:


[image: there is no content]



(29)







As a consequence, these three methods induce the same frequency warping (see [36] for the analysis of the bilinear transform derived from the trapezoidal rule).



We focus on the nonlinear case. For comparison, we choose a simple nonlinear conservative system with state [image: there is no content], non-quadratic Hamiltonian


H(x)=10logcosh(x1)+cosh(x2)-1,



(30)




and canonical skew-symmetric matrix [image: there is no content].



In each case, the resulting implicit equations are solved by Python iterative solver (see [37]). The Python code is available at the url given in [38]. In order to exhibit the behavior of each method in the worst case, simulations are performed with an especially low sample rate of [image: there is no content] Hz. The results for each method are given in Figure 4, with comparison in Figure 4d. We see that the error of the proposed method is low (close to machine precision ≃10-16) compared to standard methods.


Figure 4. Simulation results and comparison of the methods in Table 3, for a nonlinear conservative system [image: there is no content] with [image: there is no content] given in (30): (a) Trapezoidal rule; (b) Midpoint rule; (c) PHS combined with discrete gradient; (d) Relative error on energy balance.The comparison measure is the relative error on the power balance defined by [image: there is no content]. We see from Figure 4d that the error associated with the proposed method (PHS approach combined with the discrete gradient method) is low compared to the two other methods (with machine precision ≃10-16). The accumulation of these errors is responsible for the apparently unstable behavior of the trapezoidal rule.



[image: Applsci 06 00273 g004a][image: Applsci 06 00273 g004b]








5. Applications


This section is devoted to the simulation of three analog audio circuits by the application of Algorithms 1 and 2. Those circuits are a diode clipper, a common-emitter BJT audio amplifier, and a wah-pedal as a full device. Results obtained with (i) the method in Section 4 and (ii) with the offline circuit simulator LT-Spice [32] are compared.



5.1. Diode Clipper


Diode clipper circuits can be found in several audio-distortion devices. They are made of one resistor and two diodes (nS=0,nD=3) connected to the ground in reversed bias (see Figure 5a). The external ports are the input/output and the ground ([image: there is no content]). The resistor is current-controlled and the ground is removed. The vectors [image: there is no content] and the structure [image: there is no content] returned by Algorithm 1 are:


iRvD1vD2iINvOUT︸a=0-110-110010-100-100-110-110010︸J·vRiD1iD2vINiOUT︸b.










Figure 5. Simulation (Figure 5b) of a dissipative diode clipper (Figure 5a) at the sample rate [image: there is no content] kHz, with three Newton–Raphson iterations, for a 10 ms sinusoidal excitation at 1 kHz with linearly increasing amplitude between 0 V and 2 V. (a) Diode clipper schematic; (b) Simulation of the diode clipper of Figure 5a.



[image: Applsci 06 00273 g005]






The simulation is performed according to Algorithm 2 at the sample rate [image: there is no content] kHz, with three Newton–Raphson iterations (shown to be enough to converge in practice). We apply a linearly increasing 1 kHz sinusoidal excitation [image: there is no content] during 10 ms with maximum amplitude 2 V ([image: there is no content] A, [image: there is no content] V). The output [image: there is no content] is given in Figure 5b. We see the signal is clamped between [image: there is no content] V, in accordance with LT-Spice results.




5.2. Common-Emitter BJT Audio Amplifier


Common-emitter bipolar-junction transistor (BJT) amplifiers are widely used as amplification stages in analog audio processing. They are made of two capacitors ([image: there is no content]), two resistors, and one NPN transistor which is made of two nonlinear dissipative branches ([image: there is no content], see Figure 6a and the dictionary in Table B1). The external ports are the input/output signals, the 9 V supply, and the ground ([image: there is no content]). Note that the ground is removed. The resistor [image: there is no content] is current-controlled, and the resistor [image: there is no content] is voltage-controlled. The vectors [image: there is no content] and the structure [image: there is no content] returned by Algorithm 1 are given in Equations (31) and (32).


a=iCi,iCo|vRf,iRc,vBc,vBe|iIN,vOUT,iVCCb=vCi,vCo|iRf,vRc,iBc,iBe|vIN,iOUT,vVCC



(31)






[image: there is no content]



(32)






Figure 6. Simulation (Figure 6b) of the common-emitter bipolar-junction transistor (BJT) amplifier with feedback (Figure 6a) at the sample rate [image: there is no content] kHz, with 10 Newton–Raphson iterations, for a 10 ms sinusoidal excitation at 1 kHz with linearly increasing amplitude between 0 V and [image: there is no content] V. (a) Schematic of a common-emitter BJT amplifier with feedback; (b) Simulation of the BJT amplifier in Figure 6a.



[image: Applsci 06 00273 g006]






The system is reduced according to Appendix A, and the simulation is performed according to Algorithm 2 at the sample rate [image: there is no content] kHz, with 10 Newton–Raphson iterations. The reason for increasing the sample-rate and the number of Newton–Raphson iterations is twofold. Firstly, it attenuates the effect of aliasing for input signals limited to the audio range (see [39] for details). Secondly, it ensures that the iterative solver converges, which is difficult due to the numerical stiffness of the problem; that is, the Lipschitz constant associated to the inital Cauchy problem is very high, see [40]. At first, we turn the supply [image: there is no content] V on, and we wait [image: there is no content] s for the system to reach its steady state. Then, we apply a 10 ms sinusoidal excitation [image: there is no content] at 1 kHz with linearly increasing amplitude between 0 V and [image: there is no content] V ([image: there is no content] A). The resulting output [image: there is no content] is given in Figure 6b. We see that the signal is amplified between 0 V and 9 V, with a strong asymmetrical saturation, in accordance with LT-Spice results. Additionally, spectrograms obtained for an exponential chirp on the audio range are given in Figure 7 (see Figure 16 in [39] for comparison).


Figure 7. Results for the common-emitter BJT amplifier with feedback (Figure 6a). The input voltage signal is a 4 s exponential chirp on the audio range (20 Hz–20 kHz) with amplitude [image: there is no content] V (logarithmic frequency scale). Simulation starts at 0.3 s (after the switching transient). (a) Spectrogram of output [image: there is no content] obtained with the proposed method; (b) Spectrogram of output [image: there is no content] obtained with LT-Spice.



[image: Applsci 06 00273 g007]







5.3. Wah Pedal


This section addresses the simulation of a full device (namely the Dunlop Cry-Baby wah pedal) to be used in real time. The circuit is given in Figure 9. It provides a continuously varying characteristic wah filtering of the input signal. This circuit has been treated with the nodal discrete K-method in [41] and with the PHS framework in [42]. It is composed of [image: there is no content] = 7 storage branches (6 capacitors and 1 inductor), nD=18 dissipative branches (11 resistors, 1 PN diode, 2 NPN transistors and a potentiometer), and [image: there is no content] = 3 ports (input/output signals and battery, discarding the 5 grounds). The [image: there is no content] parameter is the potentiometer’s coefficient α. Notice this circuit includes several edges that do not contribute to the device input-to-output behavior, as analyzed in [41]. In this work, we consider the complete original schematic. From Algorithm 1, the resistors [image: there is no content], [image: there is no content] and [image: there is no content] are considered as conductances, and the others as resistances. The structure [image: there is no content] is not shown here. The sets of PHS variables are:


[image: there is no content]










[image: there is no content]








where [image: there is no content] is the set of dissipative states and [image: there is no content] the set of characteristics according to each resistor’s type, and


Inputsu=[vin,iout,vcc]⊺,Outputsy=[iin,vout,icc]⊺.











The system is reduced according to Appendix A (with potentiometer’s time varying resitors kept in [image: there is no content]). Firstly, we realize an offline simulation (in Python) with Algorithm 2 for the sampling rate [image: there is no content] kHz, and three Newton–Raphson iterations. We apply a white noise normalised to 1 V on the input [image: there is no content] ([image: there is no content] A). The magnitudes of transfer functions obtained from fast Fourier transform are given in Figure 8 for the two extreme positions of the pedal. These results are in accordance with LT-Spice.


Figure 8. Simulations of the Cry-Baby’s circuit of Figure 9, for the potentiometer parameter [image: there is no content] (a) and [image: there is no content] (b) in the frequency domain, compared with LT-Spice simulations on the audio range 20 Hz–20 kHz.



[image: Applsci 06 00273 g008]






Secondly, a VST plugin [43] to simulate the Cry-Baby in real-time is made from Algorithm 2. First, a C++ code is automatically generated; Second, this code is encapsulated in a Juce template to compile the audio plugin (see [44]). The sample rate [image: there is no content] is imposed by the host digital audio workstation (here Ableton Live!), and we force five Newton–Raphson iterations. The simulation performed well (audio examples are available at the url [45]). The CPU load on a laptop (Macbook 2.9 GHz Intel Core i7 with 8Go RAM) is 37% for [image: there is no content] kHz, and 20% for [image: there is no content] kHz.



Remark 6 (Time-varying stability).

The use of the Newton–Raphson method can hamper the stability of the numerical solution for time-varying systems, especially in the case of fast variations (here, of the potentiometer) for which the Jacobian matrix of the implicit Function (28) can be ill-conditioned. For linear storage components, a solution is to use the K-method instead (see Remark 5).







6. Conclusions


We have established a method to automatically recast an analog audio circuit into PHS formalism, which guarantees passivity of the continuous time model. The generation of the PHS from a given schematic lies on two points:

	
the graph theory to describe the interconnection network of a given circuit’s schematic,



	
a dictionary of elementary components which are conformable with PHS formalism.








Then, we transposed this physical principle to the digital domain by properly defining the discrete gradient of the Hamiltonian, such that a discrete time version of the power balance is satisfied. The resulting stable numerical scheme is of second order (restoring the midpoint rule for linear systems). It has been shown that the K-method is always applicable to PHS (providing efficient implementations of the implicit relation due to the proposed numerical scheme).



Offline simulations are consistent with LT-Spice results. The whole method allows the automatic generation of C++ simulation code to be used in the core of a real-time VST audio plug-in simulating the Dunlop Cry-Baby wah pedal.



A first perspective on this work is to consider higher-order numerical schemes (namely, the class of Runge–Kutta schemes). Moreover, it would be possible to symmetrize the roles of the voltages and the currents at the interconnection by applying the Cayley transform to the PHS structure, thus adopting wave variables, with possible connection with the WDF formalism. Additionally, an automated analysis of the original schematic could be developed, so as to identify the unimportant or degenerate states and to reduce the dimensionality of the system. Finally, it could be possible to exploit the compatibility of the proposed method with the K-method to alleviate the numerical cost due to Newton–Raphson iterations.
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Appendix A. Reduction


The dimension of system (5) can be reduced, considering the following decomposition of variable [image: there is no content] and function [image: there is no content]:


w=wLwN,z(w)=zL·wLzN(wN),








with [image: there is no content] a diagonal matrix whose elements are the resistance or conductance of linear dissipative components, and [image: there is no content] a collection of the nonlinear dissipative relations. Correspondingly, the structure matrices are decomposed as


K=KLKN,Gw=GLGN,Jw=JLL-KLNKLN⊺JNN.











Defining L=KL⊺,-KLN,-GL, and M=zL-1-JLL-1 a positive definite matrix, the system (5) is reduced to


[image: there is no content]



(A1)




with [image: there is no content] a skew-symmetric matrix given by


[image: there is no content]








and [image: there is no content] is a symmetric positive definite matrix given by


R=RxRxnRxyRxn⊺RnRnyRxy⊺Rny⊺Ry=12L⊺·M+M⊺·L.











Indeed, matrix [image: there is no content] (respectively [image: there is no content]) corresponds to the conservative (respectively resistive) interconnection of dynamical storage components, nonlinear dissipative components, and sources.



The system (A1) is simulated by Algorithm 2, with


[image: there is no content]



(A2)







Remark A1 (Reduced explicit mapping).

From the global inverse function theorem (see [34]), there exists an explicit mapping wN(k)=f-1px(k),u(k) provided


[image: there is no content]














Appendix B. Dictionary of Elementary Components


The dictionary is given in Table B1. We choose variables [image: there is no content] and [image: there is no content] so that matrices of the PHS (5) are canonical, that is, they do not involve any physical constants.





Appendix B.1. Storage Components


Such components are defined by their storage function h associated with the constitutive laws of Table B1. In this paper, all storage components are linear dipoles. However, nonlinear components can also be considered if appropriate state and corresponding energy function can be found.




Appendix B.2. Linear Dissipative Components


The characteristics of dissipative components are algebraic relations on [image: there is no content]. Potentiometers are modeled as two time-varying resistors, the sum of which is [image: there is no content]. To avoid 0 value of the resistors, 1 Ω have been added to those characteristics. The modulation parameter is [image: there is no content]. As an example, in Table B1, we choose a conductance between [image: there is no content] and [image: there is no content], and a resistance between [image: there is no content] and [image: there is no content], so that [image: there is no content].




Appendix B.3. Nonlinear Dissipative Components


PN junctions are modeled as voltage-controlled components by the Shockley equation: [image: there is no content], where [image: there is no content] is the saturation current, μ is an ideality factor, and [image: there is no content] the reference voltage, specified for each diode type. Note that the passivity property is fulfilled ([image: there is no content]). As in LT-Spice simulators, a minimal conductance [image: there is no content] is added in Table B1. This helps convergence in the simulation process.



NPN junctions are passive 3-ports, with dissipated power [image: there is no content]. Here we use the Ebers–Moll model, which preserves this passivity property. [image: there is no content] is the saturation current, [image: there is no content] and [image: there is no content] are respectively the reverse and forward common emitter current gains, and [image: there is no content] is the thermal voltage. The corresponding voltage-controlled dissipative characteristic [image: there is no content] is given in Table B1, denoting [image: there is no content], [image: there is no content], and including minimal conductances. Note that [image: there is no content]. In our final simulations, some resistors are added to model the resistance of contacts in the nonlinear components, choosing the same values as in LT-Spice models.




Appendix B.4. Incidence Matrices Γ


Incidence matrices for 2-ports, potentiometer P, and transistor Q with conventions of Table B1.


Γ2-port=B(1-1)N1N2, ΓP=Bp1Bp2(10-110-1)N1N2N3, ΓQ=BBCBBE (11-100-1)NBNCNE



(B1)









Appendix C. Discrete Gradient for Multi-Variate Hamiltonian


A generalization of the discrete gradient for multi-variate Hamiltonians such that Equations (20) and (21) are satisfied is given by replacing definition (22) by (see [46]):


[∇dHx,x+δx]n=ΔnH(x,x+δx)δxn.



(C1)




with


ΔnH(x,x˜)=H(x˜1,⋯,x˜n-1,x˜n,xn+1,⋯,xnS)-H(x˜1,⋯,x˜n-1,xn,xn+1,⋯,xnS).



(C2)







For mono-variate components, (22) and (C1) coincide and yield (discrete) constitutive laws that are insensible to the ordering of the state variables. For multi-variate components, this last property is lost, but can be restored by replacing (C2) by the averaged operator: [image: there is no content], where for all permutation [image: there is no content], [image: there is no content], and [image: there is no content].
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